Tânia Paulista

(Joint work with Alan J. Cain and António Malheiro)

NOVA FCT

91st Séminaire Lotharingien de Combinatoire Salobreña, 20 March 2024

CENTER FOR MATHEMATICS + APPLICATIONS

CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

This work is funded by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 and the studentship 2021.07002.BD.

- A **semigroup** is a non-empty set equipped with an associative binary operation.
- \mathcal{T}_n is the semigroup of transformations over $\{1, \ldots, n\}$.

Example

$$\mathcal{T}_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}.$$

Null transformation semigroups

• Null semigroup:
$$S^2 = \{0\}$$
.

•
$$\xi(n) = \max \{ t^{n-t} : t \in \{1, ..., n\} \}, n \in \mathbb{N}.$$

•
$$\alpha(n) = \max \{ t \in \{1, ..., n\} : t^{n-t} = \xi(n) \}, n \in \mathbb{N}.$$

Theorem (Cameron, East, FitzGerald, Mitchell, Pebody, Quinn-Gregson, 2023)

The maximum size of a null subsemigroup of \mathcal{T}_n is $\xi(n)$.

Example

$$\xi(6) = 3^{6-3} = 27$$
 and $\alpha(6) = 3$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 1 & x & y & z \end{pmatrix} : x, y, z \in \{1, 2, 3\} \right\}.$$

• Nilpotent semigroup: $\exists m \in \mathbb{N} \quad S^m = \{0\}.$

Theorem (Biggs, Rankin, Reis, 1976) Let S be a nilpotent subsemigroup of \mathcal{T}_n . Then $|S| \leq (n-1)!$.

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of T_n . Then

- $|S| \leq \xi(n)$.
- If $|S| = \xi(n)$ then S is a null semigroup.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 5 & 5 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 5 & 1 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 1 & 5 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 5 & 5 & \mathbf{5} & \mathbf{5} & \mathbf{5} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 1 & 2 & 1 & \mathbf{5} & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 5 & 1 & 5 & \mathbf{5} & \mathbf{5} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 1 & 4 & 1 & \mathbf{5} & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 1 & 4 & 1 & \mathbf{5} & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{5} & 6 \\ 5 & 1 & 6 & 1 & \mathbf{5} & 1 \end{pmatrix}$$

$$A_0 = \{5\}$$

$$\begin{pmatrix} 1 & 2 & \mathbf{3} & 4 & 5 & 6 \\ 5 & 5 & \mathbf{5} & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & \mathbf{3} & 4 & 5 & 6 \\ 5 & 1 & \mathbf{2} & 1 & 5 & 1 \end{pmatrix} \qquad A_0 = \{5\} \\ A_1 = \{1\} \\ A_2 = \{2, 4, 6\} \\ \begin{pmatrix} 1 & 2 & \mathbf{3} & 4 & 5 & 6 \\ 5 & 1 & \mathbf{5} & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & \mathbf{3} & 4 & 5 & 6 \\ 5 & 1 & \mathbf{4} & 1 & 5 & 1 \end{pmatrix} \qquad A_2 = \{2, 4, 6\} \\ \begin{pmatrix} 1 & 2 & \mathbf{3} & 4 & 5 & 6 \\ 5 & 1 & \mathbf{6} & 1 & 5 & 1 \end{pmatrix} \qquad A_3 = \{3\}$$

Property regarding S-partition

Commutative nilpotent semigroup with $S^3 = \{0\}$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 5 & 5 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 1 & 5 & 1 \end{pmatrix} \qquad A_0 = \{5\} \\ A_1 = \{1\} \\ A_2 = \{2, 4, 6\} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 1 & 5 & 1 \end{pmatrix} \qquad A_2 = \{2, 4, 6\} \\ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 1 & 5 & 1 \end{pmatrix} \qquad A_3 = \{3\}$$

Main Lemma

- $x \in A_i$
- $\alpha_1, \ldots, \alpha_m$ agree on $A_{<i}$

 $(x\alpha_k)\beta$ are all equal.

We order the elements of {1,..., n} in a way such that the elements of A_i appear before the elements of A_{i+1}, i = 0,..., k - 1.

$$A_0 = \{5\}, \quad A_1 = \{1\}, \quad A_2 = \{2, 4, 6\}, \quad A_3 = \{3\}$$

 $5, 1, 2, 4, 6, 3$

• We rewrite the transformations of the semigroup in a convenient way.

5, 1, 2, 4, 6, 3

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 5 & 5 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 5 & 1 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 1 & 5 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 1 & 5 & 1 \end{pmatrix}$$

• We rewrite the transformations of the semigroup in a convenient way.

5, 1, 2, 4, 6, 3

$$\begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 5 & 5 & 5 & 5 \end{pmatrix} \qquad \begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 1 & 1 & 1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 5 & 5 & 5 & 1 \end{pmatrix} \qquad \begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 1 & 1 & 1 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 1 & 1 & 1 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 1 & 2 & 4 & 6 & 3 \\ 5 & 5 & 1 & 1 & 1 & 6 \end{pmatrix}$$

• We obtain a set of words over $\{1, \ldots, n\}$ from the semigroup.

5, 1, 2, 4, 6, 3

(5	1	2	4	6	3)	(5	1	2	4	6	3)		555555
(5	5	5	5	5	5)	(5	5	1	1	1	2)		555551
$\binom{5}{5}$	1 5	2 5	4 5	6 5	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 5\\ 5 \end{pmatrix}$	1 5	2 1	4 1	6 1	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	\longrightarrow	551112
(5	J	J	0	0	-)	(S	1	т С	1	6	·/ 2\		551114
						$\begin{pmatrix} 5\\5 \end{pmatrix}$	1 5	2	4	1	$\begin{pmatrix} 3 \\ 6 \end{pmatrix}$		551116

Tree from words

551116

Tree from words

551114

551116

Tree from words

Property of the tree

Main Lemma

•
$$\alpha_1, \dots, \alpha_m$$
 agree on
 $A_{
 $\implies (x\alpha_k)\beta$ are all
equal.$

$$egin{aligned} &\mathcal{A}_0 = \{5\} \ &\mathcal{A}_1 = \{1\} \ &\mathcal{A}_2 = \{2,4,6\} \ &\mathcal{A}_3 = \{3\} \end{aligned}$$

Words from tree

Transformations from words

We obtain a null subsemigroup of *T_n* from the set of words. The null semigroup has the same size as the initial commutative nilpotent semigroup. So |S| ≤ ξ(n).

5, 1, 2, 4, 6, 3

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n . Then

- $|S| \leq \xi(n)$.
- If $|S| = \xi(n)$ then S is a null semigroup.

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n such that $|S| = \xi(n)$. Let N be the null subsemigroup of \mathcal{T}_n obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of *S* are located in the trunk of the tree.
- The structure of the tree of *S* is equal to the structure of the tree of *N*.
- S is a null semigroup.

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n such that $|S| = \xi(n)$. Let N be the null subsemigroup of \mathcal{T}_n obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of *S* are located in the trunk of the tree.
- The structure of the tree of *S* is equal to the structure of the tree of *N*.
- S is a null semigroup.

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n such that $|S| = \xi(n)$. Let N be the null subsemigroup of \mathcal{T}_n obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of *S* are located in the trunk of the tree.
- The structure of the tree of *S* is equal to the structure of the tree of *N*.
- S is a null semigroup.

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n such that $|S| = \xi(n)$. Let N be the null subsemigroup of \mathcal{T}_n obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of *S* are located in the trunk of the tree.
- The structure of the tree of *S* is equal to the structure of the tree of *N*.
- S is a null semigroup.

- Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n such that $|S| = \xi(n)$. Let N be the null subsemigroup of \mathcal{T}_n obtained from S.
- The trees of S and N have the same number of linear columns.
- All the linear columns of the tree of *S* are located in the trunk of the tree.
- The structure of the tree of *S* is equal to the structure of the tree of *N*.
- S is a null semigroup.

Theorem

Let S be a commutative nilpotent subsemigroup of \mathcal{T}_n . Then

- $|S| \leq \xi(n)$.
- If $|S| = \xi(n)$ then S is a null semigroup.

Commutative semigroups with one idempotent

Theorem (Cain, Malheiro, P., 2023)

The maximum size of a commutative subsemigroup of \mathcal{T}_n with one idempotent is

 $\begin{cases} n, & \text{if } n \in \{2,3\}, \\ \xi(n), & \text{otherwise.} \end{cases}$

Theorem (Cain, Malheiro, P., 2023)

Let S be a maximum-order commutative subsemigroup of \mathcal{T}_n with one idempotent. Then

- If $n \in \{2,3\}$, then S is a group.
- If n = 4, then S is either a group or a null semigroup.
- If $n \in \mathbb{N} \setminus \{2,3,4\}$, then S is a null semigroup.

Bibliography

- R. G. Biggs, S. A. Rankin, and C. M. Reis.

A study of graph closed subsemigroups of a full transformation semigroup.

Transactions of the American Mathematical Society, 219:211–223, 1976.

Peter J. Cameron, James East, Des FitzGerald, James D. Mitchell, Luke Pebody, and Thomas Quinn-Gregson. Minimum degrees of finite rectangular bands, null semigroups, and variants of full transformation semigroups. *Combinatorial Theory*, 3(3), 2023.

Alan J. Cain, António Malheiro, and Tânia Paulista. Commutative nilpotent transformation semigroups. Preprint, arXiv: 2310.08481, 2023.