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Non-commutative probability



Let G be a finite, simple, rooted graph, with set of vertices {v1, v2, . . . , vℓ}.

For every n ≥ 0, consider

mn(G) := # closed walks of length n starting at the root.

Let v1 be the root. If Adj(G) denotes the adjacency matrix of G, then

(Adj(G)1,1)n = mn(G).

In the space of adjacency matrices, this defines a random variable
A := Adj(G) for which

E[An] := mn(G).

Related to the study of “growing graphs”, there are binary operations
G1 ∗G2 on rooted graphs for which we can look at

E[(Adj(G1 ∗ G2))
n].



Cartesian product ↔ (classical) independence

The adjacency matrix of the Cartesian product G1 × G2 is

Adj(G1 × G2) = Adj(G1)⊗ I2 + I1 ⊗ Adj(G2).

The random variables Adj(G1)⊗ I2 and I1 ⊗ Adj(G2) are independent, so

E
[
Adj(G1 × G2)

n
]
= E

[
(Adj(G1)⊗ I2 + I1 ⊗ Adj(G2))

n
]

=

n∑
k=0

(
n

k

)
E
[
(Adj(G1)⊗ I2)

k
]
E
[
(I1 ⊗ Adj(G2))

n−k
]



Star product ↔ “Boolean” independence

The adjacency matrix of the Cartesian product G1 ⋆ G2 is

Adj(G1 ⋆ G2) = Adj(G1)⊗ P2 + P1 ⊗ Adj(G2).

The random variables Adj(G1)⊗ P2 and P1 ⊗ Adj(G2) are not independent.
Still, there is a combinatorial way to calculate the expectation of
non-commutative monomials:

E[GESSEL] = E[G]E[E]E[S2]E[E]E[L] = E[G]E[E]2 E[S2]E[L].



Comb product ↔ “monotone” independence

The adjacency matrix of the Cartesian product G1 ⋆ G2 is

Adj(G1 ⋆ G2) = Adj(G1)⊗ P2 + I1 ⊗ Adj(G2).

The random variables Adj(G1)⊗ P2 and I1 ⊗ Adj(G2) are not independent.
Still, there is a combinatorial way to calculate the expectation of
non-commutative monomials:

E[GESIRASEL] = E[S]E[R]E[S]E[I]E[GEAEL].



The field of Free Probability was
introduced by Dan-Virgil
Voiculescu in the 1980s.
Investigate the notion of
“freeness" in analogy to the
concept of “independence” from
(classical) probability theory.
A combinatorial theory of
freeness was developed by Nica
and Speicher in the 1990s.
Voiculescu discovered freeness
also asymptotically for many
kinds of random matrices (1991).

Dan Voiculescu , 2015



Commutative vs non-commutative

Voiculescu: “’Free probability is a probability theory adapted to dealing with
variables which have the highest degree of noncommutativity. Failure of
commutativity may occur in many ways.”

Quantum mechanics’ commutation relation: XY − YX = I.
Free product of groups.
Independent random matrices tend to be asymptotically freely
independent, under certain conditions.



Classical probability space

Andrey Kolmogorov

A probability space (Kolmogorov,
1930’s) is given by the following
data:

a set Ω (sample space),
a collection F (event space),
P : F → [0, 1] (probability
function),

satisfying several axioms.

Expectation: for every bounded random variable X ∈ L∞(Ω,F ,P), let

E[X] :=
∫
Ω

X(ω)dP(ω).

Intuition: replace (L∞(Ω,F ,P),E) by a more general pair (A, φ).



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A→ C is a linear functional such that φ(1A) = 1.

Examples: (L∞(Ω,F ,P),E),
(
Matn(C), 1

n
Tr
)
, (Matn(Ω), φ),

φ(a) :=

∫
Ω

tr(a(ω))dP(ω)
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Non-commutative probability space

Random variable: a ∈ A

Moments: (φ(a), φ(a2), φ(a3), . . . )←→ µ : C[x]→ C, µ(ti) := φ(ai)

Join distribution of (a1, . . . , ak): if 1 ≤ i1, . . . , in ≤ k,

µ : C⟨t1, . . . , tk⟩→ C , µ(ti1 · · · tin) := φ(ai1 · · ·ain)



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A→ C is a linear functional such that φ(1A) = 1.

In a (classical) probability space (Ω,F ,P), the notion of independence
between two random variables X, Y : Ω→ C implies

E(XmYn) = E(Xm)E(Yn).



Free independence

Let (A, φ) be a non-commutative probability space.

Consider {Ai}i∈I unital subalgebras of A.

The family {Ai}i∈I of algebras is freely independent if for every n ∈ N
and for every choice of (i1, . . . , in) of “different neighbouring indices” (i.e.,
ij−1 ̸= ij ̸= ij+1), we have

φ(a1 · · ·an) = 0,

whenever aj ∈ Aij and φ(aj) = 0, for every 1 ≤ j ≤ n.

A family (ai)i∈I of non-commutative random variables is called free if the
family of subalgebras (⟨1A, ai⟩)i∈I is freely independent.

Sets of variables in (A, φ) are free if the algebras they generate are free.

It looks artificial...
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Free independence

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let a, b ∈ A free n.c.r.v.

What is φ(ab)? φ((a−φ(a)1A)(b−φ(b)1A)) = 0, so

0 = φ((a−φ(a) · 1A)(b−φ(b) · 1A))
= φ(ab) −φ(a · 1A)φ(b) −φ(a)φ(1A · b) +φ(a)φ(b)φ(1A)
= φ(ab) −φ(a)φ(b) −φ(a)φ(b) +φ(a)φ(b)

Therefore, φ(ab) = φ(a)φ(b).
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Free independence

Free independence provides a rule to compute mixed moments.

Let (A, φ) be a n.c.p.s. and let {a1, a2}, {b} ⊆ A free n.c.r.v.

What is φ(a1ba2)? From

φ
(
(a1 −φ(a1) · 1A)(b−φ(b) · 1A)(a2 −φ(a2) · 1A)

)
= 0,

we obtains
φ(a1ba2) = φ(a1a2)φ(b).
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Free independence

Free independence provides a rule to compute mixed moments.

If {a1, a2}, {b1, b2} ⊆ A free n.c.r.v, what is φ(abab)?

φ(a1b1a2b2) =φ(a1a2)φ(b1)φ(b2) +φ(a1)φ(a2)φ(b1b2)

−φ(a1)φ(a2)φ(b1)φ(b2).

⇒ φ(abab) = φ(a2)φ(b)2 +φ(a)2φ(b2) −φ(a)2φ(b)2.



Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann
algebras of free products of groups.

F(G) := {α : G→ C : |{g ∈ G |α(g) ̸= 0}| <∞},

(α ∗ β)(g) :=
∑
h∈G

α(gh−1)β(h),

φG : F(G)→ C , α 7→ α(e).

F(G) is linearly generated by {δg : g ∈ G}, where

δg(h) =

{
1, h = g

0, h ̸= g



Freeness from the free product

Theorem
If {Gi}i∈I subgroups of G are algebraically free, then {F(Gi)}i∈I ⊆ F(G)
are freely independent in (F(G), φG).

Sketch of the proof:
Consider (i1, . . . , in) ∈ In such that i1 ̸= i2 ̸= · · · ≠ in, and
αk ∈ F(Gik) such that αk(e) = 0, for 1 ≤ k ≤ n.

φ(α1 ∗ · · · ∗ αn) = (α1 ∗ · · · ∗ αn)(e)

=
∑

g1,...,gn∈G
g1···gn=e

α1(g1) · · ·αn(gn).

Since Gi1, . . . , Gin are algebraically free. there exists k such that gk = e,
leading to φ(α1 ∗ · · · ∗ αn).



Non-commutative independences

Let (A, φ) be a non-commutative probability space. Consider {Ai}i∈I
unital subalgebras of A. Let a1 ∈ Ai1, . . . , an ∈ Ain such that ij ̸= ij+1.

The family {Ai}i∈I is
freely independent if

φ(a1 · · ·an) = 0,

when φ(aj) = 0, for all 1 ≤ j ≤ n;
boolean independent if

φ(a1 · · ·an) = φ(a1) · · ·φ(an);

monotone independent if

φ(a1 · · ·an) = φ(aj)φ(a1 · · ·aj−1 · aj+1 · · ·an),

Other notions: conditional monotone, cyclic monotone, . . .



Back to the examples (free case)

φ(ab) =φ(a)φ(b)

φ(a1ba2) =φ(a1a2)φ(b)

φ(a1b1a2b2) =φ(a1a2)φ(b1)φ(b2) +φ(a1)φ(a2)φ(b1b2)

−φ(a1)φ(a2)φ(b1)φ(b2)

φ(a1b1cb2a2da3) = φ(a1a2a3)φ(b1b2)φ(c)φ(d).

“Non-crossing moments” factorize; “crossing moments” don’t factorize.



Back to (A, φ)

Let n ∈ N and a1, a2, . . . , an ∈ A.

Consider {fn : An → C |n ≥ 0} a family of multilinear functionals.

Let π = {B1, . . . , Bk} ∈ NC(n). We define

fπ(a1, . . . , an) :=
∏
B∈π

B={b1<b2<···<br}

f|B|(b1, b2, . . . , br).



Back to (A, φ)

If π = {{1}, {2, 3,4, 5}, {6}, {7, 8, 9}}, then

fπ(a1, . . . , a9) = f1(a1) f4(a2, a3, a4, a5) f1(a6) f3(a7, a8, a9).



Moment to cumulant relations in (A, φ)

Consider the multilinear functionals

{rn : An → C}n≥1
( Free cumulants )

,
{bn : An → C}n≥1

( Boolean cumulants )
,

{hn : An → C}n≥1
( Monotone cumulants )

defined by

φ(a1 · · ·an) =
∑

π∈NC(n)

rπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NCInt(n)

bπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NC(n)

1
τ(π)!

hπ(a1, . . . , an).



Hopf algebras



Saj-nicole A. Joni and
Gian-Carlo Rota (1932-1999)

Classical Hopf algebras: Borel,
Cartier, Hopf (1940-1950).
Motivation: algebraic topology,
homological algebra, study of
loop spaces, algebras of
operations (Steenrod), homology
of Eilenberg–MacLane spaces.

Joni-Rota: “A great many
problems in combinatorics are
concerned in assembling, or
disassembling, large objects out
of pieces of prescribed shape, as
in the familiar board puzzles. ”



Hopf algebras

A Hopf algebra (H,m, ι, ∆, ε, S) consists of
an associative algebra (H,m, ι);
a coassociative coalgebra (H,∆, ε);
compatibility between the product and the coproduct;
the identity map id : H→ H is invertible in the convolution algebra
(End(H), ∗), where

f ∗ g := ∆ ◦ (f⊗ g) ◦m.

The inverse of id, denoted by S, is called the antipode of H.
Finding an optimal formula for the antipode is not easy. It provides a rich
information about hidden combinatorial structures on H.



Double tensor Hopf algebra

Double tensor Hopf algebra T(T+(V)): non-commutative and
non-cocommutative Hopf algebra, with graduation

T(T+(V))n :=
⊕

n1+···+nk=n

V⊗n1 ⊗ · · · ⊗ V⊗nk.

Elements in T(T+(V))n are written as (linear combinations of) words with
bars

w1| · · · |wk,

where wi ∈ V⊗ni for some n1 + · · ·+ nk = n. We call this elements
words on (non-empty) words.



Double tensor Hopf algebra

Let V be a K-vector space.

If k ≥ 0, we write elementary tensors from V⊗k as words, u1u2 · · ·uk,
with ui ∈ V . We called the K-vector spaces

T(V) :=
⊕
k≥ 0

V⊗k , T+(V) :=
⊕
k≥ 1

V⊗k

the tensor module and reduced tensor module, respectively, generated
by V .



Product rule: if u ∈ T(T+(V))n and v ∈m, then

u|v := u1| · · · |ur|v1| · · · |vs ∈ T(T+(V))n+m.

Coproduct rule: given a word u = u1 · · ·un ∈ V⊗n and
A = {a1, . . . , ak} ⊂ N, we write uA := ua1 · · ·uak

.
Consider the map ∆ : T+(V)→ T(V)⊗ T(T+(V)) given by

∆(u) : =
∑

A⊆ [n]

uA ⊗ uK(A,[n])

=
∑

A⊆ [n]

uA ⊗ uK1 | · · · |uKr.

Finally, we extend the map ∆ multiplicatively to all of T(T+(V)), by
setting

∆(w1| · · · |wk) := ∆(w1) · · ·∆(wk).



For example, we have

∆(abc) = 1⊗abc+a⊗bc+b⊗ a|c+c⊗ab+ab⊗c+ac⊗b+bc⊗a+1⊗abc;

∆(ira|gessel) = · · ·+ r|sl⊗ ia|gese+ · · ·



For example, we have

∆(abc) = 1⊗abc+a⊗bc+b⊗ a|c+c⊗ab+ab⊗c+ac⊗b+bc⊗a+1⊗abc;

∆(ira|gessel) = · · ·+ r|sl⊗ ia|ge|se+ · · ·



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.

The map φ is then extended multiplicatively to a map
Φ : T(T+(A))→ K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).
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Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let ρ, κ, β ∈ g(A) the infinitesimal characters solving

Φ = exp∗(ρ),

Φ = ϵ+ κ ≺ Φ

and
Φ = ϵ+Φ ≻ β.

Then, ρ, κ, β correspond to the monotone cumulants, free cumulants
and boolean cumulants, respectively.

For any word u = a1 · · ·an ∈ A⊗n, we have

hn(a1, . . . , an) = ρ(u), rn(a1, . . . , an) = κ(u), bn(a1, . . . , an) = β(u).



Characters

The set of group-like elements G(V) ⊂ LV forms a group with respect to
the convolution ∗. The inverse of an element Φ ∈ G(V) is

Φ−1 = Φ ◦ S.

The set g(V) ⊂ LV of infinitesimal characters forms a Lie algebra with
Lie bracket defined by the commutator in LV .



Inversion formulas

Proposition (Ebrahimi-Fard, Patras (2018))

The free cumulant κ and boolean cumulant β satisfy the relations

κ = (Φ− ϵ) ≺ Φ−1 and β = Φ−1 ≻ (Φ− ϵ).

"We can look at κ and β through the inversion formula Φ−1 = Φ ◦ S.”



Antipode formula for the double tensor algebra

The Takeuchi’s formula for the antipode

S(w) =
∑
k≥ 0

(−1)k |(k−1) ◦ (id − ιε)⊗k ◦ ∆(k−1)(w),

where |−1 := ι and ∆(−1) := ε, may contains several cancellations
(S(a|bcd) contains 75 terms, which reduces to 11 after cancellation).

The following result helps to efficiently determines the antipode of
T(T+(V)).



Theorem (Celestino - V.)

Let w = u1u2 · · ·un ∈ V⊗n. The action of the antipode over u is given
by the following cancellation-free and grouping-free formula:

S(w) =
∑

t∈Sch(n)

(−1)i(t)wt,

where Sch(n) is the set of Schroder trees with n+ 1 leaves.

wt = 156|23|4|7|8910



Proposition (Josuat-Vergès, Menous, Novelli,Thibon /Arizmendi, Celestino
/Celestino - V.)

Let (A, φ) be a non-commutative probability space and {kn}n≥1 be its
free cumulants. Then, for any a1, . . . , an ∈ (A we have:

kn(a1, . . . , an) =
∑

t∈PSch(n)

(−1)i(t)−1φπ(t)(a1, . . . , an).

If {bn}n≥1 are the Boolean cumulants, then

bn(a1, . . . , an) =
∑

t∈BSch(n)

(−1)i(t)−1φπ(t)(a1, . . . , an).



Species



André Joyal, Alain Connes, Olivia Caramello
and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species
was introduced by André Joyal in
1980. Species can be seen as a
categorification of generating
functions. It provides a categorical
foundation for enumerative
combinatorics.



Species

A set-species is a functor

p : set× → set.

A species is a functor
p : set× → Vec.

The Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ].

The category of species is symmetric monoidal.
We can speak of monoids, comonoids, ..., in species.

h[S]⊗ h[T ]
µS,T // h[I] h[I]

∆S,T // h[S]⊗ h[T ].
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Examples of species

Species E of sets:
E[I] := K{∗I}.

Species En of n-sets:

En[I] :=

{
K{∗I}, if |I| = n;

(0), if |I| ̸= n.

Species X := E1 of sets of one element.
Species Π of partitions.
Species L of linear orders.
Species G of graphs:

G[I] := K{ finite graphs with vertices in I }.



Operations on species

Sum of species
(p + q)[I] := p[I]⊕ q[I].

Product of species (Cauchy product)

(p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T ].



Operations on species

Composition of species

(p ◦ q)[I] :=
⊕

π∈Π[I]

p[π]⊗
⊗
B∈π

q[B].



Generating function of a species

To every species p it is associated its exponential generating function:

p(x) :=
∑
n≥0

dimK p[n]
xn

n!
.

We have:
(p + q)(x) = p(x) + q(x),

(p · q)(x) = p(x) · q(x),

(p ◦ q)(x) = p(x) ◦ q(x).

For the last identity, q[∅] := (0).



Cumulants from Hopf monoids (Aguiar-Mahajan)

Let h be a species.
The n-th cumulant of h is

kn(h) =
∑
π⊢I

µ({I}, π) dimk h(π),

where h(π) :=
⊗

B∈π h[B].



Species Moments Cumulants Distribution
L linear orders n! (n− 1)! Exponential of par. 1
E sets 1 δn,1 Dirac measure δ = 1
Π partitions Belln 1 Poisson of par. 1
Σ ordered partitions OrdBelln

∑
k≥1

kn/2k Geometric of par. 1

From the formula

kn(h) =
∑
π⊢I

µ({I}, π) dimk h(π).

it is not evident that the integers kn(h) are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid h, the
dimension of its primitive part is

dimkP(h)[I] = k|I|(h).
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Free and boolean cumulants of h

The free cumulants of h are the integers cn(h) defined by

cn(h) =
∑

π∈NC(n)

µ({I}, π) dimk h(π).

The boolean cumulants of h are the integers bn(h) defined by

bn(h) =
∑

π∈NCInt(n)

µ({I}, π) dimk h(π).

Question: are these integers non-negative? What conditions on h?
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The cumulant-to-moment formulas come from different notions of
“connected structures” of combinatorial objects.

Theorem (V. - 2024)

Let p be a positive species.
if h = E ◦ p, then, k|I|(h) = dimk p[I];
if h = E ◦NC p, then, c|I|(h) = dimk p[I];
if h = E ⋄ p, then, b|I|(h) = dimk p[I].



Work in progress

An algebraic model for several notions of non-commutative
independences was presented by Ebrahimi-Fard and Patras. It involves
infinitesimal characters on a certain Hopf algebra.
Understanding this approach in terms of species and algebraic
structures in the monoidal category of species (monoids, comonoids, lie
monoids, bimonoids) might give a better insight of the combinatorics
behind moment-to-cumulant formulae.
Universality of E ◦NC p (analogue to the free and cofree monoid in
species).
Operadic notion using non-crossing composition (rigid and classic
species).
What’s next?



Geometrical notion of independence(s)?

Polytope Hopf monoid Independence
Permutahedron Π Classical
Associahedron F Monotone
Cyclohedron C Conditional monotone
...

...
...

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner
(ANR-FWF International Cooperation Project PAGCAP - Beyond
Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and
Probability).



¡Gracias!



Save the date!
“Recent Perspectives on Non-crossing Partitions through Algebra,
Combinatorics, and Probability”, Feb. 17, 2025 — Feb. 21, 2025.


