Structure of quasi-crystal graphs and applications to the combinatorics of quasi-symmetric functions

Inês Rodrigues

(joint work with Alan J. Cain, António Malheiro and Fátima Rodrigues)

Center for Mathematics and Applications (NOVA Math), NOVA FCT

91st Séminaire Lotharingien de Combinatoire Salobreña, 18 March 2024

$\mathbf{N} \mathbf{V} \boldsymbol{n}$ NOVA SCHOOL OF SCIENCE \& TECHNOIOGY \& $-\begin{aligned} & \text { Fundação } \\ & \text { para a Ciencia } \\ & \text { e a Tecnologia }\end{aligned}$ NOVAMヘTH centen ron mat tapplications REPQABLICAPORTUGUESA CIENCIA, TECNOLOGIA E ENSINO SUPERIOR

This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 (https://doi.org/10.54499/UIDB/00297/2020) and UIDP/00297/2020
(https://doi.org/10.54499/UIDP/00297/2020) (Center for Mathematics and Applications).

Outline

1. Plactic and Hypoplactic monoids

- Tableaux
- Crystal and quasi-crystal graphs
- Symmetric and quasi-symmetric functions

2. Structure of quasi-crystal graphs

- Quasi-arrays
- Isomorphisms
- Schur functions and Fundamental quasi-symmetric functions

Outline

Plactic Monoid Hypoplactic monoid

$$
\begin{gathered}
\hline \text { Young tableaux, } \\
\text { Schensted insertion } \\
2123 \longleftrightarrow \frac{1}{2}_{2 / 3}^{2 / 3}
\end{gathered}
$$

Quasi-ribbon tableaux, Krob-Thibon insertion $2123 \longleftrightarrow$| 1 |
| :--- |
| $2\|2\| 3$ |
| 2 |

Crystal graphs Quasi-crystal graphs

Symmetric functions Quasi-symmetric functions

$$
s_{\lambda}
$$

$$
F_{\alpha}
$$

Outline

Plactic Monoid Hypoplactic monoid

Young tableaux,
Schensted insertion

$$
2123 \longleftrightarrow \begin{array}{|l|l|}
\hline \frac{1}{2} & 2 \mid 3 \\
2
\end{array}
$$

Quasi-ribbon tableaux, Krob-Thibon insertion

$2123 \longleftrightarrow$| 1 |
| :---: |
| $\left.\frac{1}{2} 2 \right\rvert\, 3$ |
| 2 |

Crystal graphs Quasi-crystal graphs

Symmetric functions Quasi-symmetric functions

$$
s_{\lambda}
$$

$$
F_{\alpha}
$$

Young tableaux and the plactic monoid

- We consider the alphabet $\mathcal{A}=\{1<2<\ldots\}$ and the restriction $\mathcal{A}_{n}=\{1<\ldots<n\}$.
- Given a partition λ, a semistandard Young tableau of shape λ is a filling of λ with letters from \mathcal{A} such that the rows are weakly increasing and the columns are strictly increasing. In a standard tableau, each letter $i=1, \ldots,|\lambda|$ appears exactly once.

Young tableaux and the plactic monoid

- We consider the alphabet $\mathcal{A}=\{1<2<\ldots\}$ and the restriction $\mathcal{A}_{n}=\{1<\ldots<n\}$.
- Given a partition λ, a semistandard Young tableau of shape λ is a filling of λ with letters from \mathcal{A} such that the rows are weakly increasing and the columns are strictly increasing. In a standard tableau, each letter $i=1, \ldots,|\lambda|$ appears exactly once.

1	1	2	4	4
2	2			
3				

1	2	5	7	8
3	4			
6				

A semistandard and a standard Young tableaux, of shape (5, 2, 1).

Young tableaux and the plactic monoid

- Schensted insertion: associates a word $w \in \mathcal{A}_{n}^{*}$ with a unique Young tableau $P_{\text {plac }}(w)$
- Plactic congruence in \mathcal{A}^{*} :

$$
u \equiv_{\text {plac }} v \text { iff } P_{\text {plac }}(u)=P_{\text {plac }}(v)
$$

- The plactic monoid plac is the quotient of \mathcal{A}^{*} by $\equiv_{\text {plac. }}$. The plactic monoid of rank n plac $_{n}$ is the quotient of \mathcal{A}_{n}^{*} by the natural restriction of $\equiv_{\text {plac. }}$.

Quasi-ribbon tableaux and the hypoplactic monoid

- Given a composition α, a quasi-ribbon tableau of shape α is an array of $|\alpha|$ cells, filled with letters from \mathcal{A}, with α_{i} cells on row i, such that the leftmost cell of the $(i+1)$-th row is below the rightmost cell of the i-th row, with the rows being weakly increasing and columns strictly increasing.

Quasi-ribbon tableaux and the hypoplactic monoid

- Given a composition α, a quasi-ribbon tableau of shape α is an array of $|\alpha|$ cells, filled with letters from \mathcal{A}, with α_{i} cells on row i, such that the leftmost cell of the $(i+1)$-th row is below the rightmost cell of the i-th row, with the rows being weakly increasing and columns strictly increasing.

A quasi-ribbon tableau of shape $(5,1,3)$

Quasi-ribbon tableaux and the hypoplactic monoid

- Krob-Thibon insertion: associates a word $w \in \mathcal{A}_{n}^{*}$ with a unique quasi-ribbon tableau $P_{\text {hypo }}(w)$.
- Hypoplactic congruence in \mathcal{A}^{*} :

$$
u \equiv \equiv_{\text {hypo }} v \text { iff } P_{\text {hypo }}(u)=P_{\text {hypo }}(v)
$$

- The hypoplactic monoid hypo is the quotient of \mathcal{A}^{*} by $\equiv_{\text {hypo }}$. The hypoplactic monoid of rank n hypo $_{n}$ is the quotient of \mathcal{A}_{n}^{*} by the natural restriction of \equiv hypo.

Outline

\author{
Plactic Monoid Hypoplactic monoid
 Young tableaux, Schensted insertion
 \[
2123 \longleftrightarrow $$
\begin{array}{|l|l|}
\hline \frac{1}{2} & 2 \mid 3 \\
\hline
\end{array}
$$

\]
 Quasi-ribbon tableaux, Krob-Thibon insertion $2123 \longleftrightarrow$| 1 |
| :--- |
| $2\|2\| 3$ |
| 2 |

}

Crystal graphs

Quasi-crystal graphs

Symmetric functions Quasi-symmetric functions

$$
s_{\lambda}
$$

$$
F_{\alpha}
$$

Crystal graphs

- Given a word $w \in \mathcal{A}^{*}$, the Kashiwara operators $\tilde{f}_{i}, \tilde{e}_{i}$ are partial functions computed as follows:
- Consider only the letters i and $i+1$.
- Replace each letter i with + and each $i+1$ with - . Cancel all pairs -+.
- $\tilde{f}_{i}\left(\right.$ resp. $\left.\tilde{e}_{i}\right)$ changes the rightmost + to - (resp. the leftmost - to +), if possible. Otherwise, it is undefined.

Crystal graphs

- Given a word $w \in \mathcal{A}^{*}$, the Kashiwara operators $\tilde{f}_{i}, \tilde{e}_{i}$ are partial functions computed as follows:
- Consider only the letters i and $i+1$.
- Replace each letter i with + and each $i+1$ with - . Cancel all pairs -+.
- \tilde{f}_{i} (resp. \tilde{e}_{i}) changes the rightmost + to - (resp. the leftmost - to +), if possible. Otherwise, it is undefined.

Crystal graphs

- Given a word $w \in \mathcal{A}^{*}$, the Kashiwara operators $\tilde{f}_{i}, \tilde{e}_{i}$ are partial functions computed as follows:
- Consider only the letters i and $i+1$.
- Replace each letter i with + and each $i+1$ with - . Cancel all pairs -+.
- \tilde{f}_{i} (resp. \tilde{e}_{i}) changes the rightmost + to - (resp. the leftmost - to +), if possible. Otherwise, it is undefined.

Crystal graphs

- Given a word $w \in \mathcal{A}^{*}$, the Kashiwara operators $\tilde{f}_{i}, \tilde{e}_{i}$ are partial functions computed as follows:
- Consider only the letters i and $i+1$.
- Replace each letter i with + and each $i+1$ with - . Cancel all pairs -+.
- \tilde{f}_{i} (resp. \tilde{e}_{i}) changes the rightmost + to - (resp. the leftmost - to +), if possible. Otherwise, it is undefined.

Crystal graphs

- The crystal graph Γ (plac) is the directed labelled graph with vertex set \mathcal{A}^{*}, having an edge $u \xrightarrow{i} v$ iff $\tilde{f}_{i}(u)=v$.
- $\Gamma\left(\right.$ plac $\left._{n}\right)$ is the subgraph induced by \mathcal{A}_{n}^{*}.

Crystal graphs

- Another characterization for the plactic monoid: $u \equiv_{\text {plac }} v$ iff there is a crystal isomorphism sending u to v.

Crystal graphs

- Another characterization for the plactic monoid: $u \equiv_{\text {plac }} v$ iff there is a crystal isomorphism sending u to v.

$221 \equiv_{\text {plac }} 212$ but $221 \not \equiv_{\text {plac }} 311$.

Quasi-crystal graphs

- The quasi-Kashiwara operators $\ddot{f}_{i}, \ddot{e}_{i}$ are defined on $w \in \mathcal{A}^{*}$ as follows:
- If w has $(i+1) i$ as a subword, the operators are undefined.
- Otherwise, $\ddot{f}_{i}(w)=\tilde{f}_{i}(w)$ and $\ddot{e}_{i}(w)=\tilde{e}_{i}(w)$.

$$
\begin{aligned}
\ddot{f}_{1}(112211324) & =\perp \\
\ddot{f}_{1}(111122) & =111222
\end{aligned}
$$

Quasi-crystal graphs

- The quasi-Kashiwara operators $\ddot{f}_{i}, \ddot{e}_{i}$ are defined on $w \in \mathcal{A}^{*}$ as follows:
- If w has $(i+1) i$ as a subword, the operators are undefined.
- Otherwise, $\ddot{f}_{i}(w)=\tilde{f}_{i}(w)$ and $\ddot{e}_{i}(w)=\tilde{e}_{i}(w)$.

$$
\begin{aligned}
\ddot{f}_{1}(112211324) & =\perp \\
\ddot{f}_{1}(111122) & =111222
\end{aligned}
$$

Quasi-crystal graphs

- The quasi-crystal graph Γ (hypo) and its subgraph $\Gamma\left(\right.$ hypo $\left._{n}\right)$ are defined similarly, considering the quasi-Kashiwara operators.

Quasi-crystal graphs

- Another characterization for the hypoplactic monoid (Cain, Malheiro '17): $u \equiv_{\text {hypo }} v$ iff there is a quasi-crystal isomorphism sending u to v.

- $131 \equiv_{\text {hypo }} 311$ but $131 \not \equiv_{\text {hypo }} 231$, because their components are not isomorphic as labelled directed graphs.

Quasi-crystal graphs

- Another characterization for the hypoplactic monoid (Cain, Malheiro '17): $u \equiv_{\text {hypo }} v$ iff there is a quasi-crystal isomorphism sending u to v.

- $131 \equiv_{\text {hypo }} 311$ but $131 \not \equiv_{\text {hypo }} 231$, because their components are not isomorphic as labelled directed graphs.

Quasi-crystal graphs

- Another characterization for the hypoplactic monoid (Cain, Malheiro '17): $u \equiv_{\text {hypo }} v$ iff there is a quasi-crystal isomorphism sending u to v.

- $131 \equiv_{\text {hypo }} 311$ but $131 \not \equiv_{\text {hypo }} 231$, because their components are not isomorphic as labelled directed graphs.

Crystal and quasi-crystal graphs

- If the quasi-Kashiwara operators $\ddot{e}_{i}, \ddot{f}_{i}$ are defined, then the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}$ are defined. Thus, $\Gamma\left(\right.$ hypo $\left._{n}\right)$ is a subgraph of $\Gamma\left(\right.$ plac $\left._{n}\right)$.

Crystal and quasi-crystal graphs

- If the quasi-Kashiwara operators $\ddot{e}_{i}, \ddot{f}_{i}$ are defined, then the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}$ are defined. Thus, $\Gamma\left(\right.$ hypo $\left._{n}\right)$ is a subgraph of $\Gamma\left(\right.$ plac $\left._{n}\right)$.

Crystal and quasi-crystal graphs

- The minimal parsing of a Young tableau T is the set of maximal horizontal bands. The minimal parsing of T has type α if the i-th maximal horizontal band has α_{i} cells.

Both tableaux have minimal parsing of type (3, 4, 1, 2).

- Given a semistandard Young tableau T with minimal parsing of type $\alpha, P_{\text {hypo }}(u)$ has shape α, for any word u such that $P_{\text {plac }}(u)=T$. The component of Γ (hypo) that contains u consists of the words of Γ (plac) whose corresponding Young tableau has the same minimal parsing as T.

$$
P_{\text {hypo }}(5522411133)=\begin{array}{|l|l|l|lll}
\hline 1 & 1 & 1 & & & \\
\hline & 2 & 2 & 3 & 3 \\
\hline & & & 4 & \\
\hline & & & 5 & 5 \\
\hline
\end{array}
$$

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

1	2	3	6	7
4	5	8		
9	10			

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

1	2	3	6	7
4	5	8		
9	10			

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

1	2	3	6	7
4	5	8		
9	10			

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

1	2	3	6	7
4	5	8		
	10			

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

\[

\]

$$
\begin{aligned}
\operatorname{DesSet}(T) & =\{3,7,8\} \\
\operatorname{DesCom}(T) & =(3,4,1,2)
\end{aligned}
$$

Crystal and quasi-crystal graphs

- The descent composition of a standard Young tableau is

$$
\alpha=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right)
$$

where $\left\{i_{1}<\ldots<i_{k}\right\}$ is its descent set.

- The descent composition of T coincides with the type of its minimal parsing.

$$
\begin{aligned}
\operatorname{DesSet}(T) & =\{3,7,8\} \\
\operatorname{DesCom}(T) & =(3,4,1,2)
\end{aligned}
$$

Crystal and quasi-crystal graphs

- Certain components of quasi-crystal graphs seem to be isomorphic as unlabelled directed graphs:

Crystal and quasi-crystal graphs

- Certain components of quasi-crystal graphs seem to be isomorphic as unlabelled directed graphs:

Outline

Plactic Monoid
Young tableaux,
Schensted insertion

$$
2123 \longleftrightarrow \begin{array}{|l|l|}
\hline 1 & 2 / 3 \\
2 & \\
\hline
\end{array}
$$

Hypoplactic monoid
Quasi-ribbon tableaux, Krob-Thibon insertion

$$
2123 \longleftrightarrow \begin{array}{|l|l}
\hline \frac{1}{2}|2| 3 \\
\hline 2 \mid
\end{array}
$$

Crystal graphs

Quasi-crystal graphs

Symmetric functions Quasi-symmetric functions

$$
S_{\lambda}
$$

$$
F_{\alpha}
$$

Symmetric and quasi-symmetric functions

- Given a partition λ, the Schur function is defined as

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \mathrm{SSYT}_{n}(\lambda)} \mathbf{x}^{T}
$$

- Schur functions form a basis for the ring of symmetric functions. They also appear as characters of components of $\Gamma\left(\right.$ plac $\left._{n}\right)$ where the associated Young tableau has shape λ.

Symmetric and quasi-symmetric functions

Symmetric and quasi-symmetric functions

$$
\begin{aligned}
s_{21}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}+ \\
& x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{aligned}
$$

Symmetric and quasi-symmetric functions

$$
\begin{aligned}
s_{21}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}+ \\
& x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}
\end{aligned}
$$

Symmetric and quasi-symmetric functions

- Given a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the monomial quasi-symmetric function is $M_{\alpha}(\mathbf{x})=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$.
- The fundamental quasi-symmetric function is defined as $F_{\alpha}=\sum_{\alpha \preceq \beta} M_{\beta}$.
- If $\alpha \preceq \beta$, then M_{β} corresponds to a unique quasi-ribbon tableau of shape α with β_{j} letters i_{j}. Thus,

$$
F_{\alpha}(\mathbf{x})=\sum_{T \in \mathrm{QRT}_{n}(\alpha)} \mathbf{x}^{T}
$$

Symmetric and quasi-symmetric functions

- Given a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the monomial quasi-symmetric function is $M_{\alpha}(\mathbf{x})=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$.
- The fundamental quasi-symmetric function is defined as $F_{\alpha}=\sum_{\alpha \preceq \beta} M_{\beta}$.
- If $\alpha \preceq \beta$, then M_{β} corresponds to a unique quasi-ribbon tableau of shape α with β_{j} letters i_{j}. Thus,

$$
\begin{gathered}
F_{\alpha}(\mathbf{x})=\sum_{T \in \mathrm{QRT}_{n}(\alpha)} \mathbf{x}^{T} \\
F_{13}=M_{13}+M_{121}+M_{112}+M_{1111} \\
\frac{1}{222 \mid 2} \quad \frac{1}{2223} \quad \frac{1}{233} \quad \frac{1}{2} 3 / 44
\end{gathered}
$$

Symmetric and quasi-symmetric functions

- The functions F_{α} form a basis for the ring of quasi-symmetric functions, and they also appear as characters of components of $\Gamma\left(\right.$ hypo $\left._{n}\right)$ where the associated quasi-ribbon tableau has shape α.
- Since $\Gamma\left(\right.$ hypo $\left._{n}\right)$ is a subgraph of $\Gamma\left(\right.$ plac $\left._{n}\right)$, we get the following decomposition by Gessel ('19)

$$
s_{\lambda}=\sum_{T \in \operatorname{SYT}(\lambda)} F_{\operatorname{DesComp}(T)}
$$

- Based on this decomposition, Maas-Gariépy ('23) independently introduced the notion of quasi-crystal graphs, as components of crystal graphs corresponding to fundamental quasi-symmetric functions.

Symmetric and quasi-symmetric functions

Symmetric and quasi-symmetric functions

Symmetric and quasi-symmetric functions

$$
\begin{aligned}
F_{21}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3} \\
F_{12}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{2} x_{3}^{2} \\
s_{21} & =F_{21}+F_{12}
\end{aligned}
$$

Symmetric and quasi-symmetric functions

$$
\begin{aligned}
F_{21}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3} \\
F_{12}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{2} x_{3}^{2} \\
s_{21} & =F_{21}+F_{12}
\end{aligned}
$$

Symmetric and quasi-symmetric functions

$$
\begin{aligned}
F_{21}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3} \\
F_{12}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{2} x_{3}^{2} \\
s_{21} & =F_{21}+F_{12}
\end{aligned}
$$

Quasi-arrays

- A quasi-array of size m is a triangular array of $\frac{m(m+1)}{2}$ cells, filled with letters from \mathcal{A}, such that:

1. the first row is weakly increasing;
2. each diagonal from upper right to lower left is an increasing sequence of consecutive letters of \mathcal{A}.

- $\mathcal{Q A}$ denotes the set of quasi-arrays, and $\mathcal{Q} \mathcal{A}_{n}$ denotes the set of quasi-arrays where the rightmost letter of the first row is at most n.

Quasi-arrays

- A quasi-array of size m is a triangular array of $\frac{m(m+1)}{2}$ cells, filled with letters from \mathcal{A}, such that:

1. the first row is weakly increasing;
2. each diagonal from upper right to lower left is an increasing sequence of consecutive letters of \mathcal{A}.

- $\mathcal{Q A}$ denotes the set of quasi-arrays, and $\mathcal{Q} \mathcal{A}_{n}$ denotes the set of quasi-arrays where the rightmost letter of the first row is at most n.

Quasi-arrays

- It follows from the definition that the rows are weakly increasing and the columns are strictly increasing.
- Thus, choosing a quasi-ribbon shape α, a composition of m, results in a quasi-ribbon tableau, denoted $\mathfrak{r}(Q, \alpha)$.

$$
Q=\begin{array}{|l|lllll}
\hline 1 & 2 & 2 & 4 & 5 & 7 \\
\hline & 3 & 5 & 6 & 8 \\
\hline 4 & 6 & 7 & 9 & \\
\hline 7 & 8 & 10 & \\
\hline 9 & 11 & \\
\hline 12 & & \\
\hline
\end{array}
$$

Quasi-arrays

- It follows from the definition that the rows are weakly increasing and the columns are strictly increasing.
- Thus, choosing a quasi-ribbon shape α, a composition of m, results in a quasi-ribbon tableau, denoted $\mathfrak{r}(Q, \alpha)$.

$$
Q=\begin{array}{|l|l|l|l|l}
\hline 1 & 2 & 2 & 4 & 5 \\
\hline 3 & 7 & 7 \\
\hline 4 & 5 & 6 & 6 & 8 \\
\hline 7 & 7 & 9 & 9 \\
\hline 9 & 10 & \\
\hline 121 & \\
\hline 12 & & \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l|l}
\hline 1 & 1 & 2 \\
& 3 & \\
& 4 & 4 \\
\hline & 4 & 4 \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l|l}
\hline 1 & 1 & 2 \\
\hline & 3 & \\
\hline & 4 & 4 \\
\hline & \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l}
\hline 1 & 1 & 2 \\
& 3 & \\
& 3 & 4 \\
\hline & 4 & 4 \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l}
\hline 1 & 1 & 2 \\
\hline & 3 & \\
& 4 & 4 \\
& \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l}
\hline 1 & 2 & \\
\hline & 3 & \\
& 3 & \\
\hline & 4 & 4 \\
\hline
\end{array}
$$

Quasi-arrays

- A quasi-ribbon tableau T of shape α also uniquely determines a quasi-array of size $|\alpha|$, denoted by $\mathfrak{a}(T)$.

$$
T=\begin{array}{l|l|l}
\hline 1 & 2 & \\
\hline & 3 & \\
& 3 & \\
\hline & 4 & 4 \\
\hline
\end{array}
$$

Quasi-array graphs

- Given Q a quasi-array of size m, we define partial operators \ddot{d}_{k} and \ddot{c}_{k}, for $k=1, \ldots, m$ the following way
- $\ddot{d}_{k}(Q)$ is obtained from Q by adding 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{d}_{k}(Q)$ is undefined.
- $\ddot{c}_{k}(Q)$ is obtained from Q by subtracting 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{c}_{k}(Q)$ is undefined.
- The operators \ddot{d}_{k} and \ddot{c}_{k} are partial inverses.

Quasi-array graphs

- Given Q a quasi-array of size m, we define partial operators \ddot{d}_{k} and \ddot{c}_{k}, for $k=1, \ldots, m$ the following way
- $\ddot{d}_{k}(Q)$ is obtained from Q by adding 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{d}_{k}(Q)$ is undefined.
- $\ddot{c}_{k}(Q)$ is obtained from Q by subtracting 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{c}_{k}(Q)$ is undefined.
- The operators \ddot{d}_{k} and \ddot{c}_{k} are partial inverses.

Quasi-array graphs

- Given Q a quasi-array of size m, we define partial operators \ddot{d}_{k} and \ddot{c}_{k}, for $k=1, \ldots, m$ the following way
- $\ddot{d}_{k}(Q)$ is obtained from Q by adding 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{d}_{k}(Q)$ is undefined.
- $\ddot{c}_{k}(Q)$ is obtained from Q by subtracting 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{c}_{k}(Q)$ is undefined.
- The operators \ddot{d}_{k} and \ddot{c}_{k} are partial inverses.

Quasi-array graphs

- Given Q a quasi-array of size m, we define partial operators \ddot{d}_{k} and \ddot{c}_{k}, for $k=1, \ldots, m$ the following way
- $\ddot{d}_{k}(Q)$ is obtained from Q by adding 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{d}_{k}(Q)$ is undefined.
- $\ddot{c}_{k}(Q)$ is obtained from Q by subtracting 1 to the entries of the k-th diagonal, if it results in a quasi-array. Otherwise, $\ddot{c}_{k}(Q)$ is undefined.
- The operators \ddot{d}_{k} and \ddot{c}_{k} are partial inverses.

$$
Q=\begin{array}{|l|l|l|l|l}
\hline 1 & 2 & 2 & 4 & 5 \\
\hline 3 & 3 & 5 & 6 & 7 \\
\hline 4 & 6 & 7 & 9 & \\
\hline 7 & 8 & 10 \\
\hline 9 & 11 \\
\hline 12 & \\
\hline 12 & & \\
\hline
\end{array}
$$

Quasi-array graphs

- The quasi-array graph $\Delta(\mathcal{Q A})$ is the directed labelled graph whose vertex set is $\mathcal{Q A}$, having an edge $Q_{1} \xrightarrow{k} Q_{2}$ iff $\ddot{d}_{k}\left(Q_{1}\right)=Q_{2}$.

Connection to quasi-crystal graphs

- Let Q be a quasi-array of size m and let α be a composition of m. Suppose that the k-th diagonal of Q intersects $T=\mathfrak{r}(Q, \alpha)$ at a cell filled with ℓ. Then, \ddot{d}_{k} is defined on Q iff \ddot{f}_{ℓ} is defined on T and changes the letter ℓ on the k-th diagonal. In this case, we have

$$
\ddot{f}_{\ell}(T)=\mathfrak{r}\left(\ddot{d}_{k}(Q), \alpha\right) .
$$

(similar for \ddot{c}_{k} and $\ddot{e}_{\ell-1}$)

Connection to quasi-crystal graphs

- Let Q be a quasi-array of size m and let α be a composition of m. Suppose that the k-th diagonal of Q intersects $T=\mathfrak{r}(Q, \alpha)$ at a cell filled with ℓ. Then, \ddot{d}_{k} is defined on Q iff \ddot{f}_{ℓ} is defined on T and changes the letter ℓ on the k-th diagonal. In this case, we have

$$
\ddot{f}_{\ell}(T)=\mathfrak{r}\left(\ddot{d}_{k}(Q), \alpha\right) .
$$

(similar for \ddot{c}_{k} and $\ddot{e}_{\ell-1}$)

$$
\begin{aligned}
& \ddot{d}_{3}
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& \text { 3 } \downarrow \\
& \\
& { }_{2} \downarrow{ }^{3} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 2 \\
\hline 3 & 3 & \\
\hline 4 & & \begin{array}{|l|l|l|}
\hline 1 & 1 & 3 \\
\hline 2 & 4 & \\
\hline 5 & & \\
\hline
\end{array} & \\
\hline
\end{array} \\
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
3 \\
\downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& 3 \downarrow \\
& \begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 4 & \\
\hline
\end{array} \\
& { }^{2} \downarrow{ }^{3} \\
& \\
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2 \\
&
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& 3 \downarrow \\
& \begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 4 & \\
\hline
\end{array} \\
& { }^{2} \downarrow{ }^{3} \\
& \\
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2 \\
&
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& 2 \downarrow \\
& \\
& 2 \downarrow \Sigma^{3} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 2 \\
\hline 3 & 3 & \\
\hline 4 & & \\
\hline
\end{array} \\
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& 2 \downarrow \\
& \\
& 2 \downarrow \Sigma^{3} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 2 \\
\hline 3 & 3 & \\
\hline 4 & & \\
\hline
\end{array} \\
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

$$
\begin{aligned}
& \\
& 2 \downarrow \\
& \\
& 2 \downarrow \Sigma^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \downarrow \quad \downarrow^{3} \quad \downarrow 2
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Connection to quasi-crystal graphs

Connection to quasi-crystal graphs

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo, $\alpha)$ and $\Gamma($ hypo, $\beta)$ are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo,$\alpha)$ and $\Gamma($ hypo, β) are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number, with the same number of parts. Then, $\Gamma\left(\mathrm{hypo}_{n}, \alpha\right)$ and $\Gamma\left(\mathrm{hypo}_{n}, \beta\right)$ are isomorphic as unlabelled directed graphs.

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo,$\alpha)$ and $\Gamma($ hypo, β) are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number, with the same number of parts. Then, $\Gamma\left(\mathrm{hypo}_{n}, \alpha\right)$ and $\Gamma\left(\mathrm{hypo}_{n}, \beta\right)$ are isomorphic as unlabelled directed graphs.

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & 2 \\
\hline
\end{array}
$$

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo, $\alpha)$ and $\Gamma($ hypo, $\beta)$ are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number, with the same number of parts. Then, $\Gamma\left(\mathrm{hypo}_{n}, \alpha\right)$ and $\Gamma\left(\mathrm{hypo}_{n}, \beta\right)$ are isomorphic as unlabelled directed graphs.

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & 2 \\
\hline
\end{array} \longrightarrow \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline 3 & & \\
\hline
\end{array} \longrightarrow
$$

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo, $\alpha)$ and $\Gamma($ hypo, $\beta)$ are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number, with the same number of parts. Then, $\Gamma\left(\mathrm{hypo}_{n}, \alpha\right)$ and $\Gamma\left(\mathrm{hypo}_{n}, \beta\right)$ are isomorphic as unlabelled directed graphs.

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & 2
\end{array} \text { (} \longrightarrow \begin{array}{|l|l|l}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline 3 &
\end{array} \longrightarrow \begin{array}{|l|l|l}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline 3 & & \\
\hline
\end{array} \longrightarrow
$$

Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number. Then, $\Gamma($ hypo, $\alpha)$ and $\Gamma($ hypo, $\beta)$ are isomorphic as unlabelled directed graphs, under the map $T \longmapsto \mathfrak{r}(\mathfrak{a}(T), \beta)$.

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α and β be composition of the same natural number, with the same number of parts. Then, $\Gamma\left(\mathrm{hypo}_{n}, \alpha\right)$ and $\Gamma\left(\mathrm{hypo}_{n}, \beta\right)$ are isomorphic as unlabelled directed graphs.

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & 2
\end{array} \rightarrow \begin{array}{|l|l|l}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline 3 & &
\end{array} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline 3 & &
\end{array} \begin{array}{|l|l|}
\hline 1 & \\
\hline 2 & 2 \\
\hline
\end{array}
$$

Connection to quasi-crystal graphs

- These are a consequence of a result by Maas-Gariépy, but the notion of quasi-arrays gives us an explicit isomorphism.
- The converse holds for infinite rank but not for finite. The following quasi-crystal components are isomorphic (as unlabelled graphs) but (1) and $(1,1)$ do not have the same number of parts.

Connection to quasi-crystal graphs

Schur functions and fundamental quasi-symmetric functions

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α be a composition and λ the partition obtained by reordering α. Then, any component of Γ (plac) comprising words whose associated Young tableaux have shape λ contains a component of Γ (hypo) comprising words whose associated quasi-ribbon tableaux have shape α.

- As a consequence, the fundamental quasi-symmetric function F_{α} appears in the decomposition of s_{λ}.
- Idea: perform "slide left, slide up" on a quasi-ribbon tableau of shape α and obtain a Young tableau of shape λ :

$$
\begin{array}{|l|l|l}
\hline 1 & & \\
\hline 2 & 2 & 2 \\
\hline & \frac{3}{4} & \\
\hline & 4
\end{array} \quad \alpha=(1,3,1,2)
$$

Schur functions and fundamental quasi-symmetric functions

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α be a composition and λ the partition obtained by reordering α. Then, any component of Γ (plac) comprising words whose associated Young tableaux have shape λ contains a component of Γ (hypo) comprising words whose associated quasi-ribbon tableaux have shape α.

- As a consequence, the fundamental quasi-symmetric function F_{α} appears in the decomposition of s_{λ}.
- Idea: perform "slide left, slide up" on a quasi-ribbon tableau of shape α and obtain a Young tableau of shape λ :

$$
\begin{array}{|l|l|}
\hline 1 & \\
\hline 2 & 22^{2} \\
\hline 3 & \\
\hline 4 & 4 \\
\hline
\end{array}
$$

Schur functions and fundamental quasi-symmetric functions

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α be a composition and λ the partition obtained by reordering α. Then, any component of Γ (plac) comprising words whose associated Young tableaux have shape λ contains a component of Γ (hypo) comprising words whose associated quasi-ribbon tableaux have shape α.

- As a consequence, the fundamental quasi-symmetric function F_{α} appears in the decomposition of s_{λ}.
- Idea: perform "slide left, slide up" on a quasi-ribbon tableau of shape α and obtain a Young tableau of shape λ :

\[

\]

$$
\alpha=(1,3,1,2)
$$

Schur functions and fundamental quasi-symmetric functions

Theorem (Cain, Malheiro, Rodrigues, R '23)

Let α be a composition and λ the partition obtained by reordering α. Then, any component of Γ (plac) comprising words whose associated Young tableaux have shape λ contains a component of Γ (hypo) comprising words whose associated quasi-ribbon tableaux have shape α.

- As a consequence, the fundamental quasi-symmetric function F_{α} appears in the decomposition of s_{λ}.
- Idea: perform "slide left, slide up" on a quasi-ribbon tableau of shape α and obtain a Young tableau of shape λ :

$$
\begin{array}{|l|l}
\hline 1 & 2 \\
\hline & 2 \\
\hline & 4 \\
\hline 3 & \\
\hline 4
\end{array}
$$

Schur functions and fundamental quasi-symmetric functions

$$
s_{211}=F_{211}+F_{121}+F_{112}
$$

Thank you!

