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@ A semigroup is a non-empty set equipped with an associative binary
operation.

@ 7, is the semigroup of transformations over {1,...,n}.

Example

{136 2626}

e a7



Null transformation semigroups

e Null semigroup: S? = {0}.
e {(n)=max{t"t:te{l,...,n}}, neN.
o a(n)=max{te{l,...,n}:t"t=¢(n)}, neN.

Theorem (Cameron, East, FitzGerald, Mitchell, Pebody, Quinn-Gregson,
2023)

The maximum size of a null subsemigroup of T, is &(n).

Example
£(6) =3°3 =27 and a(6) = 3

1 2 3 4 5 6
{(1 11 x y Z).X,y,ze{1,2,3}}.
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Commutative nilpotent transformation semigroups

e Nilpotent semigroup: Im € N S = {0}.

Theorem (Biggs, Rankin, Reis, 1976)
Let S be a nilpotent subsemigroup of T,. Then |S| < (n— 1)\

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of T,. Then
o IS < £(n).
o If|S| =&(n) then S is a null semigroup.
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Commutative nilpotent semigroup with $3 = {0}:

)
)
)

1 23 456 1 2 3 456
555 5 5 5 51 2151

(
(

1 2 3 456

51 4151

1 23 456
5 515 55

1 2 3 456

516151

(
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Commutative nilpotent semigroup with $3 = {0}:

(
(

Ao = {5}

O
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1 23 456
5 555 5 5

)

123 456
51 415 1

1 23 456
551555
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Commutative nilpotent semigroup with $3 = {0}:

Ao = {5}

)
)
)

1 23 456 1 2 3 456
5 5 5 5 5 5 5 1 2 151

(
(

A1 ={1}

1 2 3 456

51 4151

1 2 3 456

5 5 15 5 5

1 2 3 456

516 1 51

(
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Commutative nilpotent semigroup with $3 = {0}:

(
(

Ao = {5}

)
)
)

123456
512151

123456
555 5 5 5

Ay =

{1}
Ay = {2,4,6}

123456

514151

123456
551555

O -
o O
< -
o O
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— O
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S-partition

Commutative nilpotent semigroup with $3 = {0}:

123456 123456
<555555> (512151) Ao = {5}
A= {1
123 456 123456 1= {1
5515055 51415 1 Ar = {2,4,6}
123456 Az = {3}
516 15 1
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Property regarding S-partition

Commutative nilpotent semigroup with S3 = {0}:

123 456 1 2 3 456
<555555> (512151) Ao = {5}
A= {1
123456 123456 1={1)
5515505 514151 Ax = {2,4,6}
123456 Az = {3}
516151
Main Lemma
e x €A
= (xa)B are all equal.
@ ai,...,qn, agree on Ac;
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Order the elements of {1,...,n}

o We order the elements of {1,...,n} in a way such that the elements
of A; appear before the elements of Aj;1, i =0,...,k—1.

AO = {5}7 Al = {1}a A2 = {234? 6}’ A3 = {3}

5,1,2,4,6,3
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Rewriting the transformations

@ We rewrite the transformations of the semigroup in a convenient way.

51,2,4,6,3
1 23 456 1 23 45 6
5 5 5 5 5 5 512151
1 23 456 1 23 45 6
551555 514151
1 23 45 6
516151
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Rewriting the transformations

@ We rewrite the transformations of the semigroup in a convenient way.

51,2,4,6,3

6 3
2

[y

N\
(S lNe;!
o1 = o1 =
(G2 \S] o1l N
o1 S o b
= O
D~ W
~

g o oo
= W
~_
N\

[ lNe;!

Gl = Ol = O

RN RN RN

R > R, B> R B>

Ll ®))
S W
~
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Words from transformations

@ We obtain a set of words over {1,...,n} from the semigroup.
51,2,4,6,3
(512463) (512463) 555555
5 5 5 5 5 5 55 111 2 555551
51 2 4 6 3 51 2 4 6 3 N 551112
5 5 5 5 5 1 55 111 4
551114
51 2 4 6 3
551116 551116

e T



Tree from words

555555
555551
5 5

— Y 551112

551114
551116
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Tree from words

*‘EL**‘éL*“:éii. 555555

y 555551

S 551112
551114

551116

] 16/41



Tree from words

'L'L% 555555
> 555551
—2 551112
) i 551114
1,1 % 551116
6 >
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Aci
= (xay)pB are all

equal.

Az = {3}
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555555
555551

555515
555511
555512
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Transformations from words

@ We obtain a null subsemigroup of 7, from the set of words. The null
semigroup has the same size as the initial commutative nilpotent
semigroup. So |S| < &(n).

555555
555551
555515
555511
555512

= ol

(6;]

51,2,4,6,3
2 4 6 3 5
55 5 5 5
2 4 6 3 5
5 5 5 1 5

o1 = o1 =

o1 =

1N 1N 1N

a~ s~ b

= O

= O

= O
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Commutative nilpotent transformation semigroups

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of T,. Then
o |S| < &(n).
o If|S| =¢&(n) then S is a null semigroup.
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Largest commutative nilpotent transformation semigroups

@ Let S be a commutative nilpotent subsemigroup of 7, such that
|S| = &(n). Let N be the null subsemigroup of 7, obtained from S.
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Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups

@ Let S be a commutative nilpotent subsemigroup of 7, such that
|S| = &(n). Let N be the null subsemigroup of 7, obtained from S.

@ The trees of S and N have the same number of linear columns.
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Largest commutative nilpotent transformation semigroups




Largest commutative nilpotent transformation semigroups

NN
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Largest commutative nilpotent transformation semigroups

@ Let S be a commutative nilpotent subsemigroup of 7, such that
|S| = &(n). Let N be the null subsemigroup of 7, obtained from S.

@ The trees of S and N have the same number of linear columns.

@ All the linear columns of the tree of S are located in the trunk of the
tree.
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Largest commutative nilpotent transformation semigroups

@ Let S be a commutative nilpotent subsemigroup of 7, such that
|S| = &(n). Let N be the null subsemigroup of 7, obtained from S.

@ The trees of S and N have the same number of linear columns.

@ All the linear columns of the tree of S are located in the trunk of the
tree.

@ The structure of the tree of S is equal to the structure of the tree of
N.
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Largest commutative nilpotent transformation semigroups




Largest commutative nilpotent transformation semigroups




Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups

Let S be a commutative nilpotent subsemigroup of 7, such that
|S| = &(n). Let N be the null subsemigroup of 7, obtained from S.

The trees of S and N have the same number of linear columns.

@ All the linear columns of the tree of S are located in the trunk of the
tree.

@ The structure of the tree of S is equal to the structure of the tree of
N.

@ S is a null semigroup.
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Commutative nilpotent transformation semigroups

Theorem

Let S be a commutative nilpotent subsemigroup of T,. Then
o S| < &(n).
e If|S| =¢&(n) then S is a null semigroup.
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Commutative semigroups with one idempotent

Theorem (Cain, Malheiro, P., 2023)

The maximum size of a commutative subsemigroup of T, with one
idempotent is

{n, if n € {2,3},

&(n), otherwise.

Theorem (Cain, Malheiro, P., 2023)

Let S be a maximum-order commutative subsemigroup of T, with one
idempotent. Then

e Ifne {2,3}, then S is a group.
@ Ifn=4, then S is either a group or a null semigroup.

o Ifne N\ {2,3,4}, then S is a null semigroup.
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