Smirnov words and the Delta conjectures

Alessandro Iraci
Università di Pisa
19/03/2024

Joint work with P. Nadeau and A. Vanden Wyngaerd
12424|134

Symmetric functions

Symmetric functions can be defined as
which is the algebra of power series of bounded degree in countably many variables that are invariant under permutation.

Symmetric functions

Symmetric functions can be defined as

$$
\Lambda:={\underset{\sim}{\check{n}}}_{\lim _{n}} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}
$$

which is the algebra of power series of bounded degree in countably many variables that are invariant under permutation. We have

$$
\Lambda=\mathbb{K}\left[e_{1}, e_{2}, \ldots\right]=\mathbb{K}\left[h_{1}, h_{2}, \ldots\right] \stackrel{\text { ch. } 0}{=} \mathbb{K}\left[p_{1}, p_{2}, \ldots\right],
$$

where e_{n}, h_{n}, and p_{n} denote the $n^{\text {th }}$ elementary, complete homogeneous, and power sum symmetric functions respectively.

Symmetric functions

Symmetric functions can be defined as

$$
\Lambda:=\underset{{\underset{n}{n}}^{\lim } \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}, ., ~ . ~}{\text {, }}
$$

which is the algebra of power series of bounded degree in countably many variables that are invariant under permutation. We have

$$
\Lambda=\mathbb{K}\left[e_{1}, e_{2}, \ldots\right]=\mathbb{K}\left[h_{1}, h_{2}, \ldots\right] \stackrel{\text { ch. } 0}{=} \mathbb{K}\left[p_{1}, p_{2}, \ldots\right],
$$

where e_{n}, h_{n}, and p_{n} denote the $n^{\text {th }}$ elementary, complete homogeneous, and power sum symmetric functions respectively.
The homogeneous part $\Lambda^{(n)}$ has several linear bases indexed by $\mu \vdash n$: the multiplicative ones, the monomials m_{μ} and the Schur functions s_{μ}.

Symmetric functions

Symmetric functions can be defined as

$$
\Lambda:=\underset{{\underset{n}{n}}^{\lim } \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}, ., ~ . ~}{\text {, }}
$$

which is the algebra of power series of bounded degree in countably many variables that are invariant under permutation. We have

$$
\Lambda=\mathbb{K}\left[e_{1}, e_{2}, \ldots\right]=\mathbb{K}\left[h_{1}, h_{2}, \ldots\right] \stackrel{\text { ch. } 0}{=} \mathbb{K}\left[p_{1}, p_{2}, \ldots\right],
$$

where e_{n}, h_{n}, and p_{n} denote the $n^{\text {th }}$ elementary, complete homogeneous, and power sum symmetric functions respectively.
The homogeneous part $\Lambda^{(n)}$ has several linear bases indexed by $\mu \vdash n$: the multiplicative ones, the monomials m_{μ} and the Schur functions s_{μ}. If $\mathbb{K}=\mathbb{Q}(q, t)$, we also have the Macdonald polynomials $\widetilde{H}_{\mu}(q, t)$.

Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are the Frobenius characteristic of some module.

Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are the Frobenius characteristic of some module.

Let $\mathcal{A}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, and let S_{n} act on \mathcal{A}_{n} diagonally the two sets of variables. The representation

$$
\mathcal{D} \mathcal{H}_{n}=\mathcal{A}_{n} /\left(\left(\mathcal{A}_{n}\right)_{+}^{S_{n}}\right)
$$

is known as diagonal coinvariants. The action is bi-homogeneous so the representation is bigraded.

Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are the Frobenius characteristic of some module.

Let $\mathcal{A}_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, and let S_{n} act on \mathcal{A}_{n} diagonally the two sets of variables. The representation

$$
\mathcal{D} \mathcal{H}_{n}=\mathcal{A}_{n} /\left(\left(\mathcal{A}_{n}\right)_{+}^{S_{n}}\right)
$$

is known as diagonal coinvariants. The action is bi-homogeneous so the representation is bigraded.

Let us define $\nabla: \Lambda \rightarrow \Lambda$ as $\nabla \widetilde{H}_{\mu}:=e_{|\mu|}\left[B_{\mu}\right] \widetilde{H}_{\mu}$. We have

$$
\operatorname{Frob}_{q, t}\left(\mathcal{D} \mathcal{H}_{n}\right)=\nabla e_{n},
$$

and that Macdonald polynomials are the Frobenius characteristics of the Garsia-Haiman submodules of $\mathcal{D} \mathcal{H}_{n}$.

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \mathrm{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \mathrm{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)$ is the set of labelled Dyck paths of size n.

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)$ is the set of labelled Dyck paths of size n.
$\operatorname{area}(\pi)$ is the number of whole squares between the path and the diagonal.

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)$ is the set of labelled Dyck paths of size n.
$\operatorname{area}(\pi)$ is the number of whole squares between the path and the diagonal. $\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)$ is the set of labelled Dyck paths of size n.
$\operatorname{area}(\pi)$ is the number of whole squares between the path and the diagonal. $\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.
x^{π} is the product of the variables indexed by the labels $\left(x_{1}^{2} x_{2}^{2} x_{4}{ }^{3} x_{7}\right)$.

The shuffle theorem

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)$ is the set of labelled Dyck paths of size n.
$\operatorname{area}(\pi)$ is the number of whole squares between the path and the diagonal. $\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.
x^{π} is the product of the variables indexed by the labels $\left(x_{1}^{2} x_{2}^{2} x_{4}{ }^{3} x_{7}\right)$.

The Delta conjecture (rise version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{* k}$ is the set of labelled Dyck paths of size n with k decorated rises.

The Delta conjecture (rise version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{* k}$ is the set of labelled Dyck paths of size n with k decorated rises.

A rise is a vertical step preceded by a vertical step.

The Delta conjecture (rise version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{* k}$ is the set of labelled Dyck paths of size n with k decorated rises.

A rise is a vertical step preceded by a vertical step. $\operatorname{dinv}(\pi)$ is the same as before.

The Delta conjecture (rise version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{* k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{* k}$ is the set of labelled Dyck paths of size n with k decorated rises.

A rise is a vertical step preceded by a vertical step.
$\operatorname{dinv}(\pi)$ is the same as before.
$\operatorname{area}(\pi)$ is the number of whole squares between the path and the diagonal in rows that do not contain a decoration.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{\bullet k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n)^{\bullet k}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

A valley is a vertical step preceded by a horizontal step that can be removed.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n) \bullet k} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

A valley is a vertical step preceded by a horizontal step that can be removed. $\operatorname{dinv}(\pi)$ is the number of diagonal inversions such that the lower label is not decorated, minus the number of decorations.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n) \bullet k} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

A valley is a vertical step preceded by a horizontal step that can be removed. $\operatorname{dinv}(\pi)$ is the number of diagonal inversions such that the lower label is not decorated, minus the number of decorations.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n) \bullet k} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

A valley is a vertical step preceded by a horizontal step that can be removed. $\operatorname{dinv}(\pi)$ is the number of diagonal inversions such that the lower label is not decorated, minus the number of decorations.

The Delta conjecture (valley version)

$$
\Delta_{e_{n-k-1}}^{\prime} e_{n}=\sum_{\pi \in \operatorname{LD}(n) \bullet k} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\mathrm{LD}(n)^{\bullet k}$ is the set of labelled Dyck paths of size n with k decorated valleys.

A valley is a vertical step preceded by a horizontal step that can be removed. $\operatorname{dinv}(\pi)$ is the number of diagonal inversions such that the lower label is not decorated, minus the number of decorations. area (π) is the same as before.

Super Diagonal Coinvariants

Let $X_{i}=\left(x_{1}^{(i)}, \ldots, x_{n}^{(i)}\right)$ and $\Theta_{j}=\left(\theta_{1}^{(j)}, \ldots, \theta_{n}^{(j)}\right)$ be sets of n variables.
Let $\mathcal{A}_{n}^{(b, f)}=\mathbb{C}\left[X_{1}, \ldots, X_{b}\right] \otimes \Lambda\left\{\Theta_{1}, \ldots, \Theta_{f}\right\}$ be the tensor product of a symmetric algebra and an exterior algebra, endowed with an action of S_{n} given by diagonal permutation of the $b+f$ sets of variables.
The representation

$$
\mathcal{D} \mathcal{H}_{n}^{(b, f)}=\mathcal{A}_{n}^{(b, f)} /\left(\left(\mathcal{A}_{n}^{(b, f)}\right)_{+}^{S_{n}}\right)
$$

is known as super diagonal coinvariants. As before, the action is multihomogeneous so the representation is multigraded.
When $b=2$ and $f=0$, we get back the usual diagonal coinvariants. For other small values of b and f, we get results in the same fashion as the shuffle theorem (e.g. $(2,1)$ gives the Delta conjecture).

State of the art

(b,f) Symmetric function Combinatorics

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function	Combinatorics
$(1,0)$	$\widetilde{H}_{(n)}$	Words

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function	Combinatorics
$(1,0)$	$\widetilde{H}_{(n)}$	Words
$(0,1)$	$s_{n-k, 1^{k}}$	Hook tableaux

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function	Combinatorics
$(1,0)$	$\widetilde{H}_{(n)}$	Words
$(0,1)$	$s_{n-k, 1^{k}}$	Hook tableaux
$(2,0)$	∇e_{n}	Dyck paths

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function	Combinatorics
$(1,0)$	$\widetilde{H}_{(n)}$	Words
$(0,1)$	$s_{n-k, 1^{k}}$	Hook tableaux
$(2,0)$	∇e_{n}	Dyck paths
$(1,1)$	$\left.\Theta_{e_{k}} \nabla e_{n-k}\right\|_{t=0}$	Ordered set partitions

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function	Combinatorics
$(1,0)$	$\widetilde{H}_{(n)}$	Words
$(0,1)$	$s_{n-k, 1^{k}}$	Hook tableaux
$(2,0)$	∇e_{n}	Dyck paths
$(1,1)$	$\left.\Theta_{e_{k}} \nabla e_{n-k}\right\|_{t=0}$	Ordered set partitions
$(0,2)$	$\left.\Theta_{e_{l}} \Theta_{e_{k}} \nabla e_{n-k-l}\right\|_{q=t=0}$	231-avoiding SSW

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function
$(1,0)$	$\widetilde{H}_{(n)}$
$(0,1)$	$s_{n-k, 1^{k}}$
$(2,0)$	∇e_{n}
$(1,1)$	$\left.\Theta_{e_{k}} \nabla e_{n-k}\right\|_{t=0}$
$(0,2)$	$\left.\Theta_{e_{l}} \Theta_{e_{k}} \nabla e_{n-k-l}\right\|_{q=t=0}$
$(2,1)$	$\Theta_{e_{k}} \nabla e_{n-k}=\Delta_{e_{n-k-1}}^{\prime} e_{n}$

Combinatorics
Words
Hook tableaux
Dyck paths
Ordered set partitions
231-avoiding SSW
Decorated Dyck paths

State of the art

Combinatorics

Words
Hook tableaux
Dyck paths
Ordered set partitions
231-avoiding SSW
Decorated Dyck paths
Segmented Smirnov words

State of the art

(\mathbf{b}, \mathbf{f})	Symmetric function
$(1,0)$	$\widetilde{H}_{(n)}$
$(0,1)$	$s_{n-k, 1^{k}}$
$(2,0)$	∇e_{n}
$(1,1)$	$\left.\Theta_{e_{k}} \nabla e_{n-k}\right\|_{t=0}$
$(0,2)$	$\left.\Theta_{e_{l}} \Theta_{e_{k}} \nabla e_{n-k-l}\right\|_{q=t=0}$
$(2,1)$	$\Theta_{e_{k}} \nabla e_{n-k}=\Delta_{e_{n-k-1}}^{\prime} e_{n}$
$(1,2)$	$\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right\|_{t=0}$
$(2,2)$	$\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}$

Combinatorics

Words
Hook tableaux
Dyck paths
Ordered set partitions
231-avoiding SSW
Decorated Dyck paths
Segmented Smirnov words
2-decorated Dyck paths

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

SW (n, k, l) is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sininv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

SW (n, k, l) is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sininv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

SW (n, k, l) is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

SW (n, k, l) is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.
$\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.
$\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.
$\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.
$\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators.
$\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Smirnov words

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \operatorname{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

A Smirnov word is a word in the alphabet \mathbb{Z}_{+}such that consecutive letters are distinct. A segmented Smirnov word is a Smirnov word in the alphabet $\mathbb{Z}_{+} \cup\{\mid\}$.

$$
w=4|423| 1214|432414| 3|1231412| 4 \mid 232
$$

$\mathrm{SW}(n, k, l)$ is the set of segmented Smirnov words with n integer entries, k ascents, l descents, and $n-k-l-1$ block separators. $\operatorname{sminv}(w)$ is the total number of sminversions, that is, $2-31$ or $2-321$ patterns, where block separators are greater than any integer. $x_{w}\left(=x_{1}^{6} x_{2}^{7} x_{3}^{5} x_{4}^{8}\right)$ is the monomial associated to w.

Main recurrence

We want to show that

$$
\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}=\sum_{w \in \mathrm{SW}(n, k, l)} q^{\operatorname{sminv}(w)} x_{w}
$$

by proving that the recurrence relation

$$
\begin{aligned}
& h_{j}^{\perp} \operatorname{SF}(n, k, l)=\sum_{r=0}^{j} \sum_{a=0}^{j} \sum_{i=0}^{j}\left[\begin{array}{c}
n-k-l-(j-r-a)-1 \\
i
\end{array}\right]_{q} \\
& \times q^{\left(\frac{a-i}{2}\right)}\left[\begin{array}{c}
n-k-l-(j-r-a+i) \\
a-i
\end{array}\right]_{q}\left[\begin{array}{c}
n-k-l \\
j-r-a+i
\end{array}\right]_{q} \\
& \times q^{\left(\begin{array}{c}
r-i
\end{array}\right)}\left[\begin{array}{c}
n-k-l-(j-r-a+i) \\
r-i
\end{array}\right]_{q} \operatorname{SF}(n-j, k-r, l-a)
\end{aligned}
$$

with initial conditions $\operatorname{SF}(0, k, l)=\delta_{k, 0} \delta_{l, 0}$ and $\operatorname{SF}(n, k, l)=0$ if $n<0$, is satisfied by both.

Segmented permutations

The recurrence for $\left.\Theta_{e_{k}} \Theta_{e_{l}} \nabla e_{n-k-l}\right|_{t=0}$ is a result by D'Adderio and Romero (2020). We proved the combinatorial one, and show here the case $j=1$, corresponding to segmented permutations.
Let $\mathrm{SP}(n, k, l)$ be the set of segmented permutations with k ascents and l descents, and let

$$
\mathrm{SP}_{q}(n, k, l)=\sum_{\sigma \in \mathrm{SP}(n, k, l)} q^{\operatorname{sminv}(\sigma)}
$$

We have

$$
\begin{aligned}
\mathrm{SP}_{q}(n, k, l)=[& n-k-l]_{q}\left(\mathrm{SP}_{q}(n-1, k, l)+\mathrm{SP}_{q}(n-1, k-1, l)\right. \\
& \left.+\mathrm{SP}_{q}(n-1, k, l-1)+\mathrm{SP}_{q}(n-1, k-1, l-1)\right)
\end{aligned}
$$

with initial conditions $\mathrm{SP}_{q}(0, k, l)=\delta_{k, 0} \delta_{l, 0}$.

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

Let $\sigma \in \mathrm{SP}(9,3,2)$. The four summands corresponds to the possibilities for the maximal entry 9 ; the q-binomial counts the sminversions in which it is the middle entry of the $2-31$ pattern.

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

Let $\sigma \in \mathrm{SP}(9,3,2)$. The four summands corresponds to the possibilities for the maximal entry 9 ; the q-binomial counts the sminversions in which it is the middle entry of the $2-31$ pattern. If it is a singleton block, we remove it, together with its block separator.

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

Let $\sigma \in \mathrm{SP}(9,3,2)$. The four summands corresponds to the possibilities for the maximal entry 9 ; the q-binomial counts the sminversions in which it is the middle entry of the $2-31$ pattern.
If it is an ascent but not a descent, we remove it.

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

Let $\sigma \in \mathrm{SP}(9,3,2)$. The four summands corresponds to the possibilities for the maximal entry 9 ; the q-binomial counts the sminversions in which it is the middle entry of the $2-31$ pattern.
If it is a descent but not an ascent, we remove it.

An example

We want to show that $\mathrm{SP}_{q}(9,3,2)$ is equal to

$$
[4]_{q}\left(\mathrm{SP}_{q}(8,3,2)+\mathrm{SP}_{q}(8,2,2)+\mathrm{SP}_{q}(8,3,1)+\mathrm{SP}_{q}(8,2,1)\right)
$$

Let $\sigma \in \mathrm{SP}(9,3,2)$. The four summands corresponds to the possibilities for the maximal entry 9 ; the q-binomial counts the sminversions in which it is the middle entry of the $2-31$ pattern.
If it is both an ascent and a descent, we replace it with a block separator.

$$
\begin{array}{cccc}
7|15| 4 \mid 23986 & \overbrace{7|15| 4923 \mid 86}^{7|15| 4|23| 86} & 7|1594| 23 \mid 86 & 7915|4| 23 \mid 86 \\
q^{0} & q^{1} & q^{2} & q^{3}
\end{array}
$$

A unified Delta conjecture

There is a bijection

$$
\phi: \operatorname{SW}(n, k, l) \leftrightarrow\left\{\pi \in \operatorname{LD}(n)^{* k, \bullet l} \mid \operatorname{area}(\pi)=0\right\}
$$

such that $\operatorname{sdinv}(w)=\operatorname{dinv}(\phi(w))$ when $k=0$ or $l=0$.

12424|143

					$*$	(4)	
					\bullet	3	
					1		
		$*$	4				
		\bullet	2				
	(4)						
	(2)						
	(1)						

References

Erik Carlsson and Anton Mellit． A proof of the shuffle conjecture． J．Amer．Math．Soc．，31（3）：661－697， 2018.

围 Michele D＇Adderio，Alessandro Iraci，and Anna Vanden Wyngaerd． Theta operators，refined Delta conjectures，and coinvariants． Advances in Mathematics，376：107447，January 2021.
－Michele D＇Adderio and Anton Mellit．
A proof of the compositional Delta conjecture． Advances in Mathematics，402：108342，June 2022.

图 James Haglund，Jeffrey B．Remmel，and Andrew T．Wilson． The Delta Conjecture． Trans．Amer．Math．Soc．，370（6）：4029－4057， 2018.

围 Alessandro Iraci，Philippe Nadeau，and Anna Vanden Wyngaerd． Smirnov words and the Delta Conjectures． arXiv e－prints，page arXiv：2312．03956，December 2023.

Bonus slides!

Bases of Λ

The bases of $\Lambda^{(n)}$ are indexed by $\lambda \vdash n$.

$$
\begin{array}{rlrl}
e_{\lambda} & =\prod e_{\lambda_{i}}, & e_{k}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}} \\
h_{\lambda} & =\prod h_{\lambda_{i}}, & h_{k}=\sum_{i_{1} \leq \cdots \leq i_{k}} x_{i_{1}} \cdots x_{i_{k}} \\
p_{\lambda} & =\prod p_{\lambda_{i}}, & p_{k}=\sum_{i \geq 1} x_{i}^{k} \\
m_{\lambda} & =\sum_{i_{1}, \ldots, i_{\ell(\lambda)}} x_{i_{1}}^{\lambda_{1}} \cdots x_{i_{\ell(\lambda)}}^{\lambda_{\ell(\lambda)}}
\end{array}
$$

Bases of Λ

The bases of $\Lambda^{(n)}$ are indexed by $\lambda \vdash n$.

$$
\begin{aligned}
e_{(2,1)} & =\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots\right)\left(x_{1}+x_{2}+x_{3}+\ldots\right) \\
h_{(2,1)} & =\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\ldots\right)\left(x_{1}+x_{2}+x_{3}+\ldots\right) \\
p_{(2,1)} & =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots\right)\left(x_{1}+x_{2}+x_{3}+\ldots\right) \\
m_{(2,1)} & =\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\ldots\right)
\end{aligned}
$$

The Schur functions

A semi-standard Young tableau of shape $\lambda \vdash n$ is a filling of the Ferrers diagram of λ with positive integer numbers that is weakly increasing along rows and strictly increasing along columns.

1	1	3	7	7
2	3	4	8	
3	7			

The Schur functions

A semi-standard Young tableau of shape $\lambda \vdash n$ is a filling of the Ferrers diagram of λ with positive integer numbers that is weakly increasing along rows and strictly increasing along columns.

1	1	3	7	7
2	3	4	8	
3	7			

Given a partition $\lambda \vdash n$, we define

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} x^{T}
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ, and x^{T} denote the products of the variables indexed by the entries of the tableau.

The Schur functions

A semi-standard Young tableau of shape $\lambda \vdash n$ is a filling of the Ferrers diagram of λ with positive integer numbers that is weakly increasing along rows and strictly increasing along columns.

Given a partition $\lambda \vdash n$, we define

$$
s_{(2,1)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}+\ldots
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ, and x^{T} denote the products of the variables indexed by the entries of the tableau.

Plethystic notation

Let $A\left(q, t ; x_{1}, x_{2}, \ldots\right) \in \mathbb{Q}(q, t)\left(\left(x_{1}, x_{2}, \ldots\right)\right)$, and let

$$
f=\sum_{\lambda} f_{\lambda}(q, t) p_{\lambda} \in \Lambda
$$

with $f_{\lambda}(q, t) \in \mathbb{Q}(q, t)$. The plethystic evaluation of f in A is

$$
f[A]:=\sum_{\lambda} f_{\lambda}(q, t) \prod_{i=1}^{\ell(\lambda)} A\left(q^{\lambda_{i}}, t^{\lambda_{i}} ; x_{1}^{\lambda_{i}}, x_{2}^{\lambda_{i}}, \ldots\right) \in \mathbb{Q}(q, t)\left(\left(x_{1}, x_{2}, \ldots\right)\right)
$$

Equivalently, if A has an expression as sum of monomials (in q, t, x_{i} with coefficient 1), then $f[A]$ is the expression obtained from $f[X]$ by replacing the x_{i} 's with such monomials, where $X=x_{1}+x_{2}+\ldots$.

In this sense, we can interpret a sum of monomials as an alphabet, and a sum of expressions as concatenation of alphabets.

Macdonald polynomials

The (modified) Macdonald polynomials $\widetilde{H}_{\mu}[X ; q, t]$ are defined by the triangularity and normalization axioms

$$
\begin{aligned}
& \widetilde{H}_{\mu}[X(1-q) ; q, t]=\sum_{\lambda \geq \mu} a_{\lambda \mu}(q, t) s_{\lambda}[X] \\
& \widetilde{H}_{\mu}[X(1-t) ; q, t]=\sum_{\lambda \geq \mu^{\prime}} b_{\lambda \mu}(q, t) s_{\lambda}[X] \\
& \left\langle\widetilde{H}_{\mu}[X ; q, t], s_{(n)}[X]\right\rangle=1
\end{aligned}
$$

for suitable coefficients $a_{\lambda \mu}(q, t), b_{\lambda \mu}(q, t) \in \mathbb{Q}(q, t)$. Here \leq denotes the dominance order on partitions, and the square brackets denote the plethystic evaluation of symmetric functions.

The λ-ring structure

A λ-ring is a ring Λ with a collection of ring homomorphisms $p_{n}: \Lambda \rightarrow \Lambda$ satisfying

$$
p_{0}[x]=1, \quad p_{1}[x]=x, \quad p_{m}\left[p_{n}[x]\right]=p_{m n}[x]
$$

for $m, n \in \mathbb{N}$ and $x \in \Lambda$.
In the case of symmetric functions, the homomorphisms are defined by

$$
p_{n}\left[f\left(q, t ; x_{1}, x_{2}, \ldots\right)\right]=f\left(q^{n}, t^{n} ; x_{1}^{n}, x_{2}^{n}, \ldots\right),
$$

which is also called the plethystic evaluation of p_{n} in f. This in fact extends to a more general operation which comes in extremely handy when dealing with symmetric functions.

The Hopf algebra structure

A Hopf algebra is a structure that is simultaneously an algebra and a coalgebra such that the structures are compatible, which is also equipped with an anti-automorphism, called antipode, satisfying certain relations.

In the case of symmetric functions, the coproduct is defined by

$$
\Delta(f[X])=f[X+Y] \in \Lambda[X] \otimes \Lambda[Y]
$$

and the antipode map by $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$.
Note that, since Λ is commutative ω is actually a homomorphism; in fact, $\omega\left(e_{n}\right)=h_{n}$ and these generate Λ as an algebra. Moreover, since the Schur functions are orthonormal, it is also an isometry.

Delta and Theta operators

The Delta operators are two families of linear operators $\Delta_{f}, \Delta_{f}^{\prime}: \Lambda \rightarrow \Lambda$ (for $f \in \Lambda$) that extend ∇. These operators are defined as

$$
\Delta_{f} \widetilde{H}_{\mu}=f\left[B_{\mu}\right] \widetilde{H}_{\mu}, \quad \quad \Delta_{f}^{\prime} \widetilde{H}_{\mu}=f\left[B_{\mu}-1\right] \widetilde{H}_{\mu}
$$

In particular the Macdonald polynomials are eigenvectors for all these operators, and $\left.\left.\nabla\right|_{\Lambda^{(n)}} \equiv \Delta_{e_{n}}\right|_{\Lambda^{(n)}}$.

Delta and Theta operators

The Delta operators are two families of linear operators $\Delta_{f}, \Delta_{f}^{\prime}: \Lambda \rightarrow \Lambda$ (for $f \in \Lambda$) that extend ∇. These operators are defined as

$$
\Delta_{f} \widetilde{H}_{\mu}=f\left[B_{\mu}\right] \widetilde{H}_{\mu}, \quad \quad \Delta_{f}^{\prime} \widetilde{H}_{\mu}=f\left[B_{\mu}-1\right] \widetilde{H}_{\mu}
$$

In particular the Macdonald polynomials are eigenvectors for all these operators, and $\left.\left.\nabla\right|_{\Lambda^{(n)}} \equiv \Delta_{e_{n}}\right|_{\Lambda^{(n)}}$.

Theta operators are a family of linear operators $\Theta_{f}: \Lambda \rightarrow \Lambda($ for $f \in \Lambda)$, defined as

$$
\Theta_{f}(g)=\boldsymbol{\Pi} f\left[\frac{X}{(1-q)(1-t)}\right] \boldsymbol{\Pi}^{-1} g
$$

where $\boldsymbol{\Pi}=\sum_{k \in \mathbb{N}}(-1)^{k} \Delta_{e_{k}}^{\prime}$, and the square brackets denote plethysm.

The eigenvalues of ∇ and $\Delta_{e_{k}}$

Let $\mu \vdash n$. We define $B_{\mu}(q, t):=\sum_{c \in \lambda} q^{a^{\prime}(c)} t^{\ell^{\prime}(c)}$, where a^{\prime} and ℓ^{\prime} denote the coarm and the coleg of a cell.

For $\mu=(5,4,2)$, we have the diagram

1	q	q^{2}	q^{3}	q^{4}
t	$q t$	$q^{2} t$	$q^{3} t$	
t^{2}	$q t^{2}$			

and taking the sum of the entries we get

$$
B_{\mu}(q, t)=1+q+t+q^{2}+q t+t^{2}+q^{3}+q^{2} t+q t^{2}+q^{4}+q^{3} t
$$

The plethystic evaluation of e_{k} in B_{μ} is the expression $e_{k}\left[B_{\mu}\right]$ given by the sum over all the choices of k different monomials, among the ones appearing in B_{μ}, of the product of the chosen monomials.

The bigraded Frobenius characteristic

Let \mathcal{M} be a (x, y)-graded vector space, with a bi-homogeneous action of the symmetric group. Recall that irreducible representations of S_{n} are indexed by partitions of n, and denote by $\lambda(V)$ the partition indexing an irreducible S_{n}-module V.

We define

$$
\operatorname{Frob}_{q, t}(\mathcal{M}):=\sum_{\substack{V \subseteq \mathcal{M} \\ V \text { irreducible }}} q^{\operatorname{deg}_{x}(V)} t^{\operatorname{deg}_{y}(V)} s_{\lambda(V)}
$$

which is an element of the symmetric functions algebra Λ over $\mathbb{Q}(q, t)$.

Diagonal inversions

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.

Diagonal inversions

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.

A primary diagonal inversion is a pair of labels in the same diagonal, such that the bottom-most one is smaller.

Diagonal inversions

$$
\nabla e_{n}=\sum_{\pi \in \operatorname{LD}(n)} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)} x^{\pi}
$$

$\operatorname{dinv}(\pi)$ is the total number of diagonal inversions.

A primary diagonal inversion is a pair of labels in the same diagonal, such that the bottom-most one is smaller.
A secondary diagonal inversion is a pair of labels in two consecutive diagonals, such that the bottom-most one is greater and higher.

