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Semigroups

A semigroup is a non-empty set equipped with an associative binary
operation.

Tn is the semigroup of transformations over {1, . . . , n}.

Example

T2 =
{(

1 2
1 1

)
,

(
1 2
2 2

)
,

(
1 2
1 2

)
,

(
1 2
2 1

)}
.
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Null transformation semigroups

Null semigroup: S2 = {0}.

ξ(n) = max {tn−t : t ∈ {1, . . . , n}}, n ∈ N.

α(n) = max {t ∈ {1, . . . , n} : tn−t = ξ(n)}, n ∈ N.

Theorem (Cameron, East, FitzGerald, Mitchell, Pebody, Quinn-Gregson,
2023)

The maximum size of a null subsemigroup of Tn is ξ(n).

Example

ξ(6) = 36−3 = 27 and α(6) = 3

{(
1 2 3 4 5 6
1 1 1 x y z

)
: x , y , z ∈ {1, 2, 3}

}
.
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Commutative nilpotent transformation semigroups

Nilpotent semigroup: ∃m ∈ N Sm = {0}.

Theorem (Biggs, Rankin, Reis, 1976)

Let S be a nilpotent subsemigroup of Tn. Then |S | ⩽ (n − 1)!.

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of Tn. Then
|S | ⩽ ξ(n).

If |S | = ξ(n) then S is a null semigroup.
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S-partition

Commutative nilpotent semigroup with S3 = {0}:(
1 2 3 4 5 6
5 5 5 5 5 5

)
(
1 2 3 4 5 6
5 5 1 5 5 5

)
(
1 2 3 4 5 6
5 1 2 1 5 1

)
(
1 2 3 4 5 6
5 1 4 1 5 1

)
(
1 2 3 4 5 6
5 1 6 1 5 1

)
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S-partition

Commutative nilpotent semigroup with S3 = {0}:(
1 2 3 4 5 6
5 5 5 5 5 5

)
(
1 2 3 4 5 6
5 5 1 5 5 5

)
(
1 2 3 4 5 6
5 1 2 1 5 1

)
(
1 2 3 4 5 6
5 1 4 1 5 1

)
(
1 2 3 4 5 6
5 1 6 1 5 1

)

A0 = {5}
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S-partition

Commutative nilpotent semigroup with S3 = {0}:(
1 2 3 4 5 6
5 5 5 5 5 5
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1 2 3 4 5 6
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Property regarding S-partition

Commutative nilpotent semigroup with S3 = {0}:(
1 2 3 4 5 6
5 5 5 5 5 5

)
(
1 2 3 4 5 6
5 5 1 5 5 5

)
(
1 2 3 4 5 6
5 1 2 1 5 1

)
(
1 2 3 4 5 6
5 1 4 1 5 1

)
(
1 2 3 4 5 6
5 1 6 1 5 1

)

A0 = {5}

A1 = {1}

A2 = {2, 4, 6}

A3 = {3}

Main Lemma

x ∈ Ai

α1, . . . , αm agree on A<i

=⇒ (xαk)β are all equal.
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Order the elements of {1, . . . , n}

We order the elements of {1, . . . , n} in a way such that the elements
of Ai appear before the elements of Ai+1, i = 0, . . . , k − 1.

A0 = {5}, A1 = {1}, A2 = {2, 4, 6}, A3 = {3}

5, 1, 2, 4, 6, 3
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Rewriting the transformations

We rewrite the transformations of the semigroup in a convenient way.

5, 1, 2, 4, 6, 3(
1 2 3 4 5 6
5 5 5 5 5 5

)
(
1 2 3 4 5 6
5 5 1 5 5 5

)
(
1 2 3 4 5 6
5 1 2 1 5 1

)
(
1 2 3 4 5 6
5 1 4 1 5 1

)
(
1 2 3 4 5 6
5 1 6 1 5 1

)

12 / 41



Rewriting the transformations

We rewrite the transformations of the semigroup in a convenient way.

5, 1, 2, 4, 6, 3(
5 1 2 4 6 3
5 5 5 5 5 5

)
(
5 1 2 4 6 3
5 5 5 5 5 1

)
(
5 1 2 4 6 3
5 5 1 1 1 2

)
(
5 1 2 4 6 3
5 5 1 1 1 4

)
(
5 1 2 4 6 3
5 5 1 1 1 6

)
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Words from transformations

We obtain a set of words over {1, . . . , n} from the semigroup.

5, 1, 2, 4, 6, 3(
5 1 2 4 6 3
5 5 5 5 5 5

)
(
5 1 2 4 6 3
5 5 5 5 5 1

)
(
5 1 2 4 6 3
5 5 1 1 1 2

)
(
5 1 2 4 6 3
5 5 1 1 1 4

)
(
5 1 2 4 6 3
5 5 1 1 1 6

) −→

555555

555551

551112

551114

551116
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Tree from words

5 5

5

5 5 5

555555

555551

551112

551114

551116
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Tree from words

5 5

5

5 5 5

1 555555

555551

551112

551114

551116
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Tree from words

5 5

5

5 5 5

1

1
1 1

2
4

6

555555

555551

551112

551114

551116
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Tree

L L B L L B

5 1 2 4 6 3

5 5

5

5 5 5

1

1
1 1

2
4

6
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Property of the tree

L L B L L B

5 1 2 4 6 3

5 5

5

5 5 5

1

1
1 1

2
4

6

Main Lemma

x ∈ Ai

α1, . . . , αm agree on
A<i

=⇒ (xαk)β are all
equal.

A0 = {5}

A1 = {1}

A2 = {2, 4, 6}

A3 = {3}

19 / 41



Modifying the tree

L L B L L B
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Modifying the tree

L L B B
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Modifying the tree

L L L L B B
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Modifying the tree

L L L L B B

5 1 2 4 6 3

5 5 5 5

5

5

1

1

5
1

2
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Words from tree

L L L L B B

5 1 2 4 6 3

5 5 5 5

5

5

1

1

5
1

2

555555

555551

555515

555511

555512
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Transformations from words

We obtain a null subsemigroup of Tn from the set of words. The null
semigroup has the same size as the initial commutative nilpotent
semigroup. So |S | ⩽ ξ(n).

5, 1, 2, 4, 6, 3

555555

555551

555515

555511

555512

−→

(
5 1 2 4 6 3
5 5 5 5 5 5

)
(
5 1 2 4 6 3
5 5 5 5 5 1

)
(
5 1 2 4 6 3
5 5 5 5 1 5

)
(
5 1 2 4 6 3
5 5 5 5 1 1

)
(
5 1 2 4 6 3
5 5 5 5 1 2

)
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Commutative nilpotent transformation semigroups

Theorem (Cain, Malheiro, P., 2023)

Let S be a commutative nilpotent subsemigroup of Tn. Then
|S | ⩽ ξ(n).

If |S | = ξ(n) then S is a null semigroup.
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Largest commutative nilpotent transformation semigroups

Let S be a commutative nilpotent subsemigroup of Tn such that
|S | = ξ(n). Let N be the null subsemigroup of Tn obtained from S .

The trees of S and N have the same number of linear columns.

All the linear columns of the tree of S are located in the trunk of the
tree.

The structure of the tree of S is equal to the structure of the tree of
N.

S is a null semigroup.

27 / 41



Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups
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Largest commutative nilpotent transformation semigroups

1 2 3
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Largest commutative nilpotent transformation semigroups

1 2 3

1 1 1
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Largest commutative nilpotent transformation semigroups

1 2 3

1 1 1

1

1

1
2

3
2

1
2

3
3 1

2

3
2

1

1
2

3
2

1
2

3
3 1

2

3
3 1

1
2

3
2

1
2

3
3 1

2

3
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Largest commutative nilpotent transformation semigroups

Let S be a commutative nilpotent subsemigroup of Tn such that
|S | = ξ(n). Let N be the null subsemigroup of Tn obtained from S .

The trees of S and N have the same number of linear columns.

All the linear columns of the tree of S are located in the trunk of the
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Commutative nilpotent transformation semigroups

Theorem

Let S be a commutative nilpotent subsemigroup of Tn. Then
|S | ⩽ ξ(n).

If |S | = ξ(n) then S is a null semigroup.
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Commutative semigroups with one idempotent

Theorem (Cain, Malheiro, P., 2023)

The maximum size of a commutative subsemigroup of Tn with one
idempotent is {

n, if n ∈ {2, 3},
ξ(n), otherwise.

Theorem (Cain, Malheiro, P., 2023)

Let S be a maximum-order commutative subsemigroup of Tn with one
idempotent. Then

If n ∈ {2, 3}, then S is a group.

If n = 4, then S is either a group or a null semigroup.

If n ∈ N \ {2, 3, 4}, then S is a null semigroup.
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