Dual Specht Modules for the Rook Monoid

Inês Legatheaux Martins

CMAFcIO - Faculdade de Ciências da Universidade de Lisboa

91st Séminaire Lotharingien de Combinatoire March 2024, Salobreña

The Rook Monoid

Let n be a positive integer and $[n]=\{1, \ldots, n\}$.
The rook monoid, denoted R_{n}, is the set of all partial permutations of [n] endowed with the usual composition of partial functions.

Example
Let $\sigma, \tau \in R_{5}$ be given by

$$
\begin{gathered}
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & - & 1 & 3 & 5
\end{array}\right) \in R_{5}, \tau=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & - & -
\end{array}\right) \in S_{3} \subseteq R_{5} . \\
\sigma \tau=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
- & 2 & 1 & - & -
\end{array}\right) \in R_{5} .
\end{gathered}
$$

Representations of the Rook Monoid

Let \mathbb{F} be a field of characteristic zero and let S_{r} be the symmetric group on $[r]$, for $r=0,1, \ldots, n$ (with $S_{0} \cong S_{1}$).

It is clear that $\left|R_{n}\right|=\sum_{r=0}^{n}\binom{n}{r}^{2} r$! and $S_{r} \subseteq R_{n}$, for $r=0,1, \ldots, n$.
The irreducible representations of R_{n} were described in the 1950's by W. D. Munn who showed how they can be built from the irreducible representations of S_{r}, with $r=0,1, \ldots, n$.

- $\mathbb{F} R_{n}$ is (split) semisimple;
- the isomorphism classes of simple $\mathbb{F} R_{n}$-modules are indexed by the set

$$
\{\mu: \mu \vdash r, r=0,1, \cdots n\}
$$

where $\mu \vdash r$ means that μ is a partition of r.

Main tools

Our description of a full set of representatives of the isomorphism classes of simple $\mathbb{F} R_{n}$ is associated with the following results:

- Schur-Weyl dualities;
- general theory of the functor $f: \bmod (A) \rightarrow \bmod (e A e)$

Schur-Weyl dualities

Definition

Let A and B be \mathbb{F}-algebras and let M be an (A, B)-bimodule. If $\rho: A \rightarrow \operatorname{End}_{\mathbb{F}}(M)$ and $\psi: B \rightarrow \operatorname{End}_{\mathbb{F}}(M)$ are the corresponding representations of A and B on M, we say that M satisfies Schur-Weyl duality if the image of each action in $E n d_{\mathbb{F}}(M)$ is the centraliser for the other. Equivalently,

$$
\rho(A)=\operatorname{End}_{B}(M) \text { and } \psi(B)=\operatorname{End}_{A}(M)
$$

Let $V\left(\cong \mathbb{F}^{d}\right)$ be a vector space with basis $\left\{e_{1}, \cdots, e_{d}\right\}$ and let $G L(V) \cong G L_{d}(\mathbb{F})$ and $O(V) \cong O_{d}(\mathbb{F})$ be identified. Classical examples of Schur-Weyl dualities are

$$
\begin{array}{ll}
G L_{d}(\mathbb{F}) \circlearrowleft \otimes^{n} V \circlearrowright S_{n} & \quad \text { (Schur, 1927) } \\
O_{d}(\mathbb{F}) \circlearrowleft \otimes^{n} V \circlearrowright \mathcal{B}_{n}(d) & \quad \text { (Brauer, 1937) } \\
W_{d} \circlearrowleft \otimes^{n} V \circlearrowright \mathcal{P}_{n}(d) & \quad(\text { Jones, Martin 1994) }
\end{array}
$$

Schur-Weyl duality for the rook monoid

Let $V\left(\cong \mathbb{F}^{d}\right)$ be a vector space with basis $\left\{e_{1}, \cdots, e_{d}\right\}$ and let

$$
U=V \oplus W
$$

with $W=\mathbb{F} e_{\infty}$ such that $\left\{e_{1}, \cdots, e_{d}, e_{\infty}\right\}$ is an \mathbb{F}-basis of U.
In 2002, L. Solomon defined an action of R_{n} via "place permutations" on the n-th tensor power $\otimes^{n} U$. He then showed that $\otimes^{n} U$ satisfies Schur-Weyl duality as an $\left(\mathbb{F} G L_{d}(\mathbb{F}), \mathbb{F} R_{n}\right)$-bimodule.

Theorem (Solomon, 2002)

Let $G L_{d}(\mathbb{F})$ act on $\otimes^{n} U$ by fixing $W=\mathbb{F} e_{\infty}$ and let
$\phi: \mathbb{F} R_{n} \rightarrow \operatorname{End}_{\mathbb{F}}\left(\otimes^{n} U\right)$ be defined by the right action of R_{n} over $\otimes^{n} U$ given by "place permutations". If $d \geq n$, there is an isomorphism of \mathbb{F}-algebras

$$
\mathbb{F} R_{n} \cong E n d_{\mathbb{F} G L_{d}(\mathbb{F})}\left(\otimes^{n} U\right)
$$

Schur-Weyl duality for the rook monoid via Schur algebras

Let $d \geq n$, let $V\left(\cong \mathbb{F}^{d}\right)$ be a vector space with basis $\left\{e_{1}, \cdots, e_{d}\right\}$ and let

$$
U=V \oplus W
$$

with $W=\mathbb{F} e_{\infty}$ such that $\left\{e_{1}, \cdots, e_{d}, e_{\infty}\right\}$ is an \mathbb{F}-basis of U.
For every $X \subseteq[n]$, set

$$
\Gamma_{X}(d)=\{\alpha: \alpha: X \rightarrow[d] \text { is a map }\} .
$$

Example
Let $d=7$ and $n=5$. If $X=\{1,4,5\} \subseteq[5]$, then

$$
\alpha=(\alpha(1), \alpha(4), \alpha(5))=(7,2,2) \in \Gamma_{X}(7) .
$$

Schur-Weyl duality for the rook monoid via Schur algebras

Let $d \geq n$. For $X \subseteq[n]$ and $\alpha \in \Gamma_{X}(d)$, define $e_{\alpha}^{\otimes} \in \otimes^{n} U$ by

$$
e_{\alpha}^{\otimes}=e_{\beta(1)} \otimes \cdots \otimes e_{\beta(n)}
$$

where $\beta:[n] \mapsto[d] \in \Gamma_{[n]}(d)$ and $\beta(i)=\alpha(i)$ if $i \in X$ and $e_{\beta(i)}=e_{\infty}$ if $i \notin X$.

Example
As before, let $d=7, n=5$, let $X=\{1,4,5\} \subseteq[5]$ and let $\alpha=(\alpha(1), \alpha(4), \alpha(5))=(7,2,2) \in \Gamma_{X}(7)$. Then

$$
e_{\alpha}^{\otimes}=e_{7} \otimes e_{\infty} \otimes e_{\infty} \otimes e_{2} \otimes e_{2} \in \otimes^{5} U
$$

The set $\left\{e_{\alpha}^{\otimes}: \alpha \in \Gamma_{X}(d), X \subseteq[n]\right\}$ is an \mathbb{F}-basis of $\otimes^{n} U$.

Schur-Weyl duality for the rook monoid via Schur algebras

Let $d \geq n$ and let $c_{i, j}: G L_{d}(\mathbb{F}) \rightarrow \mathbb{F}$ be defined by $c_{i, j}(g)=g_{i, j}$, for $1 \leq i, j \leq d$ and $g \in G L_{d}(\mathbb{F})$. If $X=\left\{x_{1}, \cdots, x_{r}\right\} \subseteq[n]$ and $\alpha, \beta \in \Gamma_{X}(d)$, then

$$
c_{\alpha, \beta}(g)=c_{\alpha\left(x_{1}\right), \beta\left(x_{1}\right)}(g) \cdots c_{\alpha\left(x_{r}\right), \beta\left(x_{r}\right)}(g)
$$

for all $g \in G L_{d}(\mathbb{F})$.
$\mathcal{A}=\mathcal{A}_{[n]}(d)=<c_{\alpha, \beta}: \alpha, \beta \in \Gamma_{X}(d), X \subseteq[n]>$ is the \mathbb{F}-space generated be all the monomials $c_{\alpha, \beta}: G L_{d}(\mathbb{F}) \rightarrow \mathbb{F}$.

The extended Schur algebra $\mathcal{S}=\mathcal{S}_{\mathbb{F}}(d,[n])$ is the dual \mathbb{F}-space of \mathcal{A}

$$
\mathcal{S}=\mathcal{A}^{*}=\operatorname{Hom}_{\mathbb{F}}(\mathcal{A} ; \mathbb{F})
$$

\mathcal{S} is a finite-dimensional \mathbb{F}-algebra. In fact, $\operatorname{dim}_{\mathbb{F}}(\mathcal{S})=\binom{d^{2}+n}{n}$.

Schur-Weyl duality for the rook monoid via Schur algebras

- The category of finte-dimensional $\mathbb{F} G L_{d}(\mathbb{F})$-modules whose coefficient functions lie in \mathcal{A} is equivalent to that of \mathcal{S}-modules.
- The \mathbb{F}-space $\otimes^{n} U$ has the structure of a left \mathcal{S}-module. For any $\xi \in \mathcal{S}, X \subseteq[n]$ and $\beta \in \Gamma_{X}(m)$, we have

$$
\xi \cdot e_{\beta}^{\otimes}=\sum_{\alpha \in \Gamma_{X}(m)} \xi\left(c_{\alpha, \beta}\right) e_{\alpha}^{\otimes}
$$

Theorem (André, L. M.)
Let $d \geq n$. The representation $\rho: \mathcal{S} \mapsto E n d_{\mathbb{F}}\left(\otimes^{n} U\right)$ afforded by the left action of \mathcal{S} on $\otimes^{n} U$ induces an isomorphism of \mathbb{F}-algebras

$$
\mathcal{S} \cong E n d_{\mathbb{F} R_{n}}\left(\otimes^{n} U\right)
$$

General theory of the functor $f: \bmod (A) \rightarrow \bmod (e A e)$

Let A be an \mathbb{F}-algebra and let $e \neq 0$ be an idempotent in A. Then:

- eAe is an algebra over \mathbb{F};
- if M is an A-module, then $e M$ is an $e A e$-module.

In 1980, J. A. Green shows the following result (which he attributes in part to T. Martins and M. Auslander).

Theorem

Let A be an \mathbb{F}-algebra and let $\bmod (A)$ be the category of A-modules of finite dimension. If $\left\{V_{\lambda}: \lambda \in \Lambda\right\}$ is a full set of simple A-modules in $\bmod (A)$, then:

- if $M \in \bmod (A)$ is simple, then $e M$ is either zero or simple in $\bmod (e A e)$;
- if $\Lambda^{\prime}=\left\{\lambda \in \Lambda: e V_{\lambda} \neq 0\right\}$, then $\left\{e V_{\lambda}: \lambda \in \Lambda^{\prime}\right\}$ is a complete set of simple $e A e$-modules in $\bmod (e A e)$

The algebra $\mathcal{S}(\zeta)$ and the $\mathbb{F} R_{n}$-module $\zeta \otimes^{n} U$

Let $d \geq n$ and let $X \subseteq[n]$ be a set of size r. Then:

- $\iota_{X}:[r] \rightarrow X \subseteq[n] \subseteq[d]$ is the only order-preserving element of R_{n} with domain $[r]$ and range X;
- $\xi_{X}=\xi_{L X, \iota_{X}}$ is an idempotent of \mathcal{S} and so is

$$
\xi=\sum_{X \subseteq[n]} \xi_{L_{X}, \iota_{X}} \in \mathcal{S} .
$$

Let $\mathcal{S}(\zeta)$ be the \mathbb{F}-algebra $\mathcal{S}(\zeta)=\zeta \mathcal{S} \zeta$.

Theorem (André, L. M.)
If $d \geq n$, there is an isomorphism of \mathbb{F}-algebras $\mathcal{S}(\zeta) \cong \mathbb{F} R_{n}$. Under this identification, the left $\mathbb{F} R_{n}$-module $\zeta \otimes^{n} U$ has as \mathbb{F}-basis the set

$$
\left\{e_{\alpha}^{\otimes}: \alpha \in \Gamma_{X}(d), \alpha: X \rightarrow[n] \text { is injective }\right\}
$$

and thus $\operatorname{dim}\left(\zeta \otimes^{n} U\right)=\operatorname{dim}\left(\mathbb{F} R_{n}\right)$.

Carter-Lusztig Modules

Let $1 \leq r \leq n \leq d$ and let $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \vdash r$. A μ-tableau is a map $\mathfrak{T}:[\mu] \rightarrow[d]$, where $[\mu]$ is the Young diagram of μ.

If $d=n=10$ and $\mu=(4,1) \vdash 5=r$, then \mathfrak{T} is a μ-tableau.

If $\mathfrak{T}:[\mu] \rightarrow[r] \subseteq[d]$ is bijective, then \mathfrak{T} is said to be basic. Let $\mathfrak{T}_{\mu}:[\mu] \rightarrow[r] \subseteq[d]$ be an arbitrary but fixed basic μ-tableau. For instance,

$$
\mathfrak{T}_{\mu}: \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & & & \\
\hline
\end{array}
$$

The μ - tableau \mathfrak{T}_{μ} is standard.

Carter-Lusztig Modules

Let $1 \leq r \leq n \leq d$ and let $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \vdash r$. Every μ-tableau $\mathfrak{T}:[\mu] \rightarrow[d]$ is of the form $\mathfrak{T}=\alpha \circ \mathfrak{T}_{\mu}$ for a unique $\alpha \in \Gamma_{[r]}(d)$, where \mathfrak{T}_{μ} is the basic μ-tableau.

If $d=n=10$ and $\mu=(4,2) \vdash 6=r$, then $\mathfrak{T}=\alpha \circ \mathfrak{T}_{\mu}$, where

$$
\mathfrak{T}: \begin{array}{|l|l|l|l}
\hline & 5 & 5 & 7 \\
\hline 2 & 7 & & \\
\hline
\end{array} \text { and } \alpha=(1,5,5,7,2,7)
$$

If $l_{\mu} \in \Gamma_{[r]}(d)$ be the unique weakly increasing map such that

$$
\left|\left\{k \in[r]: l_{\mu}(k)=i\right\}\right|=\mu_{i},
$$

for all $1 \leq i \leq d$, we write $\mathfrak{T}^{\mu}=l_{\mu} \circ \mathfrak{T}_{\mu}$. For instance, if $d=n=10$ and $\mu=(4,2) \vdash 6=r$, then \mathfrak{T}^{μ} is given by

Carter-Lusztig modules

Let $1 \leq r \leq n \leq d$ and let $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \vdash r$, where $s=l(\mu)$. Then $e_{\mu}^{\otimes}=e_{l_{\mu}}^{\otimes}$ is the tensor

$$
e_{\mu}^{\otimes}=\underbrace{e_{1} \otimes \ldots \otimes e_{1}}_{\mu_{1} \text { times }} \otimes \underbrace{e_{2} \otimes \ldots \otimes e_{2}}_{\mu_{2} \text { times }} \otimes \ldots \otimes \underbrace{e_{s} \otimes \ldots e_{s}}_{\mu_{s} \text { times }} \otimes \underbrace{e_{\infty} \otimes \ldots \otimes e_{\infty}}_{n-r \text { times }}
$$

For each $\mu \vdash r$ with $1 \leq r \leq n \leq d$, the cyclic \mathcal{S}-submodule of $\otimes^{n} U$ spanned by

$$
e_{\mu}^{\otimes} c_{\mu}=\sum_{\sigma \in C\left(\mathfrak{T}_{\mu}\right)} \operatorname{sgn}(\sigma) e_{l_{\mu} \sigma}^{\otimes},
$$

where $c_{\mu}=\sum_{\sigma \in C\left(\mathfrak{T}_{\mu}\right)} \operatorname{sgn}(\sigma) \sigma$ and $C\left(\mathfrak{T}_{\mu}\right)$ is the column stabiliser of \mathfrak{T}_{μ}, is referred to as the Carter-Lusztig module U_{μ} (associated with $\mu)$. If $\mu=(0)$, we agree that $U_{\mu}=\mathbb{F} e_{\emptyset}^{\otimes}=e_{\infty} \otimes \ldots \otimes e_{\infty}$.
Theorem (André, L. M.)
If $d \geq n$, the set $\left\{U_{\mu}: \vdash r, r=0,1, \ldots, n\right\}$ is a complete set of representatives of the isomorphism classes of simple modules for \mathcal{S}.

Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)
If $d \geq n$, the set $\left\{\zeta U_{\mu}: \mu \vdash r, 0 \leq r \leq n\right\}$ is a complete set of representatives of the isomorphism classes of simple left
$\mathcal{S}(\zeta)$-modules and thus also a complete set of representatives of the isomorphism classes of simple left $\mathbb{F} R_{n}$-modules.

Let $0 \leq r \leq n \leq d$ and $\mu \vdash r$. The simple $\mathbb{F} R_{n}$-module ζU_{μ}, denoted by \mathcal{L}_{μ}, can be thought of as an analogue of the dual Specht module associated with μ for S_{r}.

Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)
Let $1 \leq r \leq n$ and let $\mu \vdash r$. The set
$\left\{\xi_{\alpha, l_{\mu}} e_{\mu}^{\otimes} c_{\mu}: \alpha \in \Gamma_{[r]}(n), \alpha:[r] \rightarrow[n]\right.$ is injective and $\alpha \circ \mathfrak{T}_{\mu}$ is standard $\}$
is an \mathbb{F}-basis of the simple left $\mathbb{F} R_{n}$-module $\zeta U_{\mu} \subseteq \zeta \otimes^{n} U$.

As a consequence, if $\mu \vdash r$, we have that

$$
\operatorname{dim}\left(\mathcal{L}_{\mu}\right)=\operatorname{dim}\left(\zeta U_{\mu}\right)=\binom{n}{r} f^{\mu}
$$

where f^{μ} is the number of basic μ-tableaux with values in $[r]$ which are standard.

Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)

Let $1 \leq r \leq n, \mu \vdash r$ and let $C\left(\mathfrak{T}_{\mu}\right)$ be the column stabiliser of \mathfrak{T}_{μ} and $R\left(\mathfrak{T}_{\mu}\right)$ the column stabiliser of \mathfrak{T}_{μ}. The simple $\mathbb{F} R_{n}$-module \mathcal{L}_{μ} is isomorphic to the left ideal $\widehat{\mathcal{L}}_{\mu}$ of $\mathbb{F} R_{n}$, where

$$
\widehat{\mathcal{L}}_{\mu}=\mathbb{F} R_{n} \widehat{r}_{\mu} \widehat{c}_{\mu}
$$

with

$$
\widehat{r}_{\mu}=\eta_{r} r_{\mu}, \quad \widehat{c}_{\mu}=\eta_{r} c_{\mu}, \quad \eta_{r}=\sum_{\substack{X \subseteq \mathbf{n}, Y \subseteq X \\|X|=r}} \sum_{Y \subseteq}(-1)^{|X|-|Y|} \epsilon_{Y} \in \mathbb{F} R_{n}
$$

and $r_{\mu}=\sum_{\sigma \in R\left(\mathfrak{T}_{\mu}\right)} \sigma$ and $c_{\mu}=\sum_{\sigma \in C\left(\mathfrak{T}_{\mu}\right)} \operatorname{sgn}(\sigma) \sigma$.

From Tableaux to Partial Tableaux

In 2002, C. Grood exhibited a full set of simple $\mathbb{C} R_{n}$-modules which are analogues of Specht modules for the symmetric group S_{n}. Her work relies on the notion of μ_{r}^{n}-tableaux.

Let $1 \leq r \leq n$ and let $\mu \vdash r$. A μ_{r}^{n}-tableau is the Young diagram of μ filled with r distinct entries from the set $[n]=\{1,2, \ldots, n\}$.

Example
For example, if $n=12$ and $\mu=(6) \vdash 6=r$, then

2	1	3	7	5	9

is a μ_{12}^{6}-tableau. Clearly, if $\alpha=(2,1,3,7,5,9) \in \Gamma_{[6]}(12)$, this is precisely $\alpha \circ \mathfrak{T}_{\mu}$.

From Tableaux to Partial Tableaux

Theorem (André, L. M.)
Let $1 \leq r \leq n$ and $\mu \vdash r$. Let R^{μ} be the corresponding analogue of the Specht module for S_{n} in Grood's sense. Then

$$
\mathbb{F} R_{n} \widehat{c}_{\mu} \widehat{r}_{\mu} \cong R^{\mu} .
$$

Hence, R^{μ} is dual to the left ideal $\widehat{\mathcal{L}}_{\mu}=\mathbb{F} R_{n} \widehat{r}_{\mu} \widehat{c}_{\mu}$ of $\mathbb{F} R_{n}$.

