

Schröder trees, antipode formulas and non-commutative probability

Yannic VARGAS

Séminaire Lotharingien de Combinatoire 91 Salobreña, 2024

Purpose of this talk: give a survey of some links between notions in *non-commutative probability*, algebra and combinatorics.

"From the Earth to the Moon: A Direct Route in 97 Hours, 20 Minutes", by Jules Verne (1865)

Adrián Celestino

Content

- Non-commutative probability
- Hopf algebras and the Ebrahimi-Fard-Patras construction
- Applications
- Future work

Part of the talk is based on joint work with Adrián Celestino: "Schröder trees, antipode formulas and non-commutative probability" (arXiv:2311.07824).

Non-commutative probability

Let G be a finite, simple, rooted graph, with set of vertices $\{v_1, v_2, \ldots, v_\ell\}$.

For every $n \ge 0$, consider

 $m_n(G) := \#$ closed walks of length n starting at the root.

Let v_1 be the root. If Adj(G) denotes the adjacency matrix of G, then

 $(\operatorname{Adj}(G)_{1,1})^n = \mathfrak{m}_n(G).$

In the space of adjacency matrices, this defines a random variable $A:=\mathsf{Adj}(\mathsf{G})$ for which

$$\mathbb{E}[A^n] := \mathfrak{m}_n(G).$$

Related to the study of "growing graphs", there are binary operations $G_1\ast G_2$ on rooted graphs for which we can look at

 $\mathbb{E}[(\mathsf{Adj}(\mathsf{G}_1\ast\mathsf{G}_2))^n]\textbf{.}$

Cartesian product \leftrightarrow (classical) independence

The adjacency matrix of the Cartesian product $\mathsf{G}_1\times\mathsf{G}_2$ is $\mathsf{Adj}(\mathsf{G}_1\times\mathsf{G}_2)=\mathsf{Adj}(\mathsf{G}_1)\otimes \mathrm{I}_2+\mathrm{I}_1\otimes\mathsf{Adj}(\mathsf{G}_2).$

The random variables $\mathsf{Adj}(\mathsf{G}_1) \otimes I_2$ and $I_1 \otimes \mathsf{Adj}(\mathsf{G}_2)$ are independent, so $\mathbb{E}\Big[\mathsf{Adj}(\mathsf{G}_1 \times \mathsf{G}_2)^n\Big] = \mathbb{E}\Big[(\mathsf{Adj}(\mathsf{G}_1) \otimes I_2 + I_1 \otimes \mathsf{Adj}(\mathsf{G}_2))^n\Big]$ $= \sum_{k=0}^n \binom{n}{k} \mathbb{E}\Big[(\mathsf{Adj}(\mathsf{G}_1) \otimes I_2)^k\Big] \mathbb{E}\Big[(I_1 \otimes \mathsf{Adj}(\mathsf{G}_2))^{n-k}\Big]$ Star product \leftrightarrow "Boolean" independence

The adjacency matrix of the Cartesian product $\mathsf{G}_1\star\mathsf{G}_2$ is

$$\mathsf{Adj}(\mathsf{G}_1\star\mathsf{G}_2)=\mathsf{Adj}(\mathsf{G}_1)\otimes\mathsf{P}_2+\mathsf{P}_1\otimes\mathsf{Adj}(\mathsf{G}_2).$$

The random variables $Adj(G_1) \otimes P_2$ and $P_1 \otimes Adj(G_2)$ are not independent. Still, there is a combinatorial way to calculate the expectation of non-commutative monomials:

 $\mathbb{E}[\mathsf{GESSEL}] = \mathbb{E}[\mathsf{G}] \mathbb{E}[\mathsf{E}] \mathbb{E}[\mathsf{S}^2] \mathbb{E}[\mathsf{E}] \mathbb{E}[\mathsf{L}] = \mathbb{E}[\mathsf{G}] \mathbb{E}[\mathsf{E}]^2 \mathbb{E}[\mathsf{S}^2] \mathbb{E}[\mathsf{L}].$

Comb product \leftrightarrow "monotone" independence

The adjacency matrix of the Cartesian product $\mathsf{G}_1\star\mathsf{G}_2$ is

$$\mathsf{Adj}(\mathsf{G}_1\star\mathsf{G}_2)=\mathsf{Adj}(\mathsf{G}_1)\otimes\mathsf{P}_2+\mathsf{I}_1\otimes\mathsf{Adj}(\mathsf{G}_2).$$

The random variables $Adj(G_1) \otimes P_2$ and $I_1 \otimes Adj(G_2)$ are not independent. Still, there is a combinatorial way to calculate the expectation of non-commutative monomials:

 $\mathbb{E}[\mathsf{GESIRASEL}] = \mathbb{E}[S] \mathbb{E}[R] \mathbb{E}[S] \mathbb{E}[I] \mathbb{E}[\mathsf{GEAEL}].$

- The field of *Free Probability* was introduced by Dan-Virgil Voiculescu in the 1980s.
- Investigate the notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory.
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s.
- Voiculescu discovered freeness also asymptotically for many kinds of random matrices (1991).

Dan Voiculescu , 2015

Commutative vs non-commutative

Voiculescu: "Free probability is a probability theory adapted to dealing with variables which have the highest degree of noncommutativity. *Failure of commutativity may occur in many ways*."

- Quantum mechanics' commutation relation: XY YX = I.
- Free product of groups.
- Independent random matrices tend to be asymptotically freely independent, under certain conditions.

Classical probability space

A **probability space** (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- a collection \mathcal{F} (event space),
- $\blacksquare \ \mathbb{P}: \mathcal{F} \to [0,1] \ (\text{probability function}),$

Andrey Kolmogorov

satisfying several axioms.

Expectation: for every bounded random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega).$$

Intuition: replace $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$ by a more general pair (\mathcal{A}, ϕ) .

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(Mat_n(\mathbb{C}), \frac{1}{n}Tr)$, $(Mat_n(\Omega), \phi)$,

$$\varphi(\mathfrak{a}) := \int_{\Omega} \operatorname{tr}(\mathfrak{a}(\omega)) d\mathbb{P}(\omega)$$

Random variable: $a \in \mathcal{A}$ Moments: $(\phi(a), \phi(a^2), \phi(a^3), \ldots) \longleftrightarrow \mu : \mathbb{C}[x] \to \mathbb{C}, \mu(t^i) := \phi(a^i)$ Join distribution of (a_1, \ldots, a_k) : if $1 \le i_1, \ldots, i_n \le k$,

 $\mu : \mathbb{C} \langle t_1, \dots, t_k \rangle \to \mathbb{C} \quad , \quad \mu(t_{i_1} \cdots t_{i_n}) \coloneqq \phi(a_{i_1} \cdots a_{i_n})$

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y : \Omega \to \mathbb{C}$ implies

 $\mathbb{E}(X^m Y^n) = \mathbb{E}(X^m) \mathbb{E}(Y^n).$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

 $\text{Consider } \{\mathcal{A}_i\}_{i\in I} \text{ unital subalgebras of } \mathcal{A}.$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{\mathfrak{i}_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{\mathfrak{i}_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

A family $(a_i)_{i \in I}$ of non-commutative random variables is called **free** if the family of subalgebras $(\langle 1_A, a_i \rangle)_{i \in I}$ is freely independent.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider $\{A_i\}_{i \in I}$ unital subalgebras of A.

The family $\{\mathcal{A}_i\}_{i\in I}$ of algebras is **freely independent** if for every $n \in \mathbb{N}$ and for every choice of (i_1, \ldots, i_n) of "different neighbouring indices" (i.e., $i_{j-1} \neq i_j \neq i_{j+1}$), we have

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

whenever $a_j \in \mathcal{A}_{i_j}$ and $\phi(a_j)=0,$ for every $1 \leq j \leq n.$

A family $(a_i)_{i \in I}$ of non-commutative random variables is called **free** if the family of subalgebras $(\langle 1_A, a_i \rangle)_{i \in I}$ is freely independent.

Sets of variables in (\mathcal{A}, ϕ) are free if the algebras they generate are free.

It looks artificial...

Free independence provides a rule to compute mixed moments.

Free independence provides a rule to compute mixed moments.

Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v. What is $\phi(ab)$?

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v. What is $\phi(ab)$? $\phi((a - \phi(a)\mathbf{1}_{\mathcal{A}})(b - \phi(b)\mathbf{1}_{\mathcal{A}})) = 0$, so

 $\label{eq:computer} \mbox{Free independence provides a rule to compute mixed moments.}$ Let (\mathcal{A},ϕ) be a n.c.p.s. and let $a,b\in\mathcal{A}$ free n.c.r.v.

What is $\phi(ab)?\;\phi((a-\phi(a)\mathbf{1}_{\mathcal{A}})(b-\phi(b)\mathbf{1}_{\mathcal{A}}))=0,$ so

$$D = \varphi((a - \varphi(a) \cdot \mathbf{1}_{\mathcal{A}})(b - \varphi(b) \cdot \mathbf{1}_{\mathcal{A}})))$$

= $\varphi(ab) - \varphi(a \cdot \mathbf{1}_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(\mathbf{1}_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(\mathbf{1}_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Free independence provides a rule to compute mixed moments.

Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $a, b \in \mathcal{A}$ free n.c.r.v.

What is $\phi(ab)?\;\phi((a-\phi(a)\mathbf{1}_{\mathcal{A}})(b-\phi(b)\mathbf{1}_{\mathcal{A}}))=0,$ so

$$D = \varphi((a - \varphi(a) \cdot \mathbf{1}_{\mathcal{A}})(b - \varphi(b) \cdot \mathbf{1}_{\mathcal{A}})))$$

= $\varphi(ab) - \varphi(a \cdot \mathbf{1}_{\mathcal{A}})\varphi(b) - \varphi(a)\varphi(\mathbf{1}_{\mathcal{A}} \cdot b) + \varphi(a)\varphi(b)\varphi(\mathbf{1}_{\mathcal{A}})$
= $\varphi(ab) - \varphi(a)\varphi(b) - \varphi(a)\varphi(b) + \varphi(a)\varphi(b)$

Therefore, $\varphi(ab) = \varphi(a)\varphi(b)$.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v.

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1 b a_2)$?

Free independence provides a rule to compute mixed moments. Let (\mathcal{A}, ϕ) be a n.c.p.s. and let $\{a_1, a_2\}, \{b\} \subseteq \mathcal{A}$ free n.c.r.v. What is $\phi(a_1ba_2)$? From

$$\varphi\Big((\mathfrak{a}_1-\phi(\mathfrak{a}_1)\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{b}-\phi(\mathfrak{b})\cdot \mathbf{1}_{\mathcal{A}})(\mathfrak{a}_2-\phi(\mathfrak{a}_2)\cdot \mathbf{1}_{\mathcal{A}})\Big)=0,$$

we obtains

$$\varphi(\mathfrak{a}_1\mathfrak{b}\mathfrak{a}_2)=\varphi(\mathfrak{a}_1\mathfrak{a}_2)\varphi(\mathfrak{b}).$$

Free independence provides a rule to compute mixed moments.

If $\{a_1, a_2\}, \{b_1, b_2\} \subseteq \mathcal{A}$ free n.c.r.v, what is $\varphi(abab)$?

$$\begin{split} \phi(a_1b_1a_2b_2) = & \phi(a_1a_2)\phi(b_1)\phi(b_2) + \phi(a_1)\phi(a_2)\phi(b_1b_2) \\ & - \phi(a_1)\phi(a_2)\phi(b_1)\phi(b_2). \end{split}$$

 $\Rightarrow \varphi(abab) = \varphi(a^2)\varphi(b)^2 + \varphi(a)^2\varphi(b^2) - \varphi(a)^2\varphi(b)^2.$

Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann algebras of free products of groups.

$$\begin{split} \mathsf{F}(\mathsf{G}) &:= \{ \alpha : \mathsf{G} \to \mathbb{C} \, : \, |\{ \mathsf{g} \in \mathsf{G} \, | \, \alpha(\mathsf{g}) \neq 0 \}| < \infty \}, \\ (\alpha * \beta)(\mathsf{g}) &:= \sum_{\mathsf{h} \in \mathsf{G}} \alpha(\mathsf{g}\mathsf{h}^{-1})\beta(\mathsf{h}), \end{split}$$

$$\varphi_{\mathsf{G}}:\mathsf{F}(\mathsf{G})\to\mathbb{C}\qquad,\qquad \alpha\mapsto\alpha(e).$$

F(G) is linearly generated by $\{\delta_g:g\in G\}$, where

$$\delta_g(h) = \begin{cases} 1, & h = g \\ 0, & h \neq g \end{cases}$$

Freeness from the free product

Theorem

If $\{G_i\}_{i \in I}$ subgroups of G are algebraically free, then $\{F(G_i)\}_{i \in I} \subseteq F(G)$ are freely independent in $(F(G), \phi_G)$.

Sketch of the proof: Consider $(i_1, \ldots, i_n) \in I^n$ such that $i_1 \neq i_2 \neq \cdots \neq i_n$, and $\alpha_k \in F(G_{i_k})$ such that $\alpha_k(e) = 0$, for $1 \leq k \leq n$.

$$\varphi(\alpha_1 * \cdots * \alpha_n) = (\alpha_1 * \cdots * \alpha_n)(e)$$

= $\sum_{\substack{g_1, \dots, g_n \in G \\ g_1 \cdots g_n = e}} \alpha_1(g_1) \cdots \alpha_n(g_n).$

Since G_{i_1}, \ldots, G_{i_n} are algebraically free. there exists k such that $g_k = e$, leading to $\varphi(\alpha_1 * \cdots * \alpha_n)$.

Non-commutative independences

Let (\mathcal{A}, ϕ) be a non-commutative probability space. Consider $\{\mathcal{A}_i\}_{i \in I}$ unital subalgebras of \mathcal{A} . Let $a_1 \in \mathcal{A}_{i_1}, \ldots, a_n \in \mathcal{A}_{i_n}$ such that $i_j \neq i_{j+1}$.

The family $\{\mathcal{A}_i\}_{i\in I}$ is

freely independent if

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

when $\phi(a_j)=0,$ for all $1\leq j\leq n;$

boolean independent if

$$\phi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=\phi(\mathfrak{a}_1)\cdots\phi(\mathfrak{a}_n);$$

monotone independent if

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=\varphi(\mathfrak{a}_j)\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_{j-1}\cdot\mathfrak{a}_{j+1}\cdots\mathfrak{a}_n),$$

Other notions: conditional monotone, cyclic monotone, ...

Back to the examples (free case)

$$\begin{split} \phi(ab) &= \phi(a)\phi(b) \\ \phi(a_1ba_2) &= \phi(a_1a_2)\phi(b) \\ \phi(a_1b_1a_2b_2) &= \phi(a_1a_2)\phi(b_1)\phi(b_2) + \phi(a_1)\phi(a_2)\phi(b_1b_2) \\ &- \phi(a_1)\phi(a_2)\phi(b_1)\phi(b_2) \\ \phi(a_1b_1cb_2a_2da_3) &= \phi(a_1a_2a_3)\phi(b_1b_2)\phi(c)\phi(d). \end{split}$$

"Non-crossing moments" factorize; "crossing moments" don't factorize.

Back to (\mathcal{A}, ϕ)

Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathcal{A}$.

Consider $\{f_n : \mathcal{A}^n \to \mathbb{C} \,|\, n \ge 0\}$ a family of multilinear functionals.

Let $\pi = \{B_1, \dots, B_k\} \in \mathsf{NC}(n)$. We define $f_{\pi}(a_1, \dots, a_n) := \prod_{\substack{B \in \pi \\ B = \{b_1 < b_2 < \dots < b_r\}}} f_{|B|}(b_1, b_2, \dots, b_r).$

Back to (\mathcal{A},ϕ)

If $\pi = \{\{1\}, \{2, 3, 4, 5\}, \{6\}, \{7, 8, 9\}\}$, then

 $f_{\pi}(a_1,\ldots,a_9) = f_1(a_1) f_4(a_2,a_3,a_4,a_5) f_1(a_6) f_3(a_7,a_8,a_9).$

Moment to cumulant relations in (\mathcal{A}, ϕ)

Consider the multilinear functionals

$$\begin{array}{ll} \{r_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{b_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{h_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} \\ (\text{ Free cumulants }) & \text{'} & (\text{ Boolean cumulants }) & \text{'} & (\text{ Monotone cumulants }) \end{array}$$

defined by

$$\begin{split} \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} r_{\pi}(a_1, \dots, a_n), \\ \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} b_{\pi}(a_1, \dots, a_n), \\ \varphi(a_1 \cdots a_n) &= \sum_{\pi \in \mathsf{NC}(n)} \frac{1}{\tau(\pi)!} h_{\pi}(a_1, \dots, a_n). \end{split}$$

Hopf algebras

Saj-nicole A. Joni and Gian-Carlo Rota (1932-1999)

- Classical Hopf algebras: Borel, Cartier, Hopf (1940-1950).
- Motivation: algebraic topology, homological algebra, study of loop spaces, algebras of operations (Steenrod), homology of Eilenberg–MacLane spaces.

Joni-Rota: "A great many problems in combinatorics are concerned in assembling, or disassembling, large objects out of pieces of prescribed shape, as in the familiar board puzzles."

Hopf algebras

- A Hopf algebra $(H,m,\iota,\Delta,\epsilon,S)$ consists of
 - an associative algebra (H, m, ι) ;
 - a coassociative coalgebra (H, Δ, ε) ;
 - compatibility between the product and the coproduct;
 - the identity map id : $H \to H$ is invertible in the convolution algebra $(\mathsf{End}(H),*),$ where

$$f \ast g := \Delta \circ (f \otimes g) \circ \mathfrak{m}.$$

The inverse of id, denoted by S, is called *the antipode of* H. Finding an optimal formula for the antipode is not easy. It provides a rich information about hidden combinatorial structures on H.

Double tensor Hopf algebra

Double tensor Hopf algebra $T(T_+(V))$: non-commutative and non-cocommutative Hopf algebra, with graduation

$$\mathsf{T}(\mathsf{T}_+(\mathsf{V}))_n := \bigoplus_{\mathfrak{n}_1 + \dots + \mathfrak{n}_k = \mathfrak{n}} \mathsf{V}^{\otimes \mathfrak{n}_1} \otimes \dots \otimes \mathsf{V}^{\otimes \mathfrak{n}_k}.$$

Elements in $\mathsf{T}(\mathsf{T}_+(V))_n$ are written as (linear combinations of) words with bars

 $w_1 | \cdots | w_k,$

where $w_i \in V^{\otimes n_i}$ for some $n_1 + \cdots + n_k = n$. We call this elements words on (non-empty) words.

Double tensor Hopf algebra

Let V be a $\mathbb K\text{-vector space}.$

If $k\geq 0$, we write elementary tensors from $V^{\otimes k}$ as words, $u_1u_2\cdots u_k$, with $u_i\in V.$ We called the $\mathbb K\text{-vector spaces}$

$$\mathsf{T}(\mathsf{V}) := igoplus_{k \ge 0} \mathsf{V}^{\otimes k} \quad , \quad \mathsf{T}_+(\mathsf{V}) := igoplus_{k \ge 1} \mathsf{V}^{\otimes k}$$

the tensor module and reduced tensor module, respectively, generated by $V\!\!$.

Product rule: if $u \in T(T_+(V))_n$ and $v \in_m$, then

$$\mathfrak{u}|\mathfrak{v}:=\mathfrak{u}_1|\cdots|\mathfrak{u}_r|\mathfrak{v}_1|\cdots|\mathfrak{v}_s\in\mathsf{T}(\mathsf{T}_+(\mathsf{V}))_{\mathfrak{n}+\mathfrak{m}}.$$

• Coproduct rule: given a word $u = u_1 \cdots u_n \in V^{\otimes n}$ and $A = \{a_1, \ldots, a_k\} \subset \mathbb{N}$, we write $u_A := u_{a_1} \cdots u_{a_k}$. Consider the map $\Delta : T_+(V) \to T(V) \otimes T(T_+(V))$ given by

$$\Delta(\mathfrak{u}) := \sum_{A \subseteq [\mathfrak{n}]} \mathfrak{u}_A \otimes \mathfrak{u}_{K(A, [\mathfrak{n}])}$$
$$= \sum_{A \subseteq [\mathfrak{n}]} \mathfrak{u}_A \otimes \mathfrak{u}_{K_1} | \cdots | \mathfrak{u}_{K_r}.$$

Finally, we extend the map Δ multiplicatively to all of $\mathsf{T}(\mathsf{T}_+(V)),$ by setting

$$\Delta(w_1|\cdots|w_k):=\Delta(w_1)\cdots\Delta(w_k).$$

For example, we have

 $\Delta(abc) = 1 \otimes abc + a \otimes bc + b \otimes a | c + c \otimes ab + ab \otimes c + ac \otimes b + bc \otimes a + 1 \otimes abc;$

 $\Delta(\texttt{ira}|\texttt{gessel}) = \dots + r|\texttt{sl} \otimes \texttt{ia}|\texttt{gese} + \dots$

For example, we have

 $\Delta(abc) = 1 \otimes abc + a \otimes bc + b \otimes a | c + c \otimes ab + ab \otimes c + ac \otimes b + bc \otimes a + 1 \otimes abc;$

 $\Delta(\texttt{ira}|\texttt{gessel}) = \dots + \texttt{r}|\texttt{sl} \otimes \texttt{ia}|\texttt{ge}|\texttt{se} + \dots$

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.
- The linear form ϕ is extended to $\mathsf{T}_+(\mathcal{A})$ by defining to all words $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$

$$\varphi(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n):=\varphi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).$$

This is the **multivariate moment** of u.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, ϕ) non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.
- The linear form ϕ is extended to $\mathsf{T}_+(\mathcal{A})$ by defining to all words $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$

$$\varphi(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n):=\varphi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).$$

This is the **multivariate moment** of u. The map φ is then extended multiplicatively to a map $\Phi: T(T_+(\mathcal{A})) \to \mathbb{K}$ with $\Phi(1) := 1$ and

$$\Phi(\mathfrak{u}_1|\cdots|\mathfrak{u}_k):=\varphi(\mathfrak{u}_1)\cdots\varphi(\mathfrak{u}_k).$$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let $\rho,\kappa,\beta\in\mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

 $\Phi = \exp_*(\rho),$

$$\Phi = \varepsilon + \kappa \prec \Phi$$

and

$$\Phi = \epsilon + \Phi \succ \beta.$$

Then, ρ , κ , β correspond to the **monotone cumulants**, free cumulants and boolean cumulants, respectively.

For any word $u=a_1\cdots a_n\in \mathcal{A}^{\otimes n}$, we have

 $h_n(a_1,\ldots,a_n) = \rho(u), r_n(a_1,\ldots,a_n) = \kappa(u), b_n(a_1,\ldots,a_n) = \beta(u).$

Characters

The set of group-like elements $G(V) \subset \mathcal{L}_V$ forms a group with respect to the convolution *. The inverse of an element $\Phi \in G(V)$ is

$$\Phi^{-1}=\Phi\circ S.$$

The set $\mathfrak{g}(V) \subset \mathcal{L}_V$ of infinitesimal characters forms a Lie algebra with Lie bracket defined by the commutator in \mathcal{L}_V .

Inversion formulas

Proposition (Ebrahimi-Fard, Patras (2018))

The free cumulant κ and boolean cumulant β satisfy the relations

$$\kappa = (\Phi - \varepsilon) \prec \Phi^{-1}$$
 and $\beta = \Phi^{-1} \succ (\Phi - \varepsilon)$.

"We can look at κ and β through the inversion formula $\Phi^{-1} = \Phi \circ S."$

Antipode formula for the double tensor algebra

The Takeuchi's formula for the antipode

$$\mathsf{S}(w) = \sum_{k \ge 0} (-1)^k \, |^{(k-1)} \circ (\mathsf{id} - \iota \varepsilon)^{\otimes k} \circ \Delta^{(k-1)}(w),$$

where $|^{-1} := \iota$ and $\Delta^{(-1)} := \varepsilon$, may contains several cancellations (S(a|bcd) contains 75 terms, which reduces to 11 after cancellation).

The following result helps to efficiently determines the antipode of $\mathsf{T}(\mathsf{T}_+(V)).$

Theorem (Celestino - V.)

Let $w = u_1 u_2 \cdots u_n \in V^{\otimes n}$. The action of the antipode over u is given by the following cancellation-free and grouping-free formula:

$$S(w) = \sum_{t \in Sch(n)} (-1)^{i(t)} w_t,$$

where Sch(n) is the set of Schroder trees with n + 1 leaves.

 $w_{\rm t} = 156|23|4|7|8910$

Proposition (Josuat-Vergès, Menous, Novelli, Thibon /Arizmendi, Celestino /Celestino - V.)

Let (\mathcal{A}, ϕ) be a non-commutative probability space and $\{k_n\}_{n \geq 1}$ be its free cumulants. Then, for any $a_1, \ldots, a_n \in (\mathcal{A} \text{ we have:}$

$$k_n(a_1,\ldots,a_n) = \sum_{t \in \mathsf{PSch}(n)} (-1)^{i(t)-1} \phi_{\pi(t)}(a_1,\ldots,a_n).$$

If $\{b_n\}_{n\geq 1}$ are the Boolean cumulants, then

$$b_{n}(\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n})=\sum_{t\in\mathsf{BSch}(n)}(-1)^{\mathfrak{i}(t)-1}\phi_{\pi(t)}(\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}).$$

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015) The theory of *combinatorial species* was introduced by André Joyal in 1980. Species can be seen as a *categorification* of generating functions. It provides a categorical foundation for enumerative combinatorics.

Species

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

Species

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

A species is a functor

$$\mathsf{p}:\mathsf{set}^ imes o \mathsf{Vec}.$$

The Cauchy product of two species p and q is given by

$$(\mathsf{p} \cdot \mathsf{q})[\mathrm{I}] = \bigoplus_{\mathrm{I} = \mathsf{S} \sqcup \mathsf{T}} \mathsf{p}[\mathsf{S}] \otimes \mathsf{q}[\mathsf{T}].$$

Species

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

A species is a functor

$$\mathsf{p}:\mathsf{set}^ imes o \mathsf{Vec}.$$

The Cauchy product of two species p and q is given by

$$(p \cdot q)[I] = \bigoplus_{I=S \sqcup T} p[S] \otimes q[T].$$

The category of species is symmetric monoidal. We can speak of monoids, comonoids, ..., in species.

$$\mathsf{h}[S] \otimes \mathsf{h}[T] \xrightarrow{\mu_{S,T}} \mathsf{h}[I] \qquad \mathsf{h}[I] \xrightarrow{\Delta_{S,T}} \mathsf{h}[S] \otimes \mathsf{h}[T].$$

Examples of species

Species E of sets:

$$\mathsf{E}[\mathrm{I}] := \mathbb{K}\{\ast_{\mathrm{I}}\}.$$

Species E_n of n-sets:

$$\mathsf{E}_{\mathsf{n}}[\mathrm{I}] := \begin{cases} \mathbb{K}\{\ast_{\mathrm{I}}\}, & \text{ if } |\mathrm{I}| = \mathsf{n}; \\ (0), & \text{ if } |\mathrm{I}| \neq \mathsf{n}. \end{cases}$$

- Species $X := E_1$ of sets of one element.
- Species **T** of **partitions**.
- Species L of linear orders.
- Species G of graphs:

 $\mathsf{G}[I]:=\mathbb{K}\{\text{ finite graphs with vertices in }I\,\}.$

Operations on species

Sum of species

 $(\mathsf{p}+\mathsf{q})[I] := \mathsf{p}[I] \oplus \mathsf{q}[I].$

Product of species (Cauchy product)

$$(\mathbf{p} \cdot \mathbf{q})[I] := \bigoplus_{I=S \sqcup T} \mathbf{p}[S] \otimes \mathbf{q}[T].$$

Operations on species

Composition of species

Generating function of a species

To every species **p** it is associated its **exponential generating function**:

$$\mathbf{p}(\mathbf{x}) := \sum_{n \ge 0} \dim_{\mathbb{K}} \mathbf{p}[n] \frac{\mathbf{x}^n}{n!}.$$

We have:

$$(p+q)(x) = p(x) + q(x),$$

$$(p \cdot q)(x) = p(x) \cdot q(x),$$

$$(p \circ q)(x) = p(x) \circ q(x).$$

For the last identity, $\mathbf{q}[\emptyset] := (0)$.

Cumulants from Hopf monoids (Aguiar-Mahajan)

Let h be a species. The n-th cumulant of h is

$$k_{\mathfrak{n}}(\mathsf{h}) = \sum_{\pi \vdash I} \mu(\{I\}, \pi) \dim_{\mathbb{K}} \mathsf{h}(\pi),$$

where $h(\pi) := \bigotimes_{B \in \pi} h[B]$.

Species	Moments	Cumulants	Distribution
L linear orders	n!	(n - 1)!	Exponential of par. 1
E sets	1	$\delta_{n,1}$	Dirac measure $\delta = 1$
Π partitions	$Bell_n$	1	Poisson of par. 1
Σ ordered partitions	$OrdBell_n$	$\sum k^n/2^k$	Geometric of par. 1
		k≥1	

Species	Moments	Cumulants	Distribution
L linear orders	n!	(n - 1)!	Exponential of par. 1
E sets	1	δ _{n,1}	Dirac measure $\delta = 1$
Π partitions	$Bell_n$	1	Poisson of par. 1
Σ ordered partitions	$OrdBell_n$	$\sum_{n \to 1} k^n / 2^k$	Geometric of par. 1
		k≥1	

From the formula

$$k_n(h) = \sum_{\pi \vdash I} \mu(\{I\}, \pi) \dim_{\Bbbk} h(\pi).$$

it is not evident that the integers $k_{\mathfrak{n}}(h)$ are non-negative.

Species	Moments	Cumulants	Distribution
L linear orders	n!	(n - 1)!	Exponential of par. 1
E sets	1	$\delta_{n,1}$	Dirac measure $\delta = 1$
Π partitions	$Bell_n$	1	Poisson of par. 1
Σ ordered partitions	$OrdBell_n$	$\sum k^n/2^k$	Geometric of par. 1
		k≥1	

From the formula

$$k_{n}(h) = \sum_{\pi \vdash I} \mu(\{I\}, \pi) \dim_{\Bbbk} h(\pi).$$

it is not evident that the integers $k_{\mathfrak{n}}(h)$ are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid ${\sf h},$ the dimension of its primitive part is

 $\dim_{\Bbbk} \mathcal{P}(\mathsf{h})[I] = k_{|I|}(\mathsf{h}).$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_n(h)$ defined by

$$c_{n}(\mathsf{h}) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \dim_{\mathbb{K}} \mathsf{h}(\pi).$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_n(h)$ defined by

$$c_n(\mathsf{h}) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \, \dim_{\Bbbk} \mathsf{h}(\pi).$$

The boolean cumulants of h are the integers $b_n(h)$ defined by

$$b_{n}(\mathsf{h}) = \sum_{\pi \in \mathsf{NC}_{\mathsf{Int}}(\pi)} \mu(\{\mathsf{I}\}, \pi) \dim_{\mathbb{K}} \mathsf{h}(\pi).$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_n(h)$ defined by

$$c_{n}(h) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \dim_{\mathbb{k}} h(\pi).$$

The boolean cumulants of h are the integers $b_n(h)$ defined by

$$b_{n}(h) = \sum_{\pi \in \mathsf{NC}_{\mathsf{Int}}(\pi)} \mu(\{I\}, \pi) \dim_{\mathbb{K}} h(\pi).$$

Question: are these integers non-negative? What conditions on h?

The cumulant-to-moment formulas come from different notions of "connected structures" of combinatorial objects.

Theorem (V. - 2024)

Let p be a positive species.

- if $h = E \circ p$, then, $k_{|I|}(h) = dim_{k} p[I]$;
- if $h = E \circ_{NC} p$, then, $c_{|I|}(h) = \dim_{\mathbb{k}} p[I]$;
- if $h = E \diamond p$, then, $b_{|I|}(h) = dim_{\Bbbk} p[I]$.

Work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formulae.
- Universality of $E \circ_{NC} p$ (analogue to the *free and cofree* monoid in species).
- Operadic notion using non-crossing composition (rigid and classic species).
- What's next?

Geometrical notion of independence(s)?

Polytope	Hopf monoid	Independence
Permutahedron	Π	Classical
Associahedron	F	Monotone
Cyclohedron	С	Conditional monotone
:	:	

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner (ANR-FWF International Cooperation Project PAGCAP - *Beyond Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and Probability*).

jGracias!

Save the date!

"Recent Perspectives on Non-crossing Partitions through Algebra, Combinatorics, and Probability", Feb. 17, 2025 — Feb. 21, 2025.