On the unimodality consequence of the Neggers-Stanley conjecture

Iqra Khan

Joint work with

Volkmar Welker

Philipps University of Marburg, Germany

<ロ > < />

On the unimodality consequence of the Neggers- Stanley conjecture

Preliminaries

Preliminaries

1 P is a poset on
$$[n] = \{1, .., n\}$$
 ordered by $<_P$.

$$p <_P q \implies p < q$$

We will consider naturally labeled poset in our work.

3 A linear extension of P is a total order \prec on [n] such that

$$p <_P q \implies p \prec q$$

If $p_1 \prec \cdots \prec p_n$ then we write $\pi = p_1 \dots p_n \in S_n$ for the total order

4 The length of P is

$$I(P) = \max\{r \mid \exists p_1 < ... < p_{i-1} < p_r \text{ in } P\}$$

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Figure: Naturally labeled poset P

The linear extensions of P are

1234, 1324, 1243, 2134, 2143

Example

Figure: Naturally labeled poset P

The linear extensions of P are

Define

$$h_P(t) = \sum_{\pi} t^{des\pi}$$

- Neggers-Stanley conjectured that h_P(t) is real rooted. This was shown to be false by Branden and Stembridge.
- Well known: Real rooted implies unimodality.
- Unimodality implication of Neggers-Stanley (still open)
- This talk: Extend a known approach to unimodality from graded to non-graded posets (no proof of unimodality yet)

- **1** An order ideal *I* in a poset *P* is a subset $I \subseteq P$ such that if $x \in I$ and $y <_P x$ implies $y \in I$.
- **2** The distributive lattice of *P* is

$$L(P) = \{I \mid I \text{ order ideal in } P\}$$

ordered by inclusion.

3 A *P*-partition is a map $\sigma: P \to \mathbb{N} \in \mathbb{R}^{P}$ satisfy the following condition

If $s <_P t$ in P, then $\sigma(t) \le \sigma(s)$.

For an order ideal I its indicator function $\sigma_I : P \to \mathbb{N} \in \mathbb{R}^P$ is a P-partition.

4 The order polytope O(P) is defined as

 $O(P) = \operatorname{Conv} \{ \sigma_I \mid I \text{ order ideals in } P \}$

<ロ > < />

Triangulations of order polytope

Triangulation of O(P): Geometric simplicial complex Δ with realization O(P).

- A triangulation of a polytope Γ in ℝ^m is called regular if it can be obtained by projecting the lower envelope of a lifting of Γ to ℝ^{m+1}.
- 2 A triangulation Δ' of Γ is unimodular if normalized volume $Vol(\gamma) = 1$ for every maximal simplex γ in Δ' .

Example

Figure: Regular Triangulation

Theorem (Stanley)

$$\Delta_{\mathcal{S}} = \{ \mathsf{Conv} \{ \sigma_{I_1}, ..., \sigma_{I_r} \} \mid I_1 \subset ... \subset I_r \in L(P) \}$$

is a regular unimodular triangulation of O(P).

Lemma

If Δ is a regular unimodular triangulation of O(P) then

$$h_P(t) = h_{\Delta}(t)$$
 the h-polynomial of Δ).

И

Together with Ehrhart's theorem these results imply:

Theorem (well known)

$$\sum_{n \ge 0} \left| nO(P) \cap \mathbb{N}^P \right| \cdot t^n = \frac{\sum_{i=0}^r h_i t^i}{(1-t)^{|P|+1}} = \frac{h_P(t)}{(1-t)^{|P|+1}}$$

where $r = |P| - l(P)$.

 If P is graded then by [Reiner,Welker] in 2005 there is a regular unimodular triangulation Δ of O(P) such that

$$\Delta = 2^{\Omega} * \Delta'$$

where Δ' is a simplicial polytope.

$$\implies h_P(t) = h_\Delta(t) = h_{\Delta'}(t)$$

• g-theorem for simplicial polytope $\implies h_P(t)$ is unimodular.

Theorem (Khan,Welker)

Let P be a poset then there is a triangulation Δ of O(P) such that

where
$$\Delta = 2^{\{1,\dots,l(P)\}} * \Delta'$$

 $\Delta' = \begin{cases} ball \text{ of } dim |P| - l(P) & \text{if } P \text{ is not graded} \\ sphere \text{ of } dim |P| - l(P) - 1 & \text{if } P \text{ is graded } [Reiner, Welker] \end{cases}$

Corollary

If P is not graded then $h_P(t) = \sum_{i=0}^r h_i t^i$ where r = |P| - I(P) and $(h_0, ..., h_r, 0)$ is the h-vector of a triangulated ball of dimension |P| - I(P).

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

Bad news: No *g*-theorem for triangulated balls **Still hope:** Find *g*-theorem for "special" balls On the unimodality consequence of the Neggers- Stanley conjecture

Preliminaries

・ロ ・ ・ 一部 ・ ・ 注 ・ 注 ・ う へ で
14/26

On the unimodality consequence of the Neggers- Stanley conjecture

Preliminaries

Approach

・< 合・< 言・< 言・< 言・< 言・< 14/26

Recall definitions for graded posets: P with k rank sets $P_1, ..., P_k$.

Definition (Equatorial *P*-partition)

A *P*-partition σ is called equatorial if

$$1 \min_{p \in P} \sigma(p) = 0.$$

2 For every $j \in [2, k] \exists p_{j-1} <_p p_j$ with $p_{j-1} \in P_{j-1}, p_j \in P_j$ and $\sigma(p_{j-1}) = \sigma(p_j)$.

Definition (Rank constant *P*-partition)

A *P*-partition σ is called rank-constant if it is constant along ranks i.e $\sigma(p) = \sigma(q)$ whenever $p, q \in P_j$ for some *j*.

Example

For the poset the indicator function of ideals which are equatorial P-partitions are

$$(1) = (1,0,0,0), (2) = (0,1,0,0), (13) = (1,0,1,0),$$

 $(123) = (1,1,1,0), (124) = (1,1,0,1)$

The indicator functions of ideals which are rank-constant P-partitions are (12) = (1,1,0,0) and (1234) = (1,1,1,1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Extension to non-graded posets:

Definition

Let $Q \subseteq P$ be posets. We call Q unique (in P) if for all $p \in P \setminus Q$

$$Q_{>p} = \{y \in Q \mid y > p\}$$

is either empty or has a unique minimal element \bar{p} and I(P) = I(Q). On the unimodality consequence of the Neggers- Stanley conjecture

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めんぐ

18/26

Lemma

Let Q be a poset then there exists a graded poset $Q \subseteq P$ with Q unique in P.

Definition

Assume $Q \subseteq P$ is unique. We define map i which maps a Q-partition to a P-partition. If f be a Q-partition then i(f) be defined as

$$i(f)(p) = \begin{cases} f(p) & \text{if } p \in Q \\ 0 & \text{if } p \notin Q, Q_{>p} = \phi \\ f(\bar{p}) & \text{if } p \notin Q, \bar{p} \in Q, \ \bar{p} \ge p \end{cases}$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

If f is a Q-partition then i(f) is a P-partition.

Lemma

If Q is unique in P and g is a P-partition then there exists a Q-partition f with i(f) = g iff the following holds.

1
$$g(p) = 0$$
 for $p \notin Q$, $Q_{>p} = \phi$.

2 $g(p) = f(\bar{p})$ for $p \notin Q$, and $\bar{p} \in Q$ the unique minimal element of $Q_{>p}$.

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

Definition

A *Q*-partition f is called equatorial (resp., rank-constant) if i(f) is equatorial (rank-constant).

Definition

A chain of ideals $I_1 \subset \cdots \subset I_d$ in L(P) is called equatorial (resp., rank-constant) if the

$$\sum_{j=1}^{a} i(I_j)$$

is an equatorial (resp., rank-constant) P-partition.

Lemma

Let $Q \subseteq P$ posets and Q is unique in P. For every Q-partition f there exists a unique decomposition

$$f = f^{eq} + f^{rc}$$

where f^{eq} is an equatorial Q-partition and f^{rc} is a rank-constant Q-partition.

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

Proposition

Let P be a non-graded poset then there is a triangulation Δ of O(P) such that

$$\Delta = 2^{\{1,\ldots,l(P)\}} * \Delta'$$

where

- $2^{\{1,\ldots,l(P)\}}$ is the simplex of rank constant chains in L(P) and
- Δ' is the simplicial complex of equatorial chains l₁ ⊂ ··· ⊂ l_d in L(P).

Additional work:

Reiner and Welker sketch an idea by Dennis White of a *jeu-de-taquin* like bijection between

$$\Big\{ \text{linear extensions of } P \Big\} \leftrightarrow \Big\{ \text{ maximal equatorial chains } \Big\}.$$

Our work: Make this idea rigorous

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 - のへで

25/26

Definition

A map $\pi: P \rightarrow [m]$ is *i*-unambiguous if it satisfies the following conditions.

1
$$\pi(p) = \pi(p') \implies p \le p' \text{ or } p' \le p$$

2
$$|\{\pi(p) \mid I(p) \ge i\}| = |\{p \mid I(p) \ge i\}|$$

3 For all $j \le i-1$ there is exactly one pair p, p', l(p') = j, p covers p' with $\pi(p) = \pi(p')$.

Theorem

The map $\phi : \pi \to I_{|P|-n}$ where n = I(P) is a bijection between linear extensions and equatorial chains of P.