Inês Legatheaux Martins

CMAFcIO - Faculdade de Ciências da Universidade de Lisboa

91st Séminaire Lotharingien de Combinatoire March 2024, Salobreña

The Rook Monoid

Let *n* be a positive integer and $[n] = \{1, \ldots, n\}$.

The rook monoid, denoted R_n , is the set of all partial permutations of [n] endowed with the usual composition of partial functions.

Example

Let $\sigma, \tau \in R_5$ be given by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & - & 1 & 3 & 5 \end{pmatrix} \in R_5, \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & - & - \end{pmatrix} \in S_3 \subseteq R_5.$$
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & 2 & 1 & - & - \end{pmatrix} \in R_5.$$

Representations of the Rook Monoid

Let \mathbb{F} be a field of characteristic zero and let S_r be the symmetric group on [r], for r = 0, 1, ..., n (with $S_0 \cong S_1$).

It is clear that
$$|R_n| = \sum_{r=0}^n {\binom{n}{r}}^2 r!$$
 and $S_r \subseteq R_n$, for $r = 0, 1, ..., n$.

The irreducible representations of R_n were described in the 1950's by W. D. Munn who showed how they can be built from the irreducible representations of S_r , with r = 0, 1, ..., n.

\blacktriangleright $\mathbb{F}R_n$ is (split) semisimple;

• the isomorphism classes of simple $\mathbb{F}R_n$ -modules are indexed by the set

$$\{\mu : \mu \vdash r, r = 0, 1, \cdots n\},\$$

where $\mu \vdash r$ means that μ is a partition of r.

Our description of a full set of representatives of the isomorphism classes of simple $\mathbb{F}R_n$ is associated with the following results:

Schur–Weyl dualities;

• general theory of the functor $f : mod(A) \to mod(eAe)$

Schur–Weyl dualities

Definition

Let *A* and *B* be \mathbb{F} -algebras and let *M* be an (A, B)-bimodule. If $\rho : A \to End_{\mathbb{F}}(M)$ and $\psi : B \to End_{\mathbb{F}}(M)$ are the corresponding representations of *A* and *B* on *M*, we say that *M* satisfies Schur–Weyl duality if the image of each action in $End_{\mathbb{F}}(M)$ is the centraliser for the other. Equivalently,

$$\rho(A) = End_B(M)$$
 and $\psi(B) = End_A(M)$.

Let $V(\cong \mathbb{F}^d)$ be a vector space with basis $\{e_1, \dots, e_d\}$ and let $GL(V) \cong GL_d(\mathbb{F})$ and $O(V) \cong O_d(\mathbb{F})$ be identified. Classical examples of Schur-Weyl dualities are

 $GL_{d}(\mathbb{F}) \circlearrowleft \otimes^{n} V \circlearrowright S_{n} \quad (\text{Schur}, 1927)$ $O_{d}(\mathbb{F}) \circlearrowright \otimes^{n} V \circlearrowright \mathcal{B}_{n}(d) \quad (\text{Brauer}, 1937)$ $W_{d} \circlearrowright \otimes^{n} V \circlearrowright \mathcal{P}_{n}(d) \quad (\text{Jones, Martin 1994})$

Schur-Weyl duality for the rook monoid

Let $V \cong \mathbb{F}^d$ be a vector space with basis $\{e_1, \cdots, e_d\}$ and let

 $U = V \oplus W$

with $W = \mathbb{F}e_{\infty}$ such that $\{e_1, \dots, e_d, e_{\infty}\}$ is an \mathbb{F} -basis of U.

In 2002, L. Solomon defined an action of R_n via "place permutations" on the *n*-th tensor power $\otimes^n U$. He then showed that $\otimes^n U$ satisfies Schur-Weyl duality as an $(\mathbb{F}GL_d(\mathbb{F}), \mathbb{F}R_n)$ -bimodule.

Theorem (Solomon, 2002)

Let $GL_d(\mathbb{F})$ act on $\otimes^n U$ by fixing $W = \mathbb{F}e_\infty$ and let $\phi : \mathbb{F}R_n \to End_{\mathbb{F}}(\otimes^n U)$ be defined by the right action of R_n over $\otimes^n U$ given by "place permutations". If $d \ge n$, there is an isomorphism of \mathbb{F} -algebras

$$\mathbb{F}R_n \cong End_{\mathbb{F}GL_d(\mathbb{F})}(\otimes^n U).$$

Let $d \ge n$, let $V \cong \mathbb{F}^d$ be a vector space with basis $\{e_1, \cdots, e_d\}$ and let

$$U = V \oplus W$$

with $W = \mathbb{F}e_{\infty}$ such that $\{e_1, \cdots, e_d, e_{\infty}\}$ is an \mathbb{F} -basis of U.

For every $X \subseteq [n]$, set

$$\Gamma_X(d) = \{ \alpha : \alpha : X \to [d] \text{ is a map} \}.$$

Example

Let d = 7 and n = 5. If $X = \{1, 4, 5\} \subseteq [5]$, then

$$\alpha = (\alpha(1), \alpha(4), \alpha(5)) = (7, 2, 2) \in \Gamma_X(7).$$

Let $d \ge n$. For $X \subseteq [n]$ and $\alpha \in \Gamma_X(d)$, define $e_{\alpha}^{\otimes} \in \otimes^n U$ by

$$e_{\alpha}^{\otimes} = e_{\beta(1)} \otimes \cdots \otimes e_{\beta(n)}$$

where $\beta : [n] \mapsto [d] \in \Gamma_{[n]}(d)$ and $\beta(i) = \alpha(i)$ if $i \in X$ and $e_{\beta(i)} = e_{\infty}$ if $i \notin X$.

Example

As before, let d = 7, n = 5, let $X = \{1, 4, 5\} \subseteq [5]$ and let $\alpha = (\alpha(1), \alpha(4), \alpha(5)) = (7, 2, 2) \in \Gamma_X(7)$. Then

$$e_{lpha}^{\otimes}=e_7\otimes e_{\infty}\otimes e_{\infty}\otimes e_2\otimes e_2\in \otimes^5 U$$

The set $\{e_{\alpha}^{\otimes} : \alpha \in \Gamma_X(d), X \subseteq [n]\}$ is an \mathbb{F} -basis of $\otimes^n U$.

Let $d \ge n$ and let $c_{i,j} : GL_d(\mathbb{F}) \to \mathbb{F}$ be defined by $c_{i,j}(g) = g_{i,j}$, for $1 \le i, j \le d$ and $g \in GL_d(\mathbb{F})$. If $X = \{x_1, \dots, x_r\} \subseteq [n]$ and $\alpha, \beta \in \Gamma_X(d)$, then

$$c_{\alpha,\beta}(g) = c_{\alpha(x_1),\beta(x_1)}(g) \cdots c_{\alpha(x_r),\beta(x_r)}(g),$$

for all $g \in GL_d(\mathbb{F})$.

 $\mathcal{A} = \mathcal{A}_{[n]}(d) = \langle c_{\alpha,\beta} : \alpha, \beta \in \Gamma_X(d), X \subseteq [n] \rangle$ is the \mathbb{F} -space generated be all the monomials $c_{\alpha,\beta} : GL_d(\mathbb{F}) \to \mathbb{F}$.

The extended Schur algebra $S = S_{\mathbb{F}}(d, [n])$ is the dual \mathbb{F} -space of \mathcal{A}

$$\mathcal{S} = \mathcal{A}^* = Hom_{\mathbb{F}}(\mathcal{A}; \mathbb{F}).$$

S is a finite-dimensional \mathbb{F} -algebra. In fact, $\dim_{\mathbb{F}}(S) = \binom{d^2 + n}{n}$.

- ► The category of finte-dimensional FGL_d(F)-modules whose coefficient functions lie in A is equivalent to that of S-modules.
- ► The \mathbb{F} -space $\otimes^n U$ has the structure of a left S-module. For any $\xi \in S, X \subseteq [n]$ and $\beta \in \Gamma_X(m)$, we have

$$\xi.e_eta^\otimes=\sum_{lpha\in\Gamma_X(m)}\xi(c_{lpha,eta})e_lpha^\otimes$$

Theorem (André, L. M.)

Let $d \ge n$. The representation $\rho : S \mapsto End_{\mathbb{F}}(\otimes^n U)$ afforded by the left action of S on $\otimes^n U$ induces an isomorphism of \mathbb{F} -algebras

$$\mathcal{S} \cong End_{\mathbb{F}R_n}(\otimes^n U).$$

General theory of the functor $f : mod(A) \rightarrow mod(eAe)$

Let *A* be an \mathbb{F} -algebra and let $e \neq 0$ be an idempotent in *A*. Then:

- eAe is an algebra over \mathbb{F} ;
- ▶ if *M* is an *A*-module, then *e M* is an *eAe*-module.

In 1980, J. A. Green shows the following result (which he attributes in part to T. Martins and M. Auslander).

Theorem

Let A be an \mathbb{F} -algebra and let mod(A) be the category of A-modules of finite dimension. If $\{V_{\lambda} : \lambda \in \Lambda\}$ is a full set of simple A-modules in mod(A), then:

- if M ∈ mod(A) is simple, then eM is either zero or simple in mod(eAe);
- if $\Lambda' = \{\lambda \in \Lambda : eV_{\lambda} \neq 0\}$, then $\{eV_{\lambda} : \lambda \in \Lambda'\}$ is a complete set of simple *eAe*-modules in mod(*eAe*)

The algebra $\mathcal{S}(\zeta)$ and the $\mathbb{F}R_n$ -module $\zeta \otimes^n U$

Let $d \ge n$ and let $X \subseteq [n]$ be a set of size *r*. Then:

ι_X: [r] → X ⊆ [n] ⊆ [d] is the only order-preserving element of R_n with domain [r] and range X;

• $\xi_X = \xi_{\iota_X,\iota_X}$ is an idempotent of S and so is

$$\xi = \sum_{X \subseteq [n]} \xi_{\iota_X, \iota_X} \in \mathcal{S}.$$

Let $\mathcal{S}(\zeta)$ be the \mathbb{F} -algebra $\mathcal{S}(\zeta) = \zeta \mathcal{S} \zeta$.

Theorem (André, L. M.)

If $d \ge n$, there is an isomorphism of \mathbb{F} -algebras $\mathcal{S}(\zeta) \cong \mathbb{F}R_n$. Under this identification, the left $\mathbb{F}R_n$ -module $\zeta \otimes^n U$ has as \mathbb{F} -basis the set

$$\{e_{\alpha}^{\otimes}: \alpha \in \Gamma_X(d), \alpha: X \to [n] \text{ is injective}\}$$

and thus $\dim(\zeta \otimes^n U) = \dim(\mathbb{F}R_n)$.

Carter-Lusztig Modules

Let $1 \le r \le n \le d$ and let $\mu = (\mu_1, \dots, \mu_d) \vdash r$. A μ -tableau is a map $\mathfrak{T} : [\mu] \to [d]$, where $[\mu]$ is the Young diagram of μ .

If d = n = 10 and $\mu = (4, 1) \vdash 5 = r$, then \mathfrak{T} is a μ -tableau.

If $\mathfrak{T} : [\mu] \to [r] \subseteq [d]$ is bijective, then \mathfrak{T} is said to be basic. Let $\mathfrak{T}_{\mu} : [\mu] \to [r] \subseteq [d]$ be an arbitrary but fixed basic μ -tableau. For instance,

$$\mathfrak{T}_{\mu}: egin{array}{c|c} 1 & 2 & 3 & 4 \ \hline 5 & & & \ \hline \end{array}$$

The μ - tableau \mathfrak{T}_{μ} is standard.

Carter-Lusztig Modules

Let $1 \le r \le n \le d$ and let $\mu = (\mu_1, \ldots, \mu_d) \vdash r$. Every μ -tableau $\mathfrak{T} : [\mu] \to [d]$ is of the form $\mathfrak{T} = \alpha \circ \mathfrak{T}_{\mu}$ for a unique $\alpha \in \Gamma_{[r]}(d)$, where \mathfrak{T}_{μ} is the basic μ -tableau.

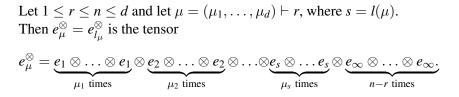
If
$$d = n = 10$$
 and $\mu = (4, 2) \vdash 6 = r$, then $\mathfrak{T} = \alpha \circ \mathfrak{T}_{\mu}$, where
 $\mathfrak{T} : \begin{bmatrix} 1 & 5 & 5 & 7 \\ 2 & 7 \end{bmatrix}$ and $\alpha = (1, 5, 5, 7, 2, 7)$.

If $l_{\mu} \in \Gamma_{[r]}(d)$ be the unique weakly increasing map such that

$$|\{k \in [r] : l_{\mu}(k) = i\}| = \mu_i,$$

for all $1 \le i \le d$, we write $\mathfrak{T}^{\mu} = l_{\mu} \circ \mathfrak{T}_{\mu}$. For instance, if d = n = 10and $\mu = (4, 2) \vdash 6 = r$, then \mathfrak{T}^{μ} is given by

Carter-Lusztig modules



For each $\mu \vdash r$ with $1 \leq r \leq n \leq d$, the cyclic *S*-submodule of $\otimes^n U$ spanned by

$$e_{\mu}^{\otimes}c_{\mu} = \sum_{\sigma \in C(\mathfrak{T}_{\mu})} sgn(\sigma)e_{l_{\mu}\sigma}^{\otimes},$$

where $c_{\mu} = \sum_{\sigma \in C(\mathfrak{T}_{\mu})} sgn(\sigma)\sigma$ and $C(\mathfrak{T}_{\mu})$ is the column stabiliser of \mathfrak{T}_{μ} , is referred to as the Carter-Lusztig module U_{μ} (associated with μ). If $\mu = (0)$, we agree that $U_{\mu} = \mathbb{F}e_{\emptyset}^{\otimes} = e_{\infty} \otimes \ldots \otimes e_{\infty}$. Theorem (André, L. M.)

If $d \ge n$, the set $\{U_{\mu} : \vdash r, r = 0, 1, ..., n\}$ is a complete set of representatives of the isomorphism classes of simple modules for S.

Theorem (André, L. M.)

If $d \ge n$, the set $\{\zeta U_{\mu} : \mu \vdash r, 0 \le r \le n\}$ is a complete set of representatives of the isomorphism classes of simple left $S(\zeta)$ -modules and thus also a complete set of representatives of the isomorphism classes of simple left $\mathbb{F}R_n$ -modules.

Let $0 \le r \le n \le d$ and $\mu \vdash r$. The simple $\mathbb{F}R_n$ -module ζU_{μ} , denoted by \mathcal{L}_{μ} , can be thought of as an analogue of the dual Specht module associated with μ for S_r .

Theorem (André, L. M.) Let $1 \le r \le n$ and let $\mu \vdash r$. The set

 $\{\xi_{\alpha,l_{\mu}}e_{\mu}^{\otimes}c_{\mu}: \alpha \in \Gamma_{[r]}(n), \alpha: [r] \to [n] \text{ is injective and } \alpha \circ \mathfrak{T}_{\mu} \text{ is standard} \}$

is an \mathbb{F} -basis of the simple left $\mathbb{F}R_n$ -module $\zeta U_{\mu} \subseteq \zeta \otimes^n U$.

As a consequence, if $\mu \vdash r$, we have that

$$\dim(\mathcal{L}_{\mu}) = \dim(\zeta U_{\mu}) = \binom{n}{r} f^{\mu},$$

where f^{μ} is the number of basic μ -tableaux with values in [r] which are standard.

Theorem (André, L. M.)

Let $1 \le r \le n$, $\mu \vdash r$ and let $C(\mathfrak{T}_{\mu})$ be the column stabiliser of \mathfrak{T}_{μ} and $R(\mathfrak{T}_{\mu})$ the column stabiliser of \mathfrak{T}_{μ} . The simple $\mathbb{F}R_n$ -module \mathcal{L}_{μ} is isomorphic to the left ideal $\widehat{\mathcal{L}}_{\mu}$ of $\mathbb{F}R_n$, where

$$\widehat{\mathcal{L}}_{\mu} = \mathbb{F} R_n \widehat{r}_{\mu} \widehat{c}_{\mu}$$

with

$$\widehat{r}_{\mu} = \eta_r r_{\mu}, \ \widehat{c}_{\mu} = \eta_r c_{\mu}, \ \eta_r = \sum_{\substack{X \subseteq \mathbf{n}, \\ |X| = r}} \sum_{\substack{Y \subseteq X}} (-1)^{|X| - |Y|} \epsilon_Y \in \mathbb{F}R_n$$

and $r_{\mu} = \sum_{\sigma \in R(\mathfrak{T}_{\mu})} \sigma$ and $c_{\mu} = \sum_{\sigma \in C(\mathfrak{T}_{\mu})} sgn(\sigma)\sigma$.

From Tableaux to Partial Tableaux

In 2002, C. Grood exhibited a full set of simple $\mathbb{C}R_n$ -modules which are analogues of Specht modules for the symmetric group S_n . Her work relies on the notion of μ_r^n -tableaux.

Let $1 \le r \le n$ and let $\mu \vdash r$. A μ_r^n -tableau is the Young diagram of μ filled with *r* distinct entries from the set $[n] = \{1, 2, ..., n\}$.

Example

For example, if n = 12 and $\mu = (6) \vdash 6 = r$, then

is a μ_{12}^6 -tableau. Clearly, if $\alpha = (2, 1, 3, 7, 5, 9) \in \Gamma_{[6]}(12)$, this is precisely $\alpha \circ \mathfrak{T}_{\mu}$.

From Tableaux to Partial Tableaux

Theorem (André, L. M.)

Let $1 \le r \le n$ and $\mu \vdash r$. Let R^{μ} be the corresponding analogue of the Specht module for S_n in Grood's sense. Then

$$\mathbb{F}R_n\widehat{c}_{\mu}\widehat{r}_{\mu}\cong R^{\mu}.$$

Hence, R^{μ} is dual to the left ideal $\hat{\mathcal{L}}_{\mu} = \mathbb{F}R_n \hat{r}_{\mu} \hat{c}_{\mu}$ of $\mathbb{F}R_n$.