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Young tableaux and the plactic monoid

▶ We consider the alphabet A = {1 < 2 < . . .} and the
restriction An = {1 < . . . < n}.

▶ Given a partition λ, a semistandard Young tableau of shape
λ is a filling of λ with letters from A such that the rows are
weakly increasing and the columns are strictly increasing. In a
standard tableau, each letter i = 1, . . . , |λ| appears exactly
once.

1 1 2 4 4
2 2
3

1 2 5 7 8
3 4
6

A semistandard and a standard Young tableaux, of shape (5, 2, 1).
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Young tableaux and the plactic monoid

▶ Schensted insertion: associates a word w ∈ A∗
n with a unique

Young tableau Pplac(w)

▶ Plactic congruence in A∗:

u ≡plac v iff Pplac(u) = Pplac(v).

▶ The plactic monoid plac is the quotient of A∗ by ≡plac. The
plactic monoid of rank n placn is the quotient of A∗

n by the
natural restriction of ≡plac.
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Quasi-ribbon tableaux and the hypoplactic monoid

▶ Given a composition α, a quasi-ribbon tableau of shape α is
an array of |α| cells, filled with letters from A, with αi cells on
row i , such that the leftmost cell of the (i + 1)-th row is
below the rightmost cell of the i-th row, with the rows being
weakly increasing and columns strictly increasing.

1 1 1 2 3
4
5 5 6

A quasi-ribbon tableau of shape (5, 1, 3)
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Quasi-ribbon tableaux and the hypoplactic monoid

▶ Krob–Thibon insertion: associates a word w ∈ A∗
n with a

unique quasi-ribbon tableau Phypo(w).

▶ Hypoplactic congruence in A∗:

u ≡hypo v iff Phypo(u) = Phypo(v).

▶ The hypoplactic monoid hypo is the quotient of A∗ by
≡hypo. The hypoplactic monoid of rank n hypon is the
quotient of A∗

n by the natural restriction of ≡hypo.
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Crystal graphs

▶ Given a word w ∈ A∗, the Kashiwara operators f̃i , ẽi are
partial functions computed as follows:
▶ Consider only the letters i and i + 1.
▶ Replace each letter i with + and each i + 1 with −. Cancel all

pairs −+.
▶ f̃i (resp. ẽi ) changes the rightmost + to − (resp. the leftmost

− to +), if possible. Otherwise, it is undefined.

1 1 2 2 1 1 3 2 4
+ + − − + + −

f̃1−→ 1 2 2 2 1 1 3 2 4
+ − − − + + −
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Crystal graphs

▶ The crystal graph Γ(plac) is the directed labelled graph with

vertex set A∗, having an edge u
i−→ v iff f̃i (u) = v .

▶ Γ(placn) is the subgraph induced by A∗
n.

111

112

122

222

113

123

223 133

233

333

121

221 131

231 132

331 232

332

211

212 311

213 312

313 322

323

321



12/38

Crystal graphs

▶ Another characterization for the plactic monoid: u ≡plac v iff
there is a crystal isomorphism sending u to v .
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Quasi-crystal graphs

▶ The quasi-Kashiwara operators f̈i , ëi are defined on w ∈ A∗

as follows:
▶ If w has (i + 1)i as a subword, the operators are undefined.
▶ Otherwise, f̈i (w) = f̃i (w) and ëi (w) = ẽi (w).

f̈1(112211324) = ⊥
f̈1(111122) = 111222
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f̈1(112211324) = ⊥
f̈1(111122) = 111222



14/38

Quasi-crystal graphs

▶ The quasi-crystal graph Γ(hypo) and its subgraph Γ(hypon)
are defined similarly, considering the quasi-Kashiwara
operators.
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Quasi-crystal graphs

▶ Another characterization for the hypoplactic monoid (Cain,
Malheiro ’17): u ≡hypo v iff there is a quasi-crystal
isomorphism sending u to v .
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▶ 131 ≡hypo 311 but 131 ̸≡hypo 231, because their components
are not isomorphic as labelled directed graphs.
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Crystal and quasi-crystal graphs

▶ If the quasi-Kashiwara operators ëi , f̈i are defined, then the
Kashiwara operators ẽi , f̃i are defined. Thus, Γ(hypon) is a
subgraph of Γ(placn).
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Crystal and quasi-crystal graphs

▶ The minimal parsing of a Young tableau T is the set of
maximal horizontal bands. The minimal parsing of T has type
α if the i-th maximal horizontal band has αi cells.

1 1 1 3 3
2 2 4
5 5

1 2 3 6 7
4 5 8
9 10

Both tableaux have minimal parsing of type (3, 4, 1, 2).

▶ Given a semistandard Young tableau T with minimal parsing
of type α, Phypo(u) has shape α, for any word u such that
Pplac(u) = T . The component of Γ(hypo) that contains u
consists of the words of Γ(plac) whose corresponding Young
tableau has the same minimal parsing as T .

Phypo(5522411133) =

1 1 1
2 2 3 3

4
5 5
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Crystal and quasi-crystal graphs

▶ The descent composition of a standard Young tableau is

α = (i1, i2 − i1, . . . , ik − ik−1, n − ik)

where {i1 < . . . < ik} is its descent set.

▶ The descent composition of T coincides with the type of its
minimal parsing.
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Crystal and quasi-crystal graphs

▶ Certain components of quasi-crystal graphs seem to be
isomorphic as unlabelled directed graphs:
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Symmetric and quasi-symmetric functions

▶ Given a partition λ, the Schur function is defined as

sλ(x) =
∑

T∈SSYTn(λ)

xT

▶ Schur functions form a basis for the ring of symmetric
functions. They also appear as characters of components of
Γ(placn) where the associated Young tableau has shape λ.
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Symmetric and quasi-symmetric functions
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Symmetric and quasi-symmetric functions

▶ Given a composition α = (α1, . . . , αk), the monomial
quasi-symmetric function is Mα(x) =

∑
i1<...<ik

xα1
i1

. . . xαk
ik

.

▶ The fundamental quasi-symmetric function is defined as
Fα =

∑
α⪯β

Mβ.

▶ If α ⪯ β, then Mβ corresponds to a unique quasi-ribbon
tableau of shape α with βj letters ij . Thus,

Fα(x) =
∑

T∈QRTn(α)

xT

F13 = M13 + M121 + M112 + M1111

1
2 2 2

1
2 2 3

1
2 3 3

1
2 3 4
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Symmetric and quasi-symmetric functions

▶ The functions Fα form a basis for the ring of quasi-symmetric
functions, and they also appear as characters of components
of Γ(hypon) where the associated quasi-ribbon tableau has
shape α.

▶ Since Γ(hypon) is a subgraph of Γ(placn), we get the following
decomposition by Gessel (’19)

sλ =
∑

T∈SYT(λ)

FDesComp(T )

▶ Based on this decomposition, Maas-Gariépy (’23)
independently introduced the notion of quasi-crystal graphs,
as components of crystal graphs corresponding to
fundamental quasi-symmetric functions.
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Quasi-arrays

▶ A quasi-array of size m is a triangular array of m(m+1)
2 cells,

filled with letters from A, such that:

1. the first row is weakly increasing;
2. each diagonal from upper right to lower left is an increasing

sequence of consecutive letters of A.

▶ QA denotes the set of quasi-arrays, and QAn denotes the set
of quasi-arrays where the rightmost letter of the first row is at
most n.

Q =

1 2 2 4 5 7
3 3 5 6 8
4 6 7 9
7 8 10
9 11
12
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Quasi-arrays

▶ It follows from the definition that the rows are weakly
increasing and the columns are strictly increasing.

▶ Thus, choosing a quasi-ribbon shape α, a composition of m,
results in a quasi-ribbon tableau, denoted r(Q, α).

Q =

1 2 2 4 5 7
3 3 5 6 8
4 6 7 9
7 8 10
9 11
12

−→ r(Q, (2, 1, 3)) =

1 2 2 4 5 7
3 3 5 6 8
4 6 7 9
7 8 10
9 11
12
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Quasi-arrays

▶ A quasi-ribbon tableau T of shape α also uniquely determines
a quasi-array of size |α|, denoted by a(T ).
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Quasi-array graphs

▶ Given Q a quasi-array of size m, we define partial operators d̈k
and c̈k , for k = 1, . . . ,m the following way
▶ d̈k(Q) is obtained from Q by adding 1 to the entries of the

k-th diagonal, if it results in a quasi-array. Otherwise, d̈k(Q) is
undefined.

▶ c̈k(Q) is obtained from Q by subtracting 1 to the entries of
the k-th diagonal, if it results in a quasi-array. Otherwise,
c̈k(Q) is undefined.

▶ The operators d̈k and c̈k are partial inverses.
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and c̈k , for k = 1, . . . ,m the following way
▶ d̈k(Q) is obtained from Q by adding 1 to the entries of the

k-th diagonal, if it results in a quasi-array. Otherwise, d̈k(Q) is
undefined.

▶ c̈k(Q) is obtained from Q by subtracting 1 to the entries of
the k-th diagonal, if it results in a quasi-array. Otherwise,
c̈k(Q) is undefined.

▶ The operators d̈k and c̈k are partial inverses.

Q =

1 2 2 4 5 7
3 3 5 6 8
4 6 7 9
7 8 10
9 11
12

−→ d̈6(Q) =

1 2 2 4 5 8
3 3 5 6 9
4 6 7 10
7 8 11
9 12
13
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1 2 2 4 5 7
3 3 5 6 8
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Quasi-array graphs

▶ The quasi-array graph
∆(QA) is the directed
labelled graph whose vertex
set is QA, having an edge

Q1
k−→ Q2 iff d̈k(Q1) = Q2.

1 1 1
2 2
3

1 1 2
2 3
4

1 2 2
3 3
4

1 1 3
2 4
5

2 2 2
3 3
4

1 2 3
3 4
5

2 2 3
3 4
5

1 3 3
4 4
5

2 3 3
4 4
5

3 3 3
4 4
5

2

2

3

3

1
3

2

3
1

2

1

1
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Connection to quasi-crystal graphs

▶ Let Q be a quasi-array of size m and let α be a composition
of m. Suppose that the k-th diagonal of Q intersects
T = r(Q, α) at a cell filled with ℓ. Then, d̈k is defined on Q
iff f̈ℓ is defined on T and changes the letter ℓ on the k-th
diagonal. In this case, we have

f̈ℓ(T ) = r(d̈k(Q), α).

(similar for c̈k and ëℓ−1)

Q =

1 1 1 3
2 2 4
3 5
6

T = r(Q, (1, 2, 1)) =

1 1 1 3
2 2 4
3 5
6

d̈3(Q) =

1 1 2 3
2 3 4
4 5
6

r(d̈3(Q), (1, 2, 1)) =

1 1 2 3
2 3 4
4 5
6

r(−, (1, 2, 1))

r(−, (1, 2, 1))

d̈3 f̈2
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Connection to quasi-crystal graphs

1 1 1
2 2
3

1 1 2
2 3
4

1 2 2
3 3
4

1 1 3
2 4
5

2 2 2
3 3
4

1 2 3
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2 2 3
3 4
5

1 3 3
4 4
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2 3 3
4 4
5

3 3 3
4 4
5
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2

3

3

1
3

2

3
1

2

1

1
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Connection to quasi-crystal graphs

Theorem (Cain, Malheiro, Rodrigues, R ’23)

Let α and β be composition of the same natural number. Then,
Γ(hypo, α) and Γ(hypo, β) are isomorphic as unlabelled directed
graphs, under the map T 7−→ r(a(T ), β).

Theorem (Cain, Malheiro, Rodrigues, R ’23)

Let α and β be composition of the same natural number, with the
same number of parts. Then, Γ(hypon, α) and Γ(hypon, β) are
isomorphic as unlabelled directed graphs.

1 1
2 −→

1 1 1
2 2
3

−→
1 1 1
2 2
3

−→ 1
2 2
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Connection to quasi-crystal graphs

▶ These are a consequence of a result by Maas-Gariépy, but the
notion of quasi-arrays gives us an explicit isomorphism.

▶ The converse holds for infinite rank but not for finite. The
following quasi-crystal components are isomorphic (as
unlabelled graphs) but (1) and (1, 1) do not have the same
number of parts.

1

2

3

1
2

1
3

2
3



35/38

Connection to quasi-crystal graphs
1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 1
4

1 4
2

1 3
3
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4

2 4
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Connection to quasi-crystal graphs
1 1

2

1
2 2

1 1
3

1
2 3

1 2
3

1 1
4

1
2 4

1
3 3

2 2
3

1 2
4

1
3 4

2
3 3

2 2
4

1 3
4

1
4 4

2
3 4

2 3
4

2
4 4

3 3
4

3
4 4
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Connection to quasi-crystal graphs
1 1

2

1
2 2

1 1
3

1
2 3

1 2
3

1 1
4

1
2 4

1
3 3

2 2
3

1 2
4

1
3 4

2
3 3

2 2
4

1 3
4

1
4 4

2
3 4

2 3
4

2
4 4

3 3
4

3
4 4



36/38

Schur functions and fundamental quasi-symmetric
functions

Theorem (Cain, Malheiro, Rodrigues, R ’23)

Let α be a composition and λ the partition obtained by reordering
α. Then, any component of Γ(plac) comprising words whose
associated Young tableaux have shape λ contains a component of
Γ(hypo) comprising words whose associated quasi-ribbon tableaux
have shape α.

▶ As a consequence, the fundamental quasi-symmetric function
Fα appears in the decomposition of sλ.

▶ Idea: perform “slide left, slide up” on a quasi-ribbon tableau
of shape α and obtain a Young tableau of shape λ:

1
2 2 2

3
4 4

α = (1, 3, 1, 2)
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Schur functions and fundamental quasi-symmetric
functions

3121

4121 3221

4131 4221 3231

4132 4231 3241

4232 4331 4241

4332 4341

4342
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Schur functions and fundamental quasi-symmetric
functions

1 1
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1 1
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1 2
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1 3
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1 2
3
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Schur functions and fundamental quasi-symmetric
functions

1 1
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1 1
2
4

1
2 2
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1 1
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1
2 2
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1
2
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Schur functions and fundamental quasi-symmetric
functions

1 1
2
3

1 1
2
4

1
2 2

3

1 1
3
4

1
2 2

4

1
2
3 3

1 2
3
4

1
2 3

4

1
2
3 4

2 2
3
4

1
3 3

4

1
2
4 4

2
3 3

4

1
3
4 4

2
3
4 4

s211 = F211 + F121 + F112
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Thank you!
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