Commutative nilpotent transformation semigroups

Tânia Paulista
(Joint work with Alan J. Cain and António Malheiro)
NOVA FCT
91st Séminaire Lotharingien de Combinatoire Salobreña, 20 March 2024

NOVAMヘTH
CENTER FOR MATHEMATICS

+ APPLICATIONS

This work is funded by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 and the studentship 2021.07002.BD.

Semigroups

- A semigroup is a non-empty set equipped with an associative binary operation.
- \mathcal{T}_{n} is the semigroup of transformations over $\{1, \ldots, n\}$.

Example

$$
\mathcal{T}_{2}=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right\}
$$

Null transformation semigroups

- Null semigroup: $S^{2}=\{0\}$.
- $\xi(n)=\max \left\{t^{n-t}: t \in\{1, \ldots, n\}\right\}, n \in \mathbb{N}$.
- $\alpha(n)=\max \left\{t \in\{1, \ldots, n\}: t^{n-t}=\xi(n)\right\}, n \in \mathbb{N}$.

Theorem (Cameron, East, FitzGerald, Mitchell, Pebody, Quinn-Gregson, 2023)

The maximum size of a null subsemigroup of \mathcal{T}_{n} is $\xi(n)$.

Example

$\xi(6)=3^{6-3}=27$ and $\alpha(6)=3$

$$
\left\{\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 1 & x & y & z
\end{array}\right): x, y, z \in\{1,2,3\}\right\}
$$

Commutative nilpotent transformation semigroups

- Nilpotent semigroup: $\exists m \in \mathbb{N} \quad S^{m}=\{0\}$.

Theorem (Biggs, Rankin, Reis, 1976)
Let S be a nilpotent subsemigroup of \mathcal{T}_{n}. Then $|S| \leqslant(n-1)$!.

Theorem (Cain, Malheiro, P., 2023)
Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n}. Then

- $|S| \leqslant \xi(n)$.
- If $|S|=\xi(n)$ then S is a null semigroup.

S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{lll}
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 2 & 1 & 5 & 1
\end{array}\right) \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 1 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 4 & 1 & 5 & 1
\end{array}\right) \\
& \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 6 & 1 & 5 & 1
\end{array}\right)
\end{array}
$$

S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \mathbf{5} & 6 \\
5 & 5 & 5 & 5 & \mathbf{5} & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \mathbf{5} & 6 \\
5 & 1 & 2 & 1 & \mathbf{5} & 1
\end{array}\right) \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \mathbf{5} & 6 \\
5 & 5 & 1 & 5 & \mathbf{5} & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \mathbf{5} & 6 \\
5 & 1 & 4 & 1 & \mathbf{5} & 1
\end{array}\right) \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \mathbf{5} & 6 \\
5 & 1 & 6 & 1 & \mathbf{5} & 1
\end{array}\right)
\end{array}
$$

S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
\mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathbf{5} & 5 & 5 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
\mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathbf{5} & 1 & 2 & 1 & 5 & 1
\end{array}\right) & A_{0}=\{5\} \\
\left(\begin{array}{llllll}
\mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathbf{5} & 5 & 1 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
\mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathbf{5} & 1 & 4 & 1 & 5 & 1
\end{array}\right) & A_{1}=\{1\} \\
\left(\begin{array}{llllll}
\mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathbf{5} & 1 & 6 & 1 & 5 & 1
\end{array}\right) &
\end{array}
$$

S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{5} & 5 & \mathbf{5} & 5 & \mathbf{5}
\end{array}\right) & \left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 2 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) & \begin{array}{l}
A_{0}=\{5\} \\
\left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{5} & 1 & \mathbf{5} & 5 & \mathbf{5}
\end{array}\right)
\end{array} & \left.\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 4 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) & A_{1}=\{1\} \\
A_{2}=\{2,4 \\
\left(\begin{array}{lllllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 6 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) &
\end{array}
$$

S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 2 & 1 & 5 & 1
\end{array}\right) & A_{0}=\{5\} \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 1 & 5 & 5 & 5
\end{array}\right) & \left.\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 4 & 1 & 5 & 1
\end{array}\right) & A_{1}=\{1\} \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 6 & 1 & 5 & 1
\end{array}\right) & A_{3}=\{2,4,6\}
\end{array}
$$

Property regarding S-partition

Commutative nilpotent semigroup with $S^{3}=\{0\}$:

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
1 & 2 & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{5} & 5 & \mathbf{5} & 5 & \mathbf{5}
\end{array}\right) & \left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 2 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) & A_{0}=\{5\} \\
\left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{5} & 1 & \mathbf{5} & 5 & \mathbf{5}
\end{array}\right) & \left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 4 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) & A_{1}=\{1\} \\
A_{2}=\{2,4,6\} \\
\left(\begin{array}{llllll}
1 & \mathbf{2} & 3 & \mathbf{4} & 5 & \mathbf{6} \\
5 & \mathbf{1} & 6 & \mathbf{1} & 5 & \mathbf{1}
\end{array}\right) & A_{3}=\{3\}
\end{array}
$$

Main Lemma

- $x \in A_{i}$
$\left(x \alpha_{k}\right) \beta$ are all equal.
- $\alpha_{1}, \ldots, \alpha_{m}$ agree on $A_{<i}$

Order the elements of $\{1, \ldots, n\}$

- We order the elements of $\{1, \ldots, n\}$ in a way such that the elements of A_{i} appear before the elements of $A_{i+1}, i=0, \ldots, k-1$.

$$
A_{0}=\{5\}, \quad A_{1}=\{1\}, \quad A_{2}=\{2,4,6\}, \quad A_{3}=\{3\}
$$

$$
5,1,2,4,6,3
$$

Rewriting the transformations

- We rewrite the transformations of the semigroup in a convenient way.

$$
5,1,2,4,6,3
$$

$$
\begin{array}{llllll}
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 2 & 1 & 5 & 1
\end{array}\right) \\
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 5 & 1 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 4 & 1 & 5 & 1
\end{array}\right) \\
& \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 6 & 1 & 5 & 1
\end{array}\right)
\end{array}
$$

Rewriting the transformations

- We rewrite the transformations of the semigroup in a convenient way.

$$
5,1,2,4,6,3
$$

$$
\begin{array}{lllll}
\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right) & \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 2
\end{array}\right) \\
\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 5 & 1
\end{array}\right) & \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 4
\end{array}\right) \\
& \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 6
\end{array}\right)
\end{array}
$$

Words from transformations

- We obtain a set of words over $\{1, \ldots, n\}$ from the semigroup.

$$
5,1,2,4,6,3
$$

$$
\begin{aligned}
& \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right) \quad\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 2
\end{array}\right) \\
& \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 5 & 1
\end{array}\right) \quad\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 4
\end{array}\right) \\
& \left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 1 & 1 & 1 & 6
\end{array}\right) \\
& 555555 \\
& 555551 \\
& 551112 \\
& 551114 \\
& 551116
\end{aligned}
$$

Tree from words

555555
 555551
 551112

551114
551116

Tree from words

Tree from words

Tree

Property of the tree

> Main Lemma
> \bullet • $x \in A_{i}$
> - $\alpha_{1}, \ldots, \alpha_{m}$ agree on $\quad A_{<i}$
> $\Longrightarrow\left(x \alpha_{k}\right) \beta$ are all equal.

$$
\begin{aligned}
& A_{0}=\{5\} \\
& A_{1}=\{1\} \\
& A_{2}=\{2,4,6\} \\
& A_{3}=\{3\}
\end{aligned}
$$

Modifying the tree

Modifying the tree

Modifying the tree

Modifying the tree

Words from tree

Transformations from words

- We obtain a null subsemigroup of \mathcal{T}_{n} from the set of words. The null semigroup has the same size as the initial commutative nilpotent semigroup. So $|S| \leqslant \xi(n)$.

$$
5,1,2,4,6,3
$$

555555

$$
\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 5 & 5
\end{array}\right)
$$

$\left(\begin{array}{llllll}5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 5 & 5 & 1 & 5\end{array}\right)$
555551
$555515 \longrightarrow\left(\begin{array}{llllll}5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 5 & 5 & 5 & 1\end{array}\right)$
$\left(\begin{array}{llllll}5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 5 & 5 & 1 & 1\end{array}\right)$
555511
555512

$$
\left(\begin{array}{llllll}
5 & 1 & 2 & 4 & 6 & 3 \\
5 & 5 & 5 & 5 & 1 & 2
\end{array}\right)
$$

Commutative nilpotent transformation semigroups

Theorem (Cain, Malheiro, P., 2023)
Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n}. Then

- $|S| \leqslant \xi(n)$.
- If $|S|=\xi(n)$ then S is a null semigroup.

Largest commutative nilpotent transformation semigroups

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n} such that $|S|=\xi(n)$. Let N be the null subsemigroup of \mathcal{T}_{n} obtained from S.
- The trees of S and N have the same number of linear columns.

Largest commutative nilpotent transformation semigroups

Largest commutative nilpotent transformation semigroups

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n} such that $|S|=\xi(n)$. Let N be the null subsemigroup of \mathcal{T}_{n} obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of S are located in the trunk of the tree.

Largest commutative nilpotent transformation semigroups

Largest commutative nilpotent transformation semigroups

Largest commutative nilpotent transformation semigroups

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n} such that $|S|=\xi(n)$. Let N be the null subsemigroup of \mathcal{T}_{n} obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of S are located in the trunk of the tree.
- The structure of the tree of S is equal to the structure of the tree of - S is a null semigroup.

Largest commutative nilpotent transformation semigroups

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n} such that $|S|=\xi(n)$. Let N be the null subsemigroup of \mathcal{T}_{n} obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of S are located in the trunk of the tree.
- The structure of the tree of S is equal to the structure of the tree of N.
- S is a null semigroup.

Largest commutative nilpotent transformation semigroups

Largest commutative nilpotent transformation semigroups

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n} such that $|S|=\xi(n)$. Let N be the null subsemigroup of \mathcal{T}_{n} obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of S are located in the trunk of the tree.
- The structure of the tree of S is equal to the structure of the tree of N.
- S is a null semigroup.

Commutative nilpotent transformation semigroups

Theorem
Let S be a commutative nilpotent subsemigroup of \mathcal{T}_{n}. Then

- $|S| \leqslant \xi(n)$.
- If $|S|=\xi(n)$ then S is a null semigroup.

Commutative semigroups with one idempotent

Theorem (Cain, Malheiro, P., 2023)
The maximum size of a commutative subsemigroup of \mathcal{T}_{n} with one idempotent is

$$
\begin{cases}n, & \text { if } n \in\{2,3\} \\ \xi(n), & \text { otherwise }\end{cases}
$$

Theorem (Cain, Malheiro, P., 2023)
Let S be a maximum-order commutative subsemigroup of \mathcal{T}_{n} with one idempotent. Then

- If $n \in\{2,3\}$, then S is a group.
- If $n=4$, then S is either a group or a null semigroup.
- If $n \in \mathbb{N} \backslash\{2,3,4\}$, then S is a null semigroup.

Bibliography

R. R. Biggs, S. A. Rankin, and C. M. Reis.

A study of graph closed subsemigroups of a full transformation semigroup.
Transactions of the American Mathematical Society, 219:211-223, 1976.

R Peter J. Cameron, James East, Des FitzGerald, James D. Mitchell, Luke Pebody, and Thomas Quinn-Gregson.
Minimum degrees of finite rectangular bands, null semigroups, and variants of full transformation semigroups.
Combinatorial Theory, 3(3), 2023.
R Alan J. Cain, António Malheiro, and Tânia Paulista.
Commutative nilpotent transformation semigroups.
Preprint, arXiv: 2310.08481, 2023.

