Schröder trees, antipode formulas and non-commutative probability

Yannic VARGAS

Séminaire Lotharingien de Combinatoire 91
Salobreña, 2024

"From the Earth to the Moon: A Direct
Route in 97 Hours, 20 Minutes", by Jules Verne (1865)

Purpose of this talk: give a survey of some links between notions in non-commutative probability, algebra and combinatorics.

Adrián Celestino

Content

■ Non-commutative probability
■ Hopf algebras and the Ebrahimi-Fard-Patras construction

- Applications

■ Future work

Part of the talk is based on joint work with Adrián Celestino:
"Schröder trees, antipode formulas and non-commutative probability" (arXiv:2311.07824).

Non-commutative probability

Let G be a finite, simple, rooted graph, with set of vertices $\left\{\mathrm{v}_{1}, v_{2}, \ldots, v_{\ell}\right\}$.
For every $\mathrm{n} \geq 0$, consider
$m_{n}(G):=$ \# closed walks of length n starting at the root.
Let v_{1} be the root. If $\operatorname{Adj}(\mathrm{G})$ denotes the adjacency matrix of G , then

$$
\left(\operatorname{Adj}(G)_{1,1}\right)^{n}=m_{n}(G)
$$

In the space of adjacency matrices, this defines a random variable $A:=\operatorname{Adj}(G)$ for which

$$
\mathbb{E}\left[A^{n}\right]:=m_{n}(G) .
$$

Related to the study of "growing graphs", there are binary operations $\mathrm{G}_{1} * \mathrm{G}_{2}$ on rooted graphs for which we can look at

$$
\mathbb{E}\left[\left(\operatorname{Adj}\left(\mathrm{G}_{1} * \mathrm{G}_{2}\right)\right)^{\mathrm{n}}\right] .
$$

Cartesian product \leftrightarrow (classical) independence

 X

The adjacency matrix of the Cartesian product $G_{1} \times G_{2}$ is

$$
\operatorname{Adj}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)=\operatorname{Adj}\left(\mathrm{G}_{1}\right) \otimes \mathrm{I}_{2}+\mathrm{I}_{1} \otimes \operatorname{Adj}\left(\mathrm{G}_{2}\right) .
$$

The random variables $\operatorname{Adj}\left(\mathrm{G}_{1}\right) \otimes \mathrm{I}_{2}$ and $\mathrm{I}_{1} \otimes \operatorname{Adj}\left(\mathrm{G}_{2}\right)$ are independent, so

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Adj}\left(G_{1} \times G_{2}\right)^{n}\right] & =\mathbb{E}\left[\left(\operatorname{Adj}\left(G_{1}\right) \otimes I_{2}+I_{1} \otimes \operatorname{Adj}\left(G_{2}\right)\right)^{n}\right] \\
& =\sum_{k=0}^{n}\binom{n}{k} \mathbb{E}\left[\left(\operatorname{Adj}\left(G_{1}\right) \otimes I_{2}\right)^{k}\right] \mathbb{E}\left[\left(I_{1} \otimes \operatorname{Adj}\left(G_{2}\right)\right)^{n-k}\right]
\end{aligned}
$$

Star product \leftrightarrow "Boolean" independence

The adjacency matrix of the Cartesian product $G_{1} \star G_{2}$ is

$$
\operatorname{Adj}\left(G_{1} \star G_{2}\right)=\operatorname{Adj}\left(G_{1}\right) \otimes P_{2}+P_{1} \otimes \operatorname{Adj}\left(G_{2}\right)
$$

The random variables $\operatorname{Adj}\left(G_{1}\right) \otimes P_{2}$ and $P_{1} \otimes \operatorname{Adj}\left(G_{2}\right)$ are not independent. Still, there is a combinatorial way to calculate the expectation of non-commutative monomials:

$$
\mathbb{E}[\mathrm{GESSEL}]=\mathbb{E}[\mathrm{G}] \mathbb{E}[\mathrm{E}] \mathbb{E}\left[\mathrm{S}^{2}\right] \mathbb{E}[\mathrm{E}] \mathbb{E}[\mathrm{L}]=\mathbb{E}[\mathrm{G}] \mathbb{E}[\mathrm{E}]^{2} \mathbb{E}\left[\mathrm{~S}^{2}\right] \mathbb{E}[\mathrm{L}] .
$$

Comb product \leftrightarrow "monotone" independence

The adjacency matrix of the Cartesian product $G_{1} \star G_{2}$ is

$$
\operatorname{Adj}\left(G_{1} \star G_{2}\right)=\operatorname{Adj}\left(G_{1}\right) \otimes P_{2}+I_{1} \otimes \operatorname{Adj}\left(G_{2}\right)
$$

The random variables $\operatorname{Adj}\left(G_{1}\right) \otimes P_{2}$ and $I_{1} \otimes \operatorname{Adj}\left(G_{2}\right)$ are not independent. Still, there is a combinatorial way to calculate the expectation of non-commutative monomials:

$$
\mathbb{E}[\mathrm{GESIRASEL}]=\mathbb{E}[\mathrm{S}] \mathbb{E}[\mathrm{R}] \mathbb{E}[\mathrm{S}] \mathbb{E}[\mathrm{I}] \mathbb{E}[\mathrm{GEAEL}]
$$

- The field of Free Probability was introduced by Dan-Virgil Voiculescu in the 1980s.
- Investigate the notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory.
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s.
- Voiculescu discovered freeness

Dan Voiculescu, 2015 also asymptotically for many kinds of random matrices (1991).

Commutative vs non-commutative

Voiculescu: "'Free probability is a probability theory adapted to dealing with variables which have the highest degree of noncommutativity. Failure of commutativity may occur in many ways."
■ Quantum mechanics' commutation relation: $\mathrm{XY}-\mathrm{YX}=\mathrm{I}$.

- Free product of groups.
- Independent random matrices tend to be asymptotically freely independent, under certain conditions.

Classical probability space

Andrey Kolmogorov

A probability space (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- a collection \mathcal{F} (event space),

■ $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ (probability function),
satisfying several axioms.

Expectation: for every bounded random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)
$$

Intuition: replace $\left(\mathrm{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$ by a more general pair (\mathcal{A}, φ).

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C};
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C};
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

Examples: $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right),\left(\operatorname{Mat}_{n}(\mathbb{C}), \frac{1}{n} \operatorname{Tr}\right),\left(\operatorname{Mat}_{n}(\Omega), \varphi\right)$,

$$
\varphi(a):=\int_{\Omega} \operatorname{tr}(a(\omega)) d \mathbb{P}(\omega)
$$

Non-commutative probability space

Random variable: $a \in \mathcal{A}$
Moments: $\left(\varphi(a), \varphi\left(a^{2}\right), \varphi\left(a^{3}\right), \ldots\right) \longleftrightarrow \mu: \mathbb{C}[x] \rightarrow \mathbb{C}, \mu\left(t^{i}\right):=\varphi\left(a^{i}\right)$
Join distribution of $\left(a_{1}, \ldots, a_{k}\right)$: if $1 \leq \mathfrak{i}_{1}, \ldots, \mathfrak{i}_{n} \leq k$,

$$
\mu: \mathbb{C}\left\langle t_{1}, \ldots, t_{k}\right\rangle \rightarrow \mathbb{C} \quad, \quad \mu\left(t_{i_{1}} \cdots t_{i_{n}}\right):=\varphi\left(a_{i_{1}} \cdots a_{i_{n}}\right)
$$

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that
■ \mathcal{A} is a unital associative algebra over \mathbb{C};

- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y: \Omega \rightarrow \mathbb{C}$ implies

$$
\mathbb{E}\left(X^{\mathfrak{m}} Y^{n}\right)=\mathbb{E}\left(X^{m}\right) \mathbb{E}\left(Y^{n}\right) .
$$

Free independence

Let (\mathcal{A}, φ) be a non-commutative probability space.

Free independence

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ unital subalgebras of \mathcal{A}.

Free independence

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ unital subalgebras of \mathcal{A}.
The family $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ of algebras is freely independent if for every $\mathfrak{n} \in \mathbb{N}$ and for every choice of ($i_{1}, \ldots, \mathfrak{i}_{n}$) of "different neighbouring indices" (i.e., $\mathfrak{i}_{j-1} \neq \mathfrak{i}_{\mathfrak{j}} \neq \mathfrak{i}_{\mathrm{j}+1}$), we have

$$
\varphi\left(a_{1} \cdots a_{n}\right)=0
$$

whenever $\mathfrak{a}_{\mathfrak{j}} \in \mathcal{A}_{\mathfrak{i}_{\mathfrak{j}}}$ and $\varphi\left(\mathrm{a}_{\mathfrak{j}}\right)=0$, for every $1 \leq \mathfrak{j} \leq \mathrm{n}$.

Free independence

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ unital subalgebras of \mathcal{A}.
The family $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ of algebras is freely independent if for every $\mathfrak{n} \in \mathbb{N}$ and for every choice of $\left(\mathfrak{i}_{1}, \ldots, \mathfrak{i}_{n}\right)$ of "different neighbouring indices" (i.e., $\mathfrak{i}_{\mathfrak{j}-1} \neq \mathfrak{i}_{\mathfrak{j}} \neq \mathfrak{i}_{\mathfrak{j}+1}$), we have

$$
\varphi\left(a_{1} \cdots a_{n}\right)=0
$$

whenever $\mathfrak{a}_{\mathfrak{j}} \in \mathcal{A}_{\mathfrak{i}_{\mathrm{j}}}$ and $\varphi\left(\mathrm{a}_{\mathfrak{j}}\right)=0$, for every $1 \leq \mathfrak{j} \leq \mathrm{n}$.
A family $\left(a_{i}\right)_{i \in I}$ of non-commutative random variables is called free if the family of subalgebras $\left(\left\langle 1_{\mathcal{A}}, a_{i}\right\rangle\right)_{i \in I}$ is freely independent.

Free independence

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider $\left\{\mathcal{A}_{\mathfrak{i}}\right\}_{\mathrm{i} \in \mathrm{I}}$ unital subalgebras of \mathcal{A}.
The family $\left\{\mathcal{A}_{\mathfrak{i}}\right\}_{\mathfrak{i} \in \mathrm{I}}$ of algebras is freely independent if for every $\mathrm{n} \in \mathbb{N}$ and for every choice of $\left(i_{1}, \ldots, i_{n}\right)$ of "different neighbouring indices" (i.e., $\left.i_{j-1} \neq i_{j} \neq i_{j+1}\right)$, we have

$$
\varphi\left(a_{1} \cdots a_{n}\right)=0
$$

whenever $a_{j} \in \mathcal{A}_{i_{j}}$ and $\varphi\left(a_{j}\right)=0$, for every $1 \leq j \leq n$.
A family $\left(a_{i}\right)_{i \in I}$ of non-commutative random variables is called free if the family of subalgebras $\left(\left\langle 1_{\mathcal{A}}, a_{i}\right\rangle\right)_{\mathfrak{i} \in \mathrm{I}}$ is freely independent.

Sets of variables in (\mathcal{A}, φ) are free if the algebras they generate are free.
It looks artificial...

Free independence

Free independence provides a rule to compute mixed moments.

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\mathrm{a}, \mathrm{b} \in \mathcal{A}$ free n.c.r.v.

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\mathrm{a}, \mathrm{b} \in \mathcal{A}$ free n.c.r.v.
What is $\varphi(a b)$?

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\mathrm{a}, \mathrm{b} \in \mathcal{A}$ free n.c.r.v.
What is $\varphi(a b) ? \varphi\left(\left(a-\varphi(a) 1_{\mathcal{A}}\right)\left(b-\varphi(b) 1_{\mathcal{A}}\right)\right)=0$, so

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\mathrm{a}, \mathrm{b} \in \mathcal{A}$ free n.c.r.v.
What is $\varphi(a b) ? \varphi\left(\left(a-\varphi(a) 1_{\mathcal{A}}\right)\left(b-\varphi(b) 1_{\mathcal{A}}\right)\right)=0$, so

$$
\begin{aligned}
0 & =\varphi\left(\left(a-\varphi(a) \cdot 1_{\mathcal{A}}\right)\left(b-\varphi(b) \cdot 1_{\mathcal{A}}\right)\right) \\
& =\varphi(a b)-\varphi\left(a \cdot 1_{\mathcal{A}}\right) \varphi(b)-\varphi(a) \varphi\left(1_{\mathcal{A}} \cdot b\right)+\varphi(a) \varphi(b) \varphi\left(1_{\mathcal{A}}\right) \\
& =\varphi(a b)-\varphi(a) \varphi(b)-\varphi(a) \varphi(b)+\varphi(a) \varphi(b)
\end{aligned}
$$

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\mathrm{a}, \mathrm{b} \in \mathcal{A}$ free n.c.r.v.
What is $\varphi(a b) ? \varphi\left(\left(a-\varphi(a) 1_{\mathcal{A}}\right)\left(b-\varphi(b) 1_{\mathcal{A}}\right)\right)=0$, so

$$
\begin{aligned}
0 & =\varphi\left(\left(a-\varphi(a) \cdot 1_{\mathcal{A}}\right)\left(b-\varphi(b) \cdot 1_{\mathcal{A}}\right)\right) \\
& =\varphi(a b)-\varphi\left(a \cdot 1_{\mathcal{A}}\right) \varphi(b)-\varphi(a) \varphi\left(1_{\mathcal{A}} \cdot b\right)+\varphi(a) \varphi(b) \varphi\left(1_{\mathcal{A}}\right) \\
& =\varphi(a b)-\varphi(a) \varphi(b)-\varphi(a) \varphi(b)+\varphi(a) \varphi(b)
\end{aligned}
$$

Therefore, $\varphi(a b)=\varphi(a) \varphi(b)$.

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\left\{a_{1}, a_{2}\right\},\{b\} \subseteq \mathcal{A}$ free n.c.r.v.

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\left\{a_{1}, a_{2}\right\},\{b\} \subseteq \mathcal{A}$ free n.c.r.v.
What is $\varphi\left(a_{1} b a_{2}\right)$?

Free independence

Free independence provides a rule to compute mixed moments.
Let (\mathcal{A}, φ) be a n.c.p.s. and let $\left\{a_{1}, a_{2}\right\},\{b\} \subseteq \mathcal{A}$ free n.c.r.v.
What is $\varphi\left(a_{1} b a_{2}\right)$? From

$$
\varphi\left(\left(\mathrm{a}_{1}-\varphi\left(\mathrm{a}_{1}\right) \cdot 1_{\mathcal{A}}\right)\left(\mathrm{b}-\varphi(\mathrm{b}) \cdot 1_{\mathcal{A}}\right)\left(\mathrm{a}_{2}-\varphi\left(\mathrm{a}_{2}\right) \cdot 1_{\mathcal{A}}\right)\right)=0
$$

we obtains

$$
\varphi\left(a_{1} b a_{2}\right)=\varphi\left(a_{1} a_{2}\right) \varphi(b) .
$$

Free independence

Free independence provides a rule to compute mixed moments.
If $\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\} \subseteq \mathcal{A}$ free n.c.r.v, what is $\varphi(\mathrm{abab})$?

$$
\begin{aligned}
\varphi\left(a_{1} b_{1} a_{2} b_{2}\right)= & \varphi\left(a_{1} a_{2}\right) \varphi\left(b_{1}\right) \varphi\left(b_{2}\right)+\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \varphi\left(b_{1} b_{2}\right) \\
& -\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \varphi\left(b_{1}\right) \varphi\left(b_{2}\right) . \\
\Rightarrow \varphi(a b a b)= & \varphi\left(a^{2}\right) \varphi(b)^{2}+\varphi(a)^{2} \varphi\left(b^{2}\right)-\varphi(a)^{2} \varphi(b)^{2} .
\end{aligned}
$$

Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann algebras of free products of groups.

$$
\begin{aligned}
& \mathrm{F}(\mathrm{G}):=\{\alpha: \mathrm{G} \rightarrow \mathbb{C}:|\{\mathrm{g} \in \mathrm{G} \mid \alpha(\mathrm{g}) \neq 0\}|<\infty\}, \\
&(\alpha * \beta)(\mathrm{g}):=\sum_{\mathrm{h} \in \mathrm{G}} \alpha\left(g \mathrm{~g}^{-1}\right) \beta(\mathrm{h}), \\
& \varphi_{\mathrm{G}}: \mathrm{F}(\mathrm{G}) \rightarrow \mathbb{C} \quad, \quad \alpha \mapsto \alpha(e) .
\end{aligned}
$$

$F(G)$ is linearly generated by $\left\{\delta_{g}: g \in G\right\}$, where

$$
\delta_{\mathrm{g}}(\mathrm{~h})= \begin{cases}1, & \mathrm{~h}=\mathrm{g} \\ 0, & \mathrm{~h} \neq \mathrm{g}\end{cases}
$$

Freeness from the free product

Theorem

If $\left\{\mathrm{G}_{\mathrm{i}}\right\}_{\mathfrak{i} \in \mathrm{I}}$ subgroups of G are algebraically free, then $\left\{\mathrm{F}\left(\mathrm{G}_{\mathrm{i}}\right)\right\}_{\mathfrak{i} \in \mathrm{I}} \subseteq \mathrm{F}(\mathrm{G})$ are freely independent in $\left(\mathrm{F}(\mathrm{G}), \varphi_{\mathrm{G}}\right)$.

Sketch of the proof:
Consider $\left(i_{1}, \ldots, i_{n}\right) \in I^{n}$ such that $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$, and $\alpha_{k} \in F\left(G_{i_{k}}\right)$ such that $\alpha_{k}(e)=0$, for $1 \leq k \leq n$.

$$
\begin{aligned}
\varphi\left(\alpha_{1} * \cdots * \alpha_{n}\right) & =\left(\alpha_{1} * \cdots * \alpha_{n}\right)(e) \\
& =\sum_{\substack{g_{1}, \ldots, g_{n} \in G \\
g_{1} \cdots g_{n}=e}} \alpha_{1}\left(g_{1}\right) \cdots \alpha_{n}\left(g_{n}\right)
\end{aligned}
$$

Since $G_{i_{1}}, \ldots, G_{i_{n}}$ are algebraically free. there exists k such that $g_{k}=e$, leading to $\varphi\left(\alpha_{1} * \cdots * \alpha_{n}\right)$.

Non-commutative independences

Let (\mathcal{A}, φ) be a non-commutative probability space. Consider $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ unital subalgebras of \mathcal{A}. Let $a_{1} \in \mathcal{A}_{i_{1}}, \ldots, a_{n} \in \mathcal{A}_{i_{n}}$ such that $\mathfrak{i}_{\mathfrak{j}} \neq \mathfrak{i}_{\mathfrak{j}+1}$.

The family $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ is
\square freely independent if

$$
\varphi\left(a_{1} \cdots a_{n}\right)=0
$$

when $\varphi\left(\mathfrak{a}_{\mathfrak{j}}\right)=0$, for all $1 \leq \mathfrak{j} \leq \mathfrak{n}$;
$■$ boolean independent if

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right) ;
$$

- monotone independent if

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\varphi\left(a_{\mathfrak{j}}\right) \varphi\left(a_{1} \cdots a_{j-1} \cdot a_{j+1} \cdots a_{n}\right)
$$

Other notions: conditional monotone, cyclic monotone, ...

Back to the examples (free case)

$$
\begin{aligned}
\varphi(\mathrm{ab})= & \varphi(\mathrm{a}) \varphi(\mathrm{b}) \\
\varphi\left(\mathrm{a}_{1} \mathrm{a}_{2}\right)= & \varphi\left(\mathrm{a}_{1} \mathrm{a}_{2}\right) \varphi(\mathrm{b}) \\
\varphi\left(\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{a}_{2} \mathrm{~b}_{2}\right)= & \varphi\left(\mathrm{a}_{1} \mathrm{a}_{2}\right) \varphi\left(\mathrm{b}_{1}\right) \varphi\left(\mathrm{b}_{2}\right)+\varphi\left(\mathrm{a}_{1}\right) \varphi\left(\mathrm{a}_{2}\right) \varphi\left(\mathrm{b}_{1} \mathrm{~b}_{2}\right) \\
& -\varphi\left(\mathrm{a}_{1}\right) \varphi\left(\mathrm{a}_{2}\right) \varphi\left(\mathrm{b}_{1}\right) \varphi\left(\mathrm{b}_{2}\right) \\
\varphi\left(\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{cb}_{2} a_{2} \mathrm{da}_{3}\right)= & \varphi\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right) \varphi\left(\mathrm{b}_{1} \mathrm{~b}_{2}\right) \varphi(\mathrm{c}) \varphi(\mathrm{d}) .
\end{aligned}
$$

"Non-crossing moments" factorize; "crossing moments" don't factorize.

Back to (\mathcal{A}, φ)

Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$.
Consider $\left\{\mathrm{f}_{\mathrm{n}}: \mathcal{A}^{\mathrm{n}} \rightarrow \mathbb{C} \mid \mathrm{n} \geq 0\right\}$ a family of multilinear functionals.
Let $\pi=\left\{B_{1}, \ldots, B_{k}\right\} \in N C(n)$. We define

$$
f_{\pi}\left(a_{1}, \ldots, a_{n}\right):=\prod_{\substack{B \in \pi \\ B=\left\{b_{1}<b_{2}<\cdots<b_{r}\right\}}} f_{|B|}\left(b_{1}, b_{2}, \ldots, b_{r}\right) .
$$

Back to (\mathcal{A}, φ)

If $\pi=\{\{1\},\{2,3,4,5\},\{6\},\{7,8,9\}\}$, then

$$
f_{\pi}\left(a_{1}, \ldots, a_{9}\right)=f_{1}\left(a_{1}\right) f_{4}\left(a_{2}, a_{3}, a_{4}, a_{5}\right) f_{1}\left(a_{6}\right) f_{3}\left(a_{7}, a_{8}, a_{9}\right)
$$

Moment to cumulant relations in (\mathcal{A}, φ)

Consider the multilinear functionals
$\left\{r_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{n \geq 1} \quad\left\{b_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{\mathfrak{n} \geq 1} \quad\left\{h_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{\mathfrak{n} \geq 1}$
(Free cumulants) ' (Boolean cumulants)' (Monotone cumulants)
defined by

$$
\begin{aligned}
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} r_{\pi}\left(a_{1}, \ldots, a_{n}\right), \\
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C_{\text {lnt }}(n)} b_{\pi}\left(a_{1}, \ldots, a_{n}\right), \\
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \frac{1}{\tau(\pi)!} h_{\pi}\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

Hopf algebras

Saj-nicole A. Joni and
Gian-Carlo Rota (1932-1999)

- Classical Hopf algebras: Borel, Cartier, Hopf (1940-1950).
- Motivation: algebraic topology, homological algebra, study of loop spaces, algebras of operations (Steenrod), homology of Eilenberg-MacLane spaces.

■ Joni-Rota: "A great many problems in combinatorics are concerned in assembling, or disassembling, large objects out of pieces of prescribed shape, as in the familiar board puzzles. "

Hopf algebras

A Hopf algebra ($\mathrm{H}, \mathrm{m}, \iota, \Delta, \varepsilon, S$) consists of

- an associative algebra ($\mathrm{H}, \mathrm{m}, \mathrm{l}$);
- a coassociative coalgebra ($\mathrm{H}, \Delta, \varepsilon$);
- compatibility between the product and the coproduct;
\square the identity map id : $\mathrm{H} \rightarrow \mathrm{H}$ is invertible in the convolution algebra $(\operatorname{End}(\mathrm{H}), *)$, where

$$
\mathrm{f} * \mathrm{~g}:=\Delta \circ(\mathrm{f} \otimes \mathrm{~g}) \circ \mathrm{m} .
$$

The inverse of id, denoted by S , is called the antipode of H .
Finding an optimal formula for the antipode is not easy. It provides a rich information about hidden combinatorial structures on H .

Double tensor Hopf algebra

Double tensor Hopf algebra $\mathrm{T}\left(\mathrm{T}_{+}(\mathrm{V})\right.$): non-commutative and non-cocommutative Hopf algebra, with graduation

$$
T\left(T_{+}(V)\right)_{n}:=\bigoplus_{n_{1}+\cdots+n_{k}=n} V^{\otimes n_{1}} \otimes \cdots \otimes V^{\otimes n_{k}}
$$

Elements in $T\left(T_{+}(V)\right)_{n}$ are written as (linear combinations of) words with bars

$$
w_{1}|\cdots| w_{k}
$$

where $w_{i} \in V^{\otimes n_{i}}$ for some $n_{1}+\cdots+n_{k}=n$. We call this elements words on (non-empty) words.

Double tensor Hopf algebra

Let V be a \mathbb{K}-vector space.
If $k \geq 0$, we write elementary tensors from $V^{\otimes k}$ as words, $\mathfrak{u}_{1} u_{2} \cdots \mathfrak{u}_{k}$, with $u_{i} \in \mathrm{~V}$. We called the \mathbb{K}-vector spaces

$$
\mathrm{T}(\mathrm{~V}):=\bigoplus_{\mathrm{k} \geq 0} \mathrm{~V}^{\otimes \mathrm{k}} \quad, \quad \mathrm{~T}_{+}(\mathrm{V}):=\bigoplus_{\mathrm{k} \geq 1} \mathrm{~V}^{\otimes \mathrm{k}}
$$

the tensor module and reduced tensor module, respectively, generated by V .

■ Product rule: if $u \in T\left(\mathrm{~T}_{+}(\mathrm{V})\right)_{\mathfrak{n}}$ and $v \in_{\mathfrak{m}}$, then

$$
u\left|v:=u_{1}\right| \cdots\left|u_{r}\right| v_{1}|\cdots| v_{s} \in T\left(T_{+}(V)\right)_{\mathfrak{n}+\mathrm{m}} .
$$

- Coproduct rule: given a word $\mathfrak{u}=\mathfrak{u}_{1} \cdots \mathfrak{u}_{\mathrm{n}} \in \mathrm{V}^{\otimes n}$ and $A=\left\{a_{1}, \ldots, a_{k}\right\} \subset \mathbb{N}$, we write $u_{A}:=u_{a_{1}} \cdots u_{a_{k}}$. Consider the map $\Delta: \mathrm{T}_{+}(\mathrm{V}) \rightarrow \mathrm{T}(\mathrm{V}) \otimes \mathrm{T}\left(\mathrm{T}_{+}(\mathrm{V})\right)$ given by

$$
\begin{aligned}
\Delta(u): & =\sum_{A \subseteq[n]} u_{A} \otimes u_{K(A,[n])} \\
& =\sum_{A \subseteq[n]} u_{A} \otimes u_{K_{1}}|\cdots| u_{k_{r}} .
\end{aligned}
$$

Finally, we extend the map Δ multiplicatively to all of $\mathrm{T}\left(\mathrm{T}_{+}(\mathrm{V})\right)$, by setting

$$
\Delta\left(w_{1}|\cdots| w_{k}\right):=\Delta\left(w_{1}\right) \cdots \Delta\left(w_{k}\right)
$$

For example, we have

$\Delta(a b c)=1 \otimes a b c+a \otimes b c+b \otimes \mathbf{a} \mid \mathbf{c}+c \otimes a b+a b \otimes c+a c \otimes b+b c \otimes a+1 \otimes a b c ;$

$$
\Delta(\text { ira } \mid \text { gessel })=\cdots+r \mid \text { sl } \otimes \text { ia } \mid \text { gese }+\cdots
$$

For example, we have

$\Delta(a b c)=1 \otimes a b c+a \otimes b c+b \otimes \mathbf{a} \mid \mathbf{c}+c \otimes a b+a b \otimes c+a c \otimes b+b c \otimes a+1 \otimes a b c ;$

$$
\Delta(\mathfrak{i r a} \mid \text { gessel })=\cdots+r|s l \otimes i a| \text { ge } \mid s e+\cdots
$$

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.
- $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.
- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.
- The space $\left(\operatorname{Hom}_{\text {lin }}(H, \mathbb{K}),<,>\right)$ is a dendriform algebra, with * $=<+>$.
- The linear form φ is extended to $\mathrm{T}_{+}(\mathcal{A})$ by defining to all words $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot \mathcal{A} a_{2} \cdot \mathcal{A} \cdots \mathcal{A}_{\mathcal{A}} a_{n}\right) .
$$

This is the multivariate moment of u.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.
- $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.
- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.
- The space $\left(\operatorname{Hom}_{\text {lin }}(H, \mathbb{K}),<,>\right)$ is a dendriform algebra, with * $=<+>$.
- The linear form φ is extended to $\mathrm{T}_{+}(\mathcal{A})$ by defining to all words $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot \mathcal{A} a_{2} \cdot \mathcal{A} \cdots{ }_{\mathcal{A}} a_{n}\right) .
$$

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map $\Phi: \mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \rightarrow \mathbb{K}$ with $\Phi(1):=1$ and

$$
\Phi\left(\mathfrak{u}_{1}|\cdots| \mathfrak{u}_{k}\right):=\varphi\left(\mathfrak{u}_{1}\right) \cdots \varphi\left(\mathfrak{u}_{k}\right) .
$$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let $\rho, \kappa, \beta \in \mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

$$
\begin{gathered}
\Phi=\exp _{*}(\rho), \\
\Phi=\epsilon+\kappa \prec \Phi
\end{gathered}
$$

and

$$
\Phi=\epsilon+\Phi \succ \beta .
$$

Then, ρ, κ, β correspond to the monotone cumulants, free cumulants and boolean cumulants, respectively.

For any word $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$, we have

$$
h_{n}\left(a_{1}, \ldots, a_{n}\right)=\rho(u), r_{n}\left(a_{1}, \ldots, a_{n}\right)=\kappa(u), b_{n}\left(a_{1}, \ldots, a_{n}\right)=\beta(u)
$$

Characters

The set of group-like elements $G(V) \subset \mathcal{L}_{V}$ forms a group with respect to the convolution $*$. The inverse of an element $\Phi \in G(V)$ is

$$
\Phi^{-1}=\Phi \circ S
$$

The set $\mathfrak{g}(\mathrm{V}) \subset \mathcal{L}_{\mathrm{V}}$ of infinitesimal characters forms a Lie algebra with Lie bracket defined by the commutator in \mathcal{L}_{V}.

Inversion formulas

Proposition (Ebrahimi-Fard, Patras (2018))

The free cumulant k and boolean cumulant β satisfy the relations

$$
\kappa=(\Phi-\epsilon) \prec \Phi^{-1} \text { and } \beta=\Phi^{-1} \succ(\Phi-\epsilon) .
$$

"We can look at k and β through the inversion formula $\Phi^{-1}=\Phi \circ \mathrm{S}$."

Antipode formula for the double tensor algebra

The Takeuchi's formula for the antipode

$$
S(w)=\left.\sum_{k \geq 0}(-1)^{k}\right|^{(k-1)} \circ(\mathrm{id}-\mathfrak{\varepsilon})^{\otimes k} \circ \Delta^{(k-1)}(w)
$$

where $\left.\right|^{-1}:=\iota$ and $\Delta^{(-1)}:=\varepsilon$, may contains several cancellations ($\mathrm{S}(\mathrm{a} \mid \mathrm{bcd}$) contains 75 terms, which reduces to 11 after cancellation).

The following result helps to efficiently determines the antipode of $\mathrm{T}\left(\mathrm{T}_{+}(\mathrm{V})\right)$.

Theorem (Celestino - V.)

Let $w=\mathfrak{u}_{1} \mathfrak{u}_{2} \cdots \mathfrak{u}_{n} \in V^{\otimes n}$. The action of the antipode over u is given by the following cancellation-free and grouping-free formula:

$$
S(w)=\sum_{t \in \operatorname{Sch}(n)}(-1)^{i(t)} w_{t}
$$

where $\operatorname{Sch}(n)$ is the set of Schroder trees with $n+1$ leaves.

$$
w_{\mathrm{t}}=156|23| 4|7| 89 \underline{10}
$$

Proposition (Josuat-Vergès, Menous, Novelli,Thibon /Arizmendi, Celestino /Celestino - V.)
Let (\mathcal{A}, φ) be a non-commutative probability space and $\left\{k_{n}\right\}_{n \geq 1}$ be its free cumulants. Then, for any $a_{1}, \ldots, a_{n} \in(\mathcal{A}$ we have:

$$
k_{n}\left(a_{1}, \ldots, a_{n}\right)=\sum_{t \in \operatorname{PSch}(n)}(-1)^{i(t)-1} \varphi_{\pi(t)}\left(a_{1}, \ldots, a_{n}\right) .
$$

If $\left\{b_{n}\right\}_{n \geq 1}$ are the Boolean cumulants, then

$$
b_{n}\left(a_{1}, \ldots, a_{n}\right)=\sum_{t \in \operatorname{BSch}(n)}(-1)^{i(t)-1} \varphi_{\pi(t)}\left(a_{1}, \ldots, a_{n}\right) .
$$

Species

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species was introduced by André Joyal in 1980. Species can be seen as a categorification of generating functions. It provides a categorical foundation for enumerative combinatorics.

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set. }
$$

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set. }
$$

A species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \mathrm{Vec} .
$$

The Cauchy product of two species p and q is given by

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set }
$$

A species is a functor

$$
\mathrm{p}: \text { set }^{\times} \rightarrow \text { Vec. }
$$

The Cauchy product of two species p and q is given by

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

The category of species is symmetric monoidal. We can speak of monoids, comonoids, ..., in species.

$$
\mathrm{h}[\mathrm{~S}] \otimes \mathrm{h}[\mathrm{~T}] \xrightarrow{\mu_{\mathrm{S}, \mathrm{~T}}} \mathrm{~h}[\mathrm{I}] \quad \mathrm{h}[\mathrm{I}] \xrightarrow{\Delta_{\mathrm{S}, \mathrm{~T}}} \mathrm{~h}[\mathrm{~S}] \otimes \mathrm{h}[\mathrm{~T}] .
$$

Examples of species

■ Species E of sets:

$$
\mathrm{E}[\mathrm{I}]:=\mathbb{K}\left\{*_{\mathrm{I}}\right\} .
$$

■ Species E_{n} of n-sets:

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{I}]:= \begin{cases}\mathbb{K}\left\{*_{\mathrm{I}}\right\}, & \text { if }|\mathrm{I}|=\mathrm{n} ; \\ (0), & \text { if }|\mathrm{I}| \neq \mathrm{n}\end{cases}
$$

- Species $X:=E_{1}$ of sets of one element.
- Species Π of partitions.
- Species L of linear orders.
- Species G of graphs:
$\mathrm{G}[\mathrm{I}]:=\mathbb{K}\{$ finite graphs with vertices in I$\}$.

Operations on species

- Sum of species

$$
(\mathrm{p}+\mathrm{q})[\mathrm{I}]:=\mathrm{p}[\mathrm{I}] \oplus \mathrm{q}[\mathrm{I}] .
$$

- Product of species (Cauchy product)

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]:=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

Operations on species

- Composition of species

$$
(\mathrm{p} \circ \mathrm{q})[\mathrm{I}]:=\bigoplus_{\pi \in \Pi[I]} \mathrm{p}[\pi] \otimes \bigotimes_{B \in \pi} q[B] .
$$

Generating function of a species

To every species p it is associated its exponential generating function:

$$
p(x):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{K}} p[n] \frac{x^{n}}{n!} .
$$

We have:

$$
\begin{aligned}
(p+q)(x) & =p(x)+q(x), \\
(p \cdot q)(x) & =p(x) \cdot q(x) \\
(p \circ q)(x) & =p(x) \circ q(x) .
\end{aligned}
$$

For the last identity, $\mathrm{q}[\emptyset]:=(0)$.

Cumulants from Hopf monoids (Aguiar-Mahajan)

Let h be a species.
The n-th cumulant of h is

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h})=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} \mathrm{h}(\pi),
$$

where $h(\pi):=\bigotimes_{B \in \pi} h[B]$.

Species	Moments	Cumulants	Distribution
$\mathrm{L} \quad$ linear orders	$\mathrm{n}!$	$(\mathrm{n}-1)!$	Exponential of par. 1
E sets	1	$\delta_{n, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{n}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \mathrm{k}^{\mathrm{n}} / 2^{\mathrm{k}}$	Geometric of par. 1

Species	Moments	Cumulants	Distribution
L linear orders	$\mathrm{n}!$	$(\mathrm{n}-1)!$	Exponential of par. 1
E sets	1	$\delta_{n, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{\mathrm{n}}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \mathrm{k}^{\mathrm{n}} / 2^{\mathrm{k}}$	Geometric of par. 1

From the formula

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h})=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} \mathrm{h}(\pi)
$$

it is not evident that the integers $k_{n}(h)$ are non-negative.

Species	Moments	Cumulants	Distribution
L linear orders	$\mathrm{n}!$	$(n-1)!$	Exponential of par. 1
E sets	1	$\delta_{n, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{\mathrm{n}}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \mathrm{k}^{\mathrm{n}} / 2^{\mathrm{k}}$	Geometric of par. 1

From the formula

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h})=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} \mathrm{h}(\pi)
$$

it is not evident that the integers $k_{n}(h)$ are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid h , the dimension of its primitive part is

$$
\operatorname{dim}_{\mathbb{k}} \mathcal{P}(\mathrm{h})[\mathrm{I}]=\mathrm{k}_{|\mathrm{I}|}(\mathrm{h})
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{I\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

The boolean cumulants of h are the integers $b_{n}(h)$ defined by

$$
b_{n}(h)=\sum_{\pi \in N C_{\text {lnt }}(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

The boolean cumulants of h are the integers $b_{n}(h)$ defined by

$$
b_{\mathfrak{n}}(h)=\sum_{\pi \in N C_{\operatorname{lnt}}(\mathfrak{n})} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Question: are these integers non-negative? What conditions on h ?

The cumulant-to-moment formulas come from different notions of "connected structures" of combinatorial objects.

Theorem (V. - 2024)

Let p be a positive species.

- if $\mathrm{h}=\mathrm{E} \circ \mathrm{p}$, then, $\mathrm{k}_{|\mathrm{I}|}(\mathrm{h})=\operatorname{dim}_{\mathbb{k}} \mathrm{p}[\mathrm{I}]$;
- if $\mathrm{h}=\mathrm{E} \circ_{\mathrm{NC}} \mathrm{p}$, then, $\mathrm{c}_{|\mathrm{II}|}(\mathrm{h})=\operatorname{dim}_{\mathbb{k}} \mathrm{p}[\mathrm{I}]$;
- if $\mathrm{h}=\mathrm{E} \diamond \mathrm{p}$, then, $\mathrm{b}_{\mid \mathrm{II}}(\mathrm{h})=\operatorname{dim}_{\mathrm{k}} \mathrm{p}[\mathrm{I}]$.

Work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formulae.
- Universality of $\mathrm{E} \circ_{\mathrm{NC}} \mathrm{P}$ (analogue to the free and cofree monoid in species).
■ Operadic notion using non-crossing composition (rigid and classic species).
- What's next?

Geometrical notion of independence(s)?

Polytope	Hopf monoid	Independence
Permutahedron	Π	Classical
Associahedron	F	Monotone
Cyclohedron	C	Conditional monotone
\vdots	\vdots	\vdots

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner (ANR-FWF International Cooperation Project PAGCAP - Beyond Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and Probability).
¡Gracias!

Save the date!

"Recent Perspectives on Non-crossing Partitions through Algebra, Combinatorics, and Probability", Feb. 17, 2025 - Feb. 21, 2025.

