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Vector partition functions



Coin exchange problem

Jg Definition ~\

Let @, ..., a, be positive integers. The problem of computing the number of

solutions x = (x, ..., xp) € N" of
axi+ -+ axn=0>b

for a non-negative integer b is called the coin exchange problem.

J

Example: How many ways can one pay for an item worth 6 dollars (4.08 euros) with 1
dollar (0.68 euro) coins, 2 dollar (1.36 euro) coins and 5 dollar (3.4 euro) bills?
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Example: How many ways can one pay for an item worth 6 dollars (4.08 euros) with 1
dollar (0.68 euro) coins, 2 dollar (1.36 euro) coins and 5 dollar (3.4 euro) bills?

ATEED Ve WS 1) 6 loonies  2) 4 loonies, 1 toonie 3) 2 loonies, 2 toonies

4) 3 toonies 5) 1 fiver, 1 loonie
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Vector partition functions

B Deiniion’ \

Let A be a d X n matrix with integer entries, of rank d, and satisfying
ker(A) NRY, = {0}. The vector partition function of A,
pa:Z9 - N
is defined by
pa(b) = #{x € N" : Ax = b}.
\ y

d =1 <= coin exchange
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Example (1)

Compute pa(b) for
1

1
1

- O O

10
A= 10 1
00

Equivalently, find the number of solutions (X, x2, x3, X4) € N* to

1 0 0 1 by
x |0 +x | 1| +x3 |0 +x2 |1] = | by
0 0 | i b
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Example (1)

Compute pa(b) for
1

1
1

- O O

10
A= 10 1
00

Equivalently, find the number of solutions (X, x2, x3, X4) € N* to

1 0 0 1 by
x |0 +x | 1| +x3 |0 +x2 |1] = | by
0 0 | i b

Observation: for any “valid” choice of xg, there is a single choice for x, x2, X3

— PA(bL b,, b3) = min(b1, by, b3) +1
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Example (I1)

by axis
Region |. 0 < by < by, b3
pa(b) = by +1 Region [
Region Il. 0 < by < by, bs Region 11 by = by = by
pa(b) = by +1
Region . O S b3 S b1v bZ by axis by axis
pa(b) = b +1 Region 11
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Vector partition function background

e Sturmfels (1994): Vector partition function pa can be expressed as a piecewise
quasi-polynomial (essentially periodic polynomial) of degree n — d

e Pieces of polynomiality are chambers (maximal cones) of a fan called the chamber
complex of A

e Vector partition function can be computed using Barvinok developed by Koeppe,
Verdoolaege, and Woods (2008) (time is polynomial for fixed dimension)

e pa(b) counts number of integer points in polytope {x € N": Ax = b} for any
b € Z9 N posg(A)
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Our contribution

e reduction of dimension via external columns

e external chambers and coin exchange problem, determinantal formula
e negative binomial coefficient formula

e application to multigraph counting

e examples in computation of (quasi)-polynomials associated to
Littlewood-Richardson coefficients and Kronecker coefficients

e symmetry and stability results for Littlewood-Richardson coefficients

e bounds on Kronecker coefficients
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External columns and chambers



Cones

e Cone: set o of form
posp (V1, .., Vg) := { qvi+- -+ Apvp t Ay, Ay > 0} po
for vectors vy, ..., v, € QF called ray generators of o

e Faces: Intersection of cone with supporting
hyperplane (dimension 1 faces are rays,
co-dimension 1 faces are facets)

e Dual cone:

o ::{mERd:muzOforalluEa}
(ray generators of o are inner facet normals of o)

e Fan: set X of cones such that intersection of a pair
is a face of both, and face of any cone in X is also
in X.
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Some chambers are “nicer” than others

0 -1 —1 1

(2b) + 3by + 3b3 + 3)(by + 2)(by + 1)

3 2 2 2
B+ Jbby — Jbib3 — §B3+ b + Sbiby + Jbyby —
b3+ Db+ by + Zb3 +1

$(2by — by — by +3)(by + by + b3 +2)(by + by + b3 + 1)
V. &by +3by + 3)(by + 2)(by + 1)
&by + by +3)(by + by +2)(by + by +1)

143 142 143 1412 1 2 1 2
VI 4634 Dby, — 163 — Lb2by — 1bpd — 1byhd —
163 +b2 4+ 3byby+ Sbyby — J63+ Wb+ Ty + 2 by +1

3
VIL (b + by + b3 + 2)(by + by + b3 + 1)(by + by — 2b3 + 3)

Chamber V is very “nice” - formula given by negative binomial coefficient.
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External columns & chambers

\_

bg Definitions

External column: column a; not contained
in posg (A -)

External ray: 1-d cone generated by a
single external column

External chamber: all but one ray of
generated by external column of A
External facet: cone generated by external

columns of external chamber

N

e external columns: 1,4, 6
e external chambers: V

e external facets: posg(1,6)
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Dimension drop via external columns

Main idea: dimension drops by number of external columns in chamber
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Dimension drop via external columns

Main idea: dimension drops by number of external columns in chamber
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Dimension drop via external columns

Main idea: dimension drops by number of external columns in chamber

o
o
o
)

1 2] B 4 5 ap a7 o o .
10 0 0 1 0 0 17 Tol Tol Ti e Apply invertible linear
1 1 0 0 0 1 0 0 1 0 1 .
A=l1 1 1 0o o o a]v=eese| ool 1] transformation
e 0o o 1 |l 1 preserving the VPF
0 —1 —1 —1 1 0 0 1 0 0 0
0 0 —1 1 0 1 0 0 1 0 0
M=l 0o o o -1 0 o 1 |"M=PEr| o] |o|"|1] |0
1 1 1 1 0 0 0 0 0 0 1
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Dimension drop via external columns

Main idea: dimension drops by number of external columns in chamber

o

J 2 B 4 as ag ay N o .
10 0 0 1 0 0 17 Tol Tol Ti e Apply invertible linear
1 1 0 0o o0 1 o0 all gl llall s .
A=l1 1 1 0o o o a]v=eese| ool 1] transformation
e of [of |o] [n preserving the VPF
e View external column
variables as slack
0 -1 —1 -1 1 0 o0 17 o] [o] [o variables
0 0 —1 1 0 1 0 0 1 0 0
M=1 0o o o =1 0o o 1 |"M=rorfiol]o]"|1] |0
1 1 1 1 0 0 0 0 0 0 1 y
pPa(b) = ps((Mb)g).
so p,(b) arises from
; ]
B=(1 1 1 1)y =posz ([1]) coin exchange!
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Main result and determinantal formula

- Theorem (T. 2023) N

Let A be a d X n matrix of rank d with integer entries, and let v be a chamber of

A that is simplicial. Without loss of generality assume that ay, ..., a, are the
external columns of . Assume additionally that the semigroup
posy((){a1, ..., ar}) is saturated in L£(A). Let B be the matrix obtained by
removing the first £ rows and columns from M,vA. Then

pa(b) = p3 ((Myvb)rsr, ... (Myb)g)

\_ for all b € v M posy4). Moreover, 4" is the positive orthant in RI~¢. )

Determinantal formula (T. 2023) ~N

pa(b) =f (%) v - internal ray generator of v, f(t) = pa(tv)
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T b
det ! (b _H)Z .
det(as, b) > _f 0 b S if =0 mod?2

N b) = = f(b) =
Pae2(b) f(det(a1,a3) fb2) (E2)B243) e p) =1 mod 2.

Here f(t) := p%*(ta3) (Ehrhart quasi-polynomial along internal ray) computed using
Latte.
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Polynomiality and unimodularity

Observation: coin exchange pg is polynomial iff each entry of B is equal (say £3). In this
case, pg is negative binomial coefficient.

Under saturation, and dot product condition we find:

Theorem (T. 2023)

b det(a1,...,ad,1,b) o
P’Y(b) — LF +n—d — [ det(ar...ag_1.a4+e) tn-d
A n—d n—d

Unimodular: determinant of d x d submatrices € {0, £1}
Unimodular <= p) polynomial (de Loera, Sturmfels 2003)
If A unimodular, 5 =1
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Constructing external chambers

e Issue: it can be very time intensive to compute the entire chamber complex (for
example, number of chambers for only first 7 cases are known in much studied

Kostant's partition function), so we would like to avoid this.

e Lemma: external facet <= facet of posy(A) containing exactly d — 1 columns

e Compute external facet: this can be done by computing dual cone, and then
computing dot products to check number of columns on facet. Call generators of
external facet aj, ..., a4_1.

e Then external chamber is

n

ﬂ posg(ar, ..., a4, ;). (1

j=d

e Note: external chambers don't exist for all vector partition functions
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An application in the enumeration of
mulitgraphs




Multigraph counting (I)

Goal: count number My, (d, ..., dn) of loopless multigraphs on vertices v, ..., v, with
degree sequence (d,, ..., dy)
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Multigraph counting (I)

Goal: count number My, (d, ..., dn) of loopless multigraphs on vertices v, ..., v, with
degree sequence (d,, ..., dy)
Example: There are 6 multigraphs on vi, v, v3, v4 with degree sequence (5,4, 3,2):
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Multigraph counting (ll)

e G, - incidence matrix of complete graph on m vertices

e Connection to vector partition functions:

Mm(d1, e dm) = PGm(dL e dm)

e |dea: study the vector partition function pg, - for example, does it have any

external chambers for general m?
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Multigraph counting (ll)

e G, - incidence matrix of complete graph on m vertices

e Connection to vector partition functions:
Mm(d1, e dm) = PGm(dL e dm)

e |dea: study the vector partition function pg, - for example, does it have any
external chambers for general m?

e Answer: yes! External chamber v is defined by monotonicity inequalities
d>dy>--->dpaswellasdy+dp >+ + dy

E| — i+ (™) - 1>

P’ém(dp vy dm) = ( (m2—1) 1
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Multigraph counting (Ill)

.G4:

1
1
0
0

1
0
1

0

—_ 0 O -

0
1
1

0

0
1
0
1

0
0
1

1

e (5,4,3,2) is in external chamber!

e m=4,d =5 =23+ =7 5o

>:

a3

7-5+(

(

3
2

3
2

)1

)1

Solutions x € N® to Gyx = (5,4,3,2)

U1 v2 vy — U2 vl — 2

a T ', < e
v v { . v ~
Uy U vy v3 vy U3
X = 1,2,2,0,0) x=(2,2,1,1,1,0) x =(2,3,0,0,2,0)
o v vy v vy v

——— S N
Uy U3 Uy U3 Uy U3

x=(31,1101) x = (4.1,0,0,0,2)
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More general setting




Vector partition-like functions

e Briand, Rosas, Orellana: vector partition-like function: piecewise quasi-polynomial
F whose pieces are chambers of a fan

e analogue of external column: F(tv) =1 for all t (we call this an F-external ray)

e analogue of external chamber: all (but one) rays generating chamber are external
rays (we call this an F-external chamber).

e we consider two vector partition-like functions (Littlewood-Richardson function
and Kronecker function) which arise more indirectly from vector partition function

e note: vector partition-like function is a little too general for our purposes -
question: what restrictions should we impose?
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Littlewood-Richardson coefficients

Littlewood-Richardson coefficients c , describe how to express a product of Schur
functions in the basis of Schur functions:

o v
SASy = E CxpuSv
v

e Rassart (2004): proved Littlewood-Richardson function
q)k()":u' V) - CK,[L

(for £(N), £(w), £(v) < k) is a piecewise-polynomial, “pieces” are maximal cones of
a fan LRy
e “Unfortunately the Littlewood-Richardson rule is much harder to prove than was
at first suspected. The author was once told that the Littlewood-Richardson rule
helped to get men on the moon but was not proved until after they got there.”
- Gordon James
19/28



The piecewise polynomial &

Minimal ray generator
Pl Minimal ray generators 2l

a = (111]0,00]111)
b=(210]210]321)
dy = (11,0100 111)
e =(11,0]0,0,0110)
f=(1,0,0]10,0]110)
& =(1.0,0]0,0,010,0)

a = (0,00 111]111)
c=(110]110]211)

dy = (10,0 11,0111
e, =(0,0,0]11,0(1,10)

g =(0,0,0[1,0,0]1,0,0)

PER: (i my minc) M

Chamber
K
K2
K3
K4
K5
K6
K7
at:}
]
K10
Bn
K12
K13
K14
K15
K16
K17
K18

ap,
ay,
ap,
,ap, b, di,dy, e e, f
a),

a

a

a

a

Ray generators
ay,b,c di,dy, e, e
az b, c.d. dy.81.82
ay,b.c.ee.8.8

ay, b, dy. dy.f.81. 82

a3, b.e e f g8
ay,

ay.b.c.djdy e 8

,ay,b,c,di. dy, e, 8
ap,

ayb.cdieeg

,ap,b,c,dy e e, 8
.az.b.c.dy e 8.8
,a3,b,c.dy e, 8182
,ay,b,dy, dy, e f. g
,ay,b,dy, dy, ey, f. g
a2, b.dy e f. g8
.ay,b.dy. e.f g1, 82
,ay, b, dj, e, ey, f, 8
,ap, b, dy. e e, f g

e Piecewise polynomial ¢; —

Polynomial
T=2X2 =+
T+vy — 3
T+ M+ m—n
T+ — 1y
T+ X +p2 —v3
T—Az3—p3+w3
T+ A3+ p —v3
T+ XN +p3 —v3
T+ XN — A
T+ m — p
1= —p3+
T—=2A3 -+
T—XN—p3+un
T=2A3—m+n
T+ p — p3
T4+ 2 — A3
T+ M+ —
T+ X+ m -1
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Determinantal formula

Observation: each ray is ®3-external except for the one generated by b, therefore each
chamber is ®3-external

Briand, Rosas, T., 2023:

Let p := (A 1, v) € k for some chamber  of LR3 with minimal ray generators

a, ay, b, V1,V2,V3, V4, V5. Then

CK'/L = |det(",51,§2,\71,...,\75)\ +1

NOTE: LR coefficient represents continuous volume of paralleliped

CK-N =1 <= volume of paralliped = 0 (dimension drops)
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The kK = 4 case

®4-external chamber ~y generated by the following rays:

v1:=(0,0,0,0,1,0,0,0,1,0,0) v2:=(0,0,0,0,11,1,0,1,1,1) v3:=(0,0,0,0,1,1,1,1,11,1)
v4:=(1,0,0,0,0,0,0,0,1,0,0) v5:=(1,1,0,0,0,0,0,0,1,1,0) v6:=(11,0,0,1,0,0,0,1,1,1)
v7:=(11,0,0,11,0,0,2,1,1) vg:=(11,0,0,111,0,2,1,1) v9:=(111,0,0,0,0,0,11,1)
vio:=(1111,0,0,0,0,1,1.1) vii=(4,3,1,0,3,21,0,6,4,3)

Each ray except for vy is ®4-external.

Determinant formula holds here:
det(vy,...,vi0.b)
¢z — (det(V],VZ ..... Vﬂ) + 3>
21 such chambers in this case, each of where determinant formula holds.

Unfortunately, no ®-external chambers for larger k
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Kronecker coefficients (I)

e Kronecker coefficients are the structure constants in the decomposition of a tensor
product of irreducible representations of the symmetric group into irreducible
representations:

\QL§§ VL = G}E)gAJLVv&-
A

e Schur functions:
s\XYT = gnpwsulX]s[Y]

[18%

X=X Xm), Y = (V1 s Yn), XY = (Xay1, X1Y2 oo s XmYn)

“In part due to the fact that they lack a combinatorial interpretation, even the
most basic questions present seemingly insurmountable challenges, while even
the simplest examples are already hard to compute. Yet, this should not prevent

us from pursuing both.” - Pak, Panova
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Kronecker coefficients (ll)

e Briand, Rosas, Orellana: full description of the Kronecker function G,, described
by auxiliary function G}, : Z°> — Zxq.
e The following chamber is G;,-external:

vii= (31111, v2:=(1,0,0,0,0), v3:=(210,10)
Y = POS .
FEPORY = (20,1,1,0), vs:=(6,2221)

G;,(tvi) =1for each i =1,2,3,4

* - (t+1)2 ift=0 mod?2
G35(tvs) = ENE3) it =1 mod 2

(r+s—g—g+1)? fr+s—g—g =0 mod?2

* \V62 —

Y =
n r+s— 1= 2+ r+s— 1, 2+

(C22) (r+s—g—g 1)45 g—&+3)

ifr+s—gl—g2=1 mod 2
e determinant formula seems to hold!
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Kronecker coefficients (lll)

The determinant formula holds for each of the G;Z-external chambers.

For some of these cases, we have a polynomial, not a quasi-polynomial. In each of
these cases, we obtain a negative binomial coefficient (analogous to the vector
partition function case).

Example: the chamber

~ os vi=GB 1111, v2:=(1,0,0,0,0), v3:=(41211),
TEPORY = (2,0,1,1,0), vs:=(10,3,4,3,2)

is G;,z-
(G, = (747).
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Future work




e Generalization beyond vector partition functions (does dimension reduction hold
as well here?)

e “Persistent” chambers

e Nearly external chambers?
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“Thank you for attending!”
-Me
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