Total positivity and an inequality by Athanasiadis and Tzanaki

Lili Mu
lilimu@jsnu.edu.cn
Joint work with Volkmar Welker

f and h polynomials

Let Δ be a simplicial complex of dimension $d-1$ and $\sigma \in \Delta$ a face of Δ.

- The f-vector of Δ is the vector $f^{\Delta}=\left(f_{-1}, \ldots, f_{d-1}\right)$ where $f_{i}=\#\{\sigma \in \Delta \mid \operatorname{dim}(\sigma)=i\}$.
- The f-polynomial of Δ is $f^{\Delta}(x)=\sum_{i=0}^{d} f_{i-1} x^{d-i}$.
- The h-polynomial of Δ is $h^{\Delta}(x)=f^{\Delta}(x-1)=\sum_{i=0}^{d} h_{i} x^{d-i}$.
- The h-vector of Δ is $h^{\Delta}=\left(h_{0}, \ldots, h_{d}\right)$.

AT-inequality

Let $h^{\Delta}=\left(h_{0}^{\Delta}, \ldots, h_{d}^{\Delta}\right)$ be the h-vector a simplicial complex Δ of dimension $d-1$. Athanasiadis and Tzanaki study the inequalities

$$
\begin{equation*}
\frac{h_{0}^{\Delta}}{h_{d}^{\Delta}} \leq \frac{h_{1}^{\Delta}}{h_{d-1}^{\Delta}} \leq \cdots \leq \frac{h_{d-1}^{\Delta}}{h_{1}^{\Delta}} \stackrel{(*)}{\leq} \frac{h_{d}^{\Delta}}{h_{0}^{\Delta}} \tag{1}
\end{equation*}
$$

under the assumption all terms are defined.

- (1)holds for any Gorenstein* complex by the Dehn-Summerville equations $h_{i}=h_{d-i}$.

AT-inequality

Let $h^{\Delta}=\left(h_{0}^{\Delta}, \ldots, h_{d}^{\Delta}\right)$ be the h-vector a simplicial complex Δ of dimension $d-1$. Athanasiadis and Tzanaki study the inequalities

$$
\begin{equation*}
\frac{h_{0}^{\Delta}}{h_{d}^{\Delta}} \leq \frac{h_{1}^{\Delta}}{h_{d-1}^{\Delta}} \leq \cdots \leq \frac{h_{d-1}^{\Delta}}{h_{1}^{\Delta}} \stackrel{(*)}{\leq} \frac{h_{d}^{\Delta}}{h_{0}^{\Delta}} \tag{1}
\end{equation*}
$$

under the assumption all terms are defined.

Question (Athanasiadis, Tzanaki, 2021)

(1) may hold for all 2-Cohen-Macaulay simplicial complexes.
(目 C. Athanasiadis, E. Tzanaki, Symmetric decompositions, triangulations and real-rootedness, Mathematika 2021.

Face uniform subdivision

A geometric realization $|\Delta|$ in some real vector space in which each face $\sigma \in \Delta$ is represented by a geometric simplex $|\sigma|$ of dimension $\operatorname{dim}(\sigma)$ such that $|\sigma| \cap|\tau|=|\sigma \cap \tau|$ for all $\sigma, \tau \in \Delta$.

A face uniform subdivision (or triangulation) of Δ is a simplicial complex $\Delta_{\mathscr{F}}$ with geometric realizations $|\Delta|=\left|\Delta_{\mathscr{F}}\right|$, such that

- each $|\sigma|$ for $\sigma \in \Delta$ is a union of $\left|\sigma^{\prime}\right|$ for $\sigma^{\prime} \in \Delta_{\mathscr{F}}$ and
- there are numbers $f_{i j}, 0 \leq i \leq j \leq \operatorname{dim}(\Delta)$ such that for any $\sigma \in \Delta$ we have $f_{i j}=\#\left\{\tau \in \Delta_{\mathscr{F}}:|\tau| \subseteq|\sigma|, \operatorname{dim}(\tau)=i\right\}$.

The transformation matrix of the subdivision

Proposition (Athanasiadis, 2022)

Let \mathscr{F} be a face uniform triangulation in dimension $d-1$. Then there is a matrix $H_{\mathscr{F}}=\left(h_{i j}\right)_{0 \leq i, j \leq d}$ such that for any simplicial complex Δ of dimension $d-1$ we have

$$
h^{\Delta_{\mathscr{F}}}=H_{\mathscr{F}} h^{\Delta} .
$$

Moreover, we have $h_{i j}=h_{d-i, d-j}$ for $0 \leq i, j \leq d$.
C. Athanasiadis, Face numbers of uniform triangulations of simplicial complexes, Int. Math. Res. Not. 2022.

Example 1

- The barycentric subdivision of Δ : the simplicial complex of all chains in the poset of nonempty faces of Δ.

The barycentric subdivision of a triangle.

$$
\begin{gathered}
H_{\mathscr{F}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
4 & 4 & 2 & 1 \\
1 & 2 & 4 & 4 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\boldsymbol{Q}_{i, j}=\sharp\left\{\omega \in S_{d}: \operatorname{des}(\omega)=i, \omega(d)=j\right\} .
\end{gathered}
$$

Example 2

- The $r^{\text {th }}$-edgewise subdivision of Δ : the triangulation of a simplicial complex Δ by which every k-dimensional face of Δ is subdivided into r^{k} simplices of dimension k.

The $4^{\text {th }}$-edgewise subdivision of a triangle.
$H_{\mathscr{F}}$ is the Amazing matrix.

$$
h_{i, j}=\sum_{k \geq 0}(-1)^{k}\binom{d+1}{k}\binom{d-1-i+(j+1-k) r}{d}
$$

The total positivity of matrix

An infinite matrix is called totally positive of order $r\left(\mathrm{TP}_{r}\right)$ if its minors of all orders $\leq r$ are nonnegative.
The matrix is called TP if its minors of all orders are nonnegative.

$$
\begin{array}{r}
{\left[a_{i-j}\right]_{i, j \geq 0}=\left[\begin{array}{lllll}
a_{0} & & & & \\
a_{1} & a_{0} & & & \\
a_{2} & a_{1} & a_{0} & & \\
a_{3} & a_{2} & a_{1} & a_{0} & \\
\vdots & & & & \ddots
\end{array}\right] \quad\left[a_{i+j}\right]_{i, j \geq 0}=\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{2} & a_{3} & a_{4} & a_{5} & \cdots \\
a_{3} & a_{4} & a_{5} & a_{6} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .} \\
\text { Hankel matrix }
\end{array} \begin{aligned}
& \text { Toeplitz matrix } \quad \text { Tp SM } \Rightarrow \text { Lcx }
\end{aligned}
$$

Toeplitz matrix

$$
T p \Rightarrow R z \Rightarrow L c \Rightarrow U
$$

The barycentric subdivision preserve the AT-inequality

Proposition

Let \mathscr{F} be a face uniform subdivision such that $H_{\mathscr{F}}$ is $T P_{2}$. Then for any simplicial complex Δ satisfying (1) we have that $\Delta_{\mathscr{F}}$ satisfies (1).

Theorem

Let \mathscr{F} be the barycentric subdivision. Then $H_{\mathscr{F}}$ is TP_{2}.

Corollary

Let \mathscr{F} be the barycentric subdivision. If Δ satisfies (1), then so does $\Delta_{\mathscr{F}}$.

The $r^{\text {th }}$-edgewise subdivision preserve the AT-inequality

Theorem (Diaconis, Fulman, 2009)

Let \mathscr{F} be the $r^{\text {th }}$-edgewise subdivision. Then $H_{\mathscr{F}}$ is $T P_{2}$.

Corollary

Let \mathscr{F} be the r ${ }^{\text {th }}$-edgewise subdivision. If Δ satisfies (1), then so does $\Delta_{\mathscr{F}}$.

围 P. Diaconis, J. Fulman, Carries, shuffling, and an amazing matrix, Am. Math. Mon. 2009.

Conjecture

Theorem (Mao, Wang, 2022)

Let \mathscr{F} be the $r^{\text {th }}$-edgewise subdivision. Then $H_{\mathscr{F}}$ is T.

Conjecture

Let \mathscr{F} be the barycentric subdivision. Then $H_{\mathscr{F}}$ is $T P$.
目 J. Mao, Y. Wang, Proof of a conjecture on the total positivity of amazing matrices, Adv. in Appl. Math. 2022.

The inverse of $H_{\mathscr{F}}$

\& The unsigned inverse of a TP matrix is still TP.
Let \mathscr{F} be the barycentric subdivision.

Theorem

Let $P_{j}(x)$ be the generating polynomial of the j column of $H_{\mathscr{F}}^{-1}$, where $0 \leq j \leq d$. Then

$$
P_{j}(x)=\frac{1}{d!} \prod_{k=1}^{d-j-1}(-k x+k+1) \cdot \prod_{k=0}^{j-1}((k+1) x-k) .
$$

Example of $H_{\mathscr{F}}$ is not TP_{2}

Let \mathscr{F} be the subdivision of d-dimensional simplicial complexes which replaces each d-simplex by a cone over its boundary. The $f_{i j}$ here take following form

$$
f_{i j}=\left\{\begin{array}{cc}
0 & \text { for } 0 \leq j<i<d \\
1 & \text { for } j=i<d \\
\binom{d+1}{i} & \text { for } 0 \leq j<d=i
\end{array}\right.
$$

Recall

$$
f_{i j}=\#\left\{\tau \in \Delta_{\mathscr{F}}:|\tau| \subseteq|\sigma|, \operatorname{dim}(\tau)=i\right\} .
$$

Example of $H_{\mathscr{F}}$ is not TP_{2}

Let \mathscr{F} be the subdivision of d-dimensional simplicial complexes which replaces each d-simplex by a cone over its boundary. The $f_{i j}$ here take following form

$$
f_{i j}=\left\{\begin{array}{cc}
0 & \text { for } 0 \leq j<i<d \\
1 & \text { for } j=i<d \\
\binom{d+1}{i} & \text { for } 0 \leq j<d=i
\end{array}\right.
$$

Then $H_{\mathscr{F}}$ takes the following form:

$$
H_{\mathscr{F}}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 1 & \cdots & 0 & 0 \\
1 & 2 & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 2 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

Labeled path

Let $P(d)$ be the set of d-tuples $\left(\left(a_{1}, u_{1}\right), \ldots,\left(a_{d}, u_{d}\right)\right)$ in $(\{E, N\} \times \mathbb{N})^{d}$, satisfying:
(L1) if $a_{1}=E$ then $u_{1}=1$,
(L2) if $a_{i}=a_{i+1}=N$ are both vertical, or $a_{i}=a_{i+1}=E$ then $u_{i} \geq u_{i+1}$,
(L3) if $a_{i} \neq a_{i+1}$ then $u_{i}+u_{i+1} \leq i+1$.

$\Psi: S_{d} \rightarrow P(d)$

For $\sigma=\sigma_{1} \cdots \sigma_{d} \in S_{d}$, define $\Psi(\sigma)=\left(\left(a_{1}, u_{1}\right), \ldots,\left(a_{d}, u_{d}\right)\right)$ where:

- $\left(a_{1}, u_{1}\right)=(E, 1)$
- for $2 \leq i \leq d$ we obtain $\left(a_{i}, u_{i}\right)$ as follows.

Let $\tau=\tau_{1} \cdots \tau_{i} \in S_{i}$ such that for $1 \leq \ell<j \leq i$ we have

$$
\tau_{\ell}<\tau_{j} \Leftrightarrow \sigma_{\ell}<\sigma_{j} .
$$

- If the position $i-1$ in σ or equivalently τ_{i} is a descent, let the $a_{i}=N$ and set $u_{i}=\tau_{i}$.
- If the position $i-1$ in σ or equivalently τ_{i} is an ascent, let the $a_{i}=E$ and set $u_{i}=i+1-\tau_{i}$.

243165

Bijection $\Psi: S_{d} \rightarrow P(d)$

Theorem (Bóna, Ehrenborg, 2000)

The map $\Psi: S_{d} \rightarrow P(d)$ is a bijection.
R. M. Bóna, R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs, J.
Combin. Theory Ser. A 2000.

- Let $P(d, i, j)$ be the set of labeled paths in $P(d)$ with i steps N and

$$
u_{d}=\left\{\begin{array}{lll}
d-j & \text { if } & a_{d}=N \\
j+1 & \text { if } & a_{d}=E
\end{array}\right.
$$

- Let $A(d, i, j)=\sharp\left\{\sigma \in S_{d}: \operatorname{des}(\sigma)=i, \sigma(d)=d-j\right\}$.

Corollary

$\Psi: A(d, i, j) \rightarrow P(d, i, j)$ is a bijection.

TP_{2}

Proposition

For $d \geq 1$ and $0 \leq i, j \leq d-1$ there is an injection

$$
\Phi: P(d, i, j+1) \times P(d, i+1, j) \rightarrow P(d, i, j) \times P(d, i+1, j+1)
$$

Theorem

Let \mathscr{F} be the barycentric subdivision. Then $H_{\mathscr{F}}$ is TP_{2}.

Thank you for your attention!

