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Tanglegrams

A binary tree (for this talk) is an unordered (rooted) binary tree
with labeled leaves and unlabeled internal vertices:

1 5

2 3

4



An ordered pair of trees sharing the same set of leaves is
called a tanglegram. (The term comes from biology.)

1 12 23 3

which we can also draw as
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3



Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV
wanted to count unlabeled tanglegrams

which may defined formally as orbits of tanglegrams under the
action of the symmetric group permutating the labels on the
leaves.



Burnside’s Lemma

To count orbits, we use Burnside’s Lemma: If a group G acts on
a set S then the number of orbits is

1
|G|

∑
g∈G

fix(g),

where fix(g) is the number of elements of S fixed by G.



It’s not hard to show that fix(g) depends only on the conjugacy
class of g.

In the case of the symmetric group Sn, the conjugacy classes
correspond to cycle types, which are indexed by partitions of n.
If λ = (1m12m2 · · · ) is a partition of n then the number of
elements of Sn of cycle type λ is n!/zλ, where
zλ = 1m1m1!2m2m2! · · · .

If we define fix(λ) be fix(g) for any g ∈ Sn of cycle type λ, then
we may write Burnside’s sum for Sn as

1
n!

∑
λ⊢n

fix(λ)
n!
zλ

=
∑
λ⊢n

fix(λ)

zλ
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Counting unlabeled binary trees

Now let rλ be the number of binary trees fixed by a permutation
of cycle type λ. Then the number of unlabeled binary trees on n
vertices is ∑

λ⊢n

rλ
zλ

.

These numbers are sometimes called Wedderburn-Etherington
numbers, A001190 in the OEIS (Online Encyclopedia of Integer
Sequences).
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Counting unlabeled tanglegrams

To count unlabeled tanglegrams, we need to count ordered
pairs of trees fixed by a permutation.

But an ordered pair (T1,T2) of binary trees is fixed by a
permutation π if and only if T1 and T2 are both fixed by π. So
the number of ordered pairs of binary trees fixed by a
permutation of cycle type λ is r2

λ .

So the number of unlabeled tanglegrams with n leaves is

∑
λ⊢n

r2
λ

zλ
.
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Tangled chains

Billey, Konvalinka, and Matsen define a tangled chain of length
k to be a k -tuple of binary trees sharing the same set of leaves.

By the same reasoning, the number of unlabeled tangled
chains of length k with n leaves is

∑
λ⊢n

r k
λ

zλ
.



A formula for rλ

Billey, Konvalinka, and Matsen found a remarkable formula
for rλ:
rλ is zero if λ is not a binary partition (a partition in which every
part is a power of 2), and if λ is a binary partition,
λ = (λ1, λ2, . . . , λk ) where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1, then

rλ =
k∏

i=2

(
2(λi + · · ·+ λk )− 1

)
.

For example, r(4,2,1) =
(
2 · (2 + 1)− 1

)
(2 · 1 − 1) = 5 · 1 = 5.

The total number of of binary trees with n leaves is

r(1n) = 1 · 3 · · · (2n − 3).
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Billey, Konvalinka, and Matsen proved the formula for rλ by
finding a recurrence for rλ and showing that the product
satisfies this recurrence.

Later, a direct combinatorial proof was found by Éric Fusy.

But the formula is still somewhat mysterious.
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The Amdeberhan-Konvalinka conjecture
Tewodros Amdeberhan and Matjaž Konvalinka (independently)
looked at what happens in this formula if we replace 2 by some
other number.

They found a nice conjecture for replacing 2 with
a prime:

Let q be a prime. We say that a partition λ is q-ary if every part
of λ is a power of q. Define rλ,q by

rλ,q =

{
0, if λ is not q-ary∏l(λ)

j=2(qλj + qλj+1 + · · ·+ qλl(λ) − 1) if λ is q-ary

(Here l(λ) is the number of parts of λ.)

The Amdeberhan-Konvalinka Conjecture: For every positive
integer k , ∑

λ⊢n

r k
λ,q

zλ

is an integer.
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Symmetric functions

The Amdeberhan-Konvalinka conjecture is intimately
connected with certain symmetric functions.

The symmetric functions that are homogeneous of degree n
form a vector space Λn whose dimension is the number of
partitions of n.

There are several important bases for Λn, indexed by partitions
of n, but we only need three of them for now.
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Bases for symmetric functions

First, the monomial symmetric functions: If λ = (λ1, λ2, . . . , λk )
then mλ is the sum of all distinct monomials of the form

xλ1
i1

· · · xλk
ik
.

Next, the power sum symmetric functions are defined by

pn =
∞∑

i=1

xn
i

and pλ = pλ1pλ2 · · · pλk .

Finally, the complete symmetric functions

hn =
∑

i1≤···≤in

xi1 · · · xin .

and hλ = hλ1hλ2 · · · hλk .



Integral symmetric functions

A symmetric function is called integral if its coefficients are
integers. (This is equivalent to its coefficients being integers in
the monomial basis, or any of the other common bases except
for the power sum basis.)

For example 1
2p2

1 + 1
2p2 is integral because it is equal to∑

i≤j

xixj = h2 = m(2) + m(1,1).

If f is an integral symmetric function expressed in terms of the
pλ, then setting each pj to 1 gives an integer, since setting each
pj to 1 is equivalent to setting x1 = 1, xi = 0 for i > 1.

The cycle index of any species (and more generally, the
characteristic of any representation of Sn) is integral.
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The Kronecker product

We recall the operation of Kronecker product on symmetric
functions, defined by

pλ ∗ pµ = zλδλ,µ pλ,

or equivalently,
pλ

zλ
∗ pµ

zµ
= δλ,µ

pλ

zλ
,

and linearity.

(It corresponds to tensor products of Sn
representations.)
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Theorem. If f and g are integral symmetric functions then so is
f ∗ g.

Proof sketch. By linearity, it is enough to prove this when f = hλ

and g = hµ. But hλ ∗ hµ is the cycle index for the species
Eλ ∗ Eµ, where if λ = (λ1, λ2, . . . , λk ) then Eλ = Eλ1Eλ2 · · ·Eλk .
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Amdeberhan-Konvalinka symmetric functions

We can generalize the Amdeberhan-Konvalinka conjecture to
prime powers. Let m be a power of the prime q and define the
symmetric function

um(n, α) =
∑
λ⊢q n

pλ

zλ
α

l(λ)∏
j=2

(mλj + mλj+1 + · · ·+ mλl(λ) + α),

Here λ ⊢q n means that n is a q-ary partition.

Main Theorem. For any integer α, um(n, α) is an integral
symmetric function.

The Amdeberhan-Konvalinka conjecture follows from this
theorem, since the Amdeberhan-Konvalinka number∑

λ⊢n r k
λ,q/zλ is obtained by setting each pλ to 1 in the k th

Kronecker power
(
−uq(n,−1)

)∗k .
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Plethysm
To prove that the Amdeberhan-Konvalinka symmetric functions
are integral, we show that they satisfy certain equations
involving plethysm.

We recall the definitions. The plethysm of two symmetric
functions f and g is denoted f [g] or f ◦ g.

First suppose that g can be expressed as a sum of monic
terms, that is monomials xa1

1 xa2
2 . . . with coefficient 1.

In this case, if g = t1 + t2 + · · · , where the ti are monic terms,
then

f [g] = f (t1, t2, . . . ).

For example

f [e2] = f (x1x2, x1x3, x2x3, . . . )

f [2p2] = f (x2
1 , x

2
1 , x

2
2 , x

2
2 , . . . )
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For the general case, we can give a different characterization of
plethysm when f and g are expressed in terms of power sums.
First, pj [g] is the result of replacing each pi in g with pij . Then
f [g] is obtained by replacing each pj in f with pj [g].

So for fixed g, the map f 7→ f [g] is a homomorphism.
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Integrality of plethysm

If f and g are integral then so is f [g].

This is clear when the first definition of plethysm applies (g is a
sum of monic terms), and it’s not too hard to prove in the
general case.
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If f is a symmetric function of the form

p1 + higher order terms

then f has a unique plethystic inverse of the same form, which
we write as f [−1]. It satisfies

f ◦ f [−1] = f [−1] ◦ f = p1.

If f is integral then so is f [−1].



Back to the Billey-Konvalinka-Matsen formula
We now explain how to obtain the Billey-Konvalinka-Matsen
formula by repeated application of the binomial theorem. We
will then use essentially the same method for the general case.

We start with the cycle index for binary trees,

ZR =
∑
λ

rλ
pλ

zλ
.

As we saw using combinatorial species, ZR satisfies the
plethystic equation

ZR = p1 + h2[ZR],

where h2 =
∑

i≤j xixj =
1
2p2

1 + 1
2p2.

This is the symmetric
function refinement of the exponential generating function
equation

B(x) = x + B(x)2/2.

for binary trees.
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We may rewrite the equation for ZR as

(p1 − h2) ◦ ZR = p1

so ZR is the plethystic inverse of

p1 − h2 = p1 −
1
2

p2
1 − 1

2
p2

= −1
2
(1 − p1)

2 +
1
2
(1 − p2)

So if we set C = 1 − ZR then

p1 = −1
2

C2 +
1
2

p2[C].

We rearrange this into C2 = p2[C]− 2p1 and take square roots
to get

C = (p2[C]− 2p1)
1/2.
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We can use this formula to get an explicit formula for the
expansion of C, or more generally, of C−α in power sums.
(Note that C has constant term 1.)

Applying the binomial theorem gives

C−α = (p2[C]−2p1)
−α/2 =

∞∑
m1=0

(−2)m1

(
−α/2

m1

)
pm1

1 p2[C]−α/2−m1

Now from C = (p2[C]− 2p1)
1/2 we get p2[C] = (p4[C]− 2p2)

1/2

so

C−α =
∞∑

m1=0

(−2)m1

(
−α/2

m1

)
pm1

1 (p4[C]− 2p2)
−α/4−m1/2

=
∞∑

m1,m2=0

(−2)m1+m2

(
−α/2

m1

)(
−α/4 − m1/2

m2

)
× pm1

1 pm2
2 p4[C]−α/4−m1/2−m2 .



We can use this formula to get an explicit formula for the
expansion of C, or more generally, of C−α in power sums.
(Note that C has constant term 1.)
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Continuing in this way, we get the expansion of C−α into
powers of p1,p2,p4,p8, . . .

We can rearrange the product of binomial coefficients to get

C−α = F2(α) = 1+
∞∑

n=1

∑
λ⊢2n

pλ

zλ
α

l(λ)∏
j=2

(2λj+2λj+1+· · ·+2λl(λ)+α),

and in particular,

ZR = 1 − C =
∞∑

n=1

∑
λ⊢2n

pλ

zλ

l(λ)∏
j=2

(2λj + 2λj+1 + · · ·+ 2λl(λ) − 1),
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Lyndon symmetric functions

To generalize this, we introduce the “Lyndon symmetric
functions”

Lm =
1
m

∑
d |m

µ(d)pm/d
d

Then Lm counts “primitive necklaces” or “Lyndon words” and in
particular Lm is integral. In particular, if m is a power of a prime
q then

Lm =
1
m
(pm

1 − pm/q
q ).



Lemma. For all m > 1,

−Lm[1 − p1] = p1 + higher order terms.

Therefore −Lm[1 − p1] has a plethystic inverse.

Proof. We have

−Lm[1 − p1] = − 1
m

∑
d |m

µ(d)pm/d
d [1 − p1]

= − 1
m

∑
d |m

µ(d)(1 − pd)
m/d .

The constant term is − 1
m

∑
d |m

µ(d) = 0. The p1 term comes

from d = 1:

− 1
m
(1 − p1)

m = − 1
m
(1 − mp1 + · · · ) = − 1

m
+ p1 + · · · .



Lemma. For all m > 1,

−Lm[1 − p1] = p1 + higher order terms.

Therefore −Lm[1 − p1] has a plethystic inverse.

Proof. We have

−Lm[1 − p1] = − 1
m

∑
d |m

µ(d)pm/d
d [1 − p1]

= − 1
m

∑
d |m

µ(d)(1 − pd)
m/d .

The constant term is − 1
m

∑
d |m

µ(d) = 0. The p1 term comes

from d = 1:

− 1
m
(1 − p1)

m = − 1
m
(1 − mp1 + · · · ) = − 1

m
+ p1 + · · · .



Since Lm is integral, so is Lm[1 − p1]. Therefore −Lm[1 − p1]
has an integral plethystic inverse, Bm, so −Lm[1 − Bm] = p1.

Let Cm = 1 − Bm so that −Lm[Cm] = p1. Thus Cm is a right
plethystic inverse of −Lm. There may be several right plethystic
inverses of −Lm, but Cm is the only one with constant term 1.

If m is a power of the prime q, then

Lm =
1
m
(pm

1 − pm/q
q ).

so
Cm

m − pq[Cm]
m/q = −mp1,

so
Cm = (pq[Cm]

m/q − mp1)
1/m

As before, we can expand by the binomial theorem and iterate
to get the explicit formula for Cα

m.
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Recap
(1) Let m be a an integer greater than 1, and let Bm be the
plethystic inverse of −Lm[1 − p1], where

Lm =
1
m

∑
d |m

µ(d)pm/d
d .

Then Bm is integral.

(2) Now let m be a power of the prime q, and let Cm = 1 − Bm.
Then for all α,

C−α
m = 1 +

∞∑
n=1

∑
λ⊢q n

pλ

zλ
α

l(λ)∏
j=2

(mλj + mλj+1 + · · ·+ mλl(λ) + α)

=
∞∑

n=0

∑
λ⊢q n

pλ

zλ

l(λ)∏
j=1

(mλj+1 + mλj+2 + · · ·+ mλl(λ) + α).
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Questions

1. Is Bm positive for all m? (Not just when m is a prime
power.)

The recurrence that works so nicely when m is a
prime power has negative terms when m is not a prime
power.

2. Does Bm have a combinatorial interpretation?
3. Is Bm Schur positive? If so, does it have a

representation-theoretic interpretation?

We can ask similar questions about C−1
m and 1 − Ck

m for
k = 1,2, . . . ,m − 1, which are all integral (and positive when m
is a prime power).
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How can we find a combinatorial interpretation for a
symmetric function?

Given a symmetric function F = F (x1, x2, . . . ), there are two
one-variable generating functions associated with it that may be
helpful in understanding what it counts.

First, we have F̃ = F (z,0,0, . . . ). It can be obtained by setting
pi = z i in F .

Second we have the exponential generating function

F =
∞∑

n=0

[x1x2 · · · xn]F
zn

n!

It can be obtained by setting p1 = z, p2 = p3 = · · · = 0 in F .
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If F is the symmetric function generating for some type of
“partially labeled objects” (for example, a cycle index via Pólya’s
theorem) then F̃ counts unlabeled objects (all labels are the
same) and F counts totally labeled objects (all labels are
different).



For simplicity, from here on I’ll write B and C for Bm and Cm.

For m = 2, the equation for B = B2 may be written

B = p1 +
1
2
(B2 + p2[B]) = p1 + h2[B]

so B̃ = B̃2 satisfies

B̃(z) = z +
1
2
(
B̃(z)2 + B̃(z2)

)
= z + h2[B̃(z)]

This means that B̃(z) counts unlabeled binary trees, as we
would expect. (Wedderburn-Etherington numbers.)

n 0 1 2 3 4 5 6 7 8 9
B̃n 0 1 1 1 2 3 6 11 23 46



For simplicity, from here on I’ll write B and C for Bm and Cm.

For m = 2, the equation for B = B2 may be written

B = p1 +
1
2
(B2 + p2[B]) = p1 + h2[B]

so B̃ = B̃2 satisfies

B̃(z) = z +
1
2
(
B̃(z)2 + B̃(z2)

)
= z + h2[B̃(z)]

This means that B̃(z) counts unlabeled binary trees, as we
would expect. (Wedderburn-Etherington numbers.)

n 0 1 2 3 4 5 6 7 8 9
B̃n 0 1 1 1 2 3 6 11 23 46



For m = 3, the equation for B = B3 may be written

B = p1 + B2 − 1
3
(
B3 − p3[B]

)
,

so B̃ = B̃3 satisfies

B̃(z) = z + B̃(z)2 − 1
3
(
B̃(z)3 − B̃(z3)

)
.

It is not clear how to interpret this.

The coefficients of B̃(z) are A352702 in the OEIS (also
A107092) but the OEIS has no useful information about these
numbers.

n 0 1 2 3 4 5 6 7 8 9
[zn] B̃3(z) 0 1 1 2 4 9 22 55 142 376
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Exponential generating functions
For the exponential generating functions, things are much nicer.
Writing B for Bm and C for Cm, we have (for all m, not just
prime powers)

C = (1 − mz)1/m

B = 1 − (1 − mz)1/m =
∞∑

n=1

(−1)n−1
(

1/m
n

)
(mz)n

=
∞∑

n=1

(m − 1)(2m − 1) · · · ((n − 1)m − 1)
zn

n!
,

and more generally,

1 − C k = 1 − (1 − mz)k/m

=
∞∑

n=1

k(m − k)(2m − k) · · · ((n − 1)m − k)
zn

n!
.



These exponential generating functions have several
combinatorial interpretations, which are most easily
approached through differential equations. We introduce
another auxiliary symmetric function T = C−1 = (1−B)−1, with
corresponding exponential generating function

T =
1
C

=
1

1 − B

=
1

(1 − mz)1/m

= 1 +
∞∑

n=1

(m + 1)(2m + 1) · · ·
(
(n − 1)m + 1

)zn

n!
.



To find combinatorial interpretations for these exponential
generating functions we take derivatives.

We find that

T ′(z) =
1

(1 − mz)(m+1)/m = T (z)m+1

The theory of exponential generating functions gives us a
combinatorial interpretation from this differential equation:
T (z) counts (m + 1)-ary increasing trees.
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For example, with m = 2, a ternary increasing tree is

1

8

5

7

42

93 6

▶ Every vertex has 3 children, but some of them may be
empty. (The empty tree is a ternary increasing tree.)

▶ Every vertex is less than all of its descendants.



To find the combinatorial interpretation for
1 − C k = 1 − (1 − mz)k/m, and in particular for B(z), which is
the case k = 1, we take its derivative:

d
dz

(
1 − (1 − mz)k/m) = k

(1 − mz)(m−k)/m = kT m−k

and in particular B′ = T m−1.

The theory of exponential generating functions tells us then that
B counts (m + 1)-ary increasing trees in which the root has
empty first and last children (so only m − 1 possibly nonempty
children). Let’s call them B-trees.
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So we know what the coefficient of x1 · · · xn in B counts. But
what about the other coefficients?

We might hope that they would count B-trees with repeated
labels allowed:

2

1

6

5

6

42

33 5

But of course this doesn’t work.
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Some ideas

The differential equation approach might be generalizable to
symmetric functions.

The analogue of the derivative d/dz on
symmetric functions is ∂/∂p1, and in fact B satisfies the
differential equation

∂B
∂p1

=
1

(1 − B)m−1 .

Unfortunately, this only determines the terms in B that contain
p1, and this isn’t enough.
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There are more general differential operators on symmetric
functions with nice combinatorial properties, ∂n = h⊥

n . For
example,

∂2 =
1
2
∂2

∂p2
1
+

∂

∂p2
,

and we have

∂2Bm =
1
2(m − 1)

(1 − Bm)2m−1

for m odd.

But I couldn’t get very far with this idea.
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Another idea is to look at B-trees with repeated labels allowed
but with certain inequalities that must be satisfied.

The
possibilities are general enough that I suspect that this works in
principle, but I don’t know if one can actually find the right
inequalities.



Another idea is to look at B-trees with repeated labels allowed
but with certain inequalities that must be satisfied. The
possibilities are general enough that I suspect that this works in
principle, but I don’t know if one can actually find the right
inequalities.



An idea for proving Schur positivity is to find a symmetric group
representation on the vector space spanned by B-trees. We
can start by having the group act by permuting the labels. But
this doesn’t preserve the increasing condition, so some kind of
“straightening” will be necessary.

(I don’t think a permutation
representation will work.)
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More models

There are some additional combinatorial models for the
coefficients of B (and T ) that give alternatives to the
increasing (m + 1)-ary trees.

First we have m-Stirling permutations. These are permutations
of the multiset {1m,2m, . . . ,nm} with the property that between
two occurrences of i only numbers larger than i appear, for
example, with m = 2, 1221344553. There is a simple bijection
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It may be defined recursively (for m = 2) by
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(m − 1)-colored increasing ordered trees

Another interpretation is suggested by the differential equation

B′ =
1

(1 − B)m−1 .

(Recall that B(z) = 1 − (1 − mz)1/m.)

For m = 2, this is B′ = 1/(1 − B) so B counts increasing
ordered trees:
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More generally, the differential equation

B′ =
1

(1 − B)m−1 .

means that B counts ordered trees in which the edges are
colored in colors 1, 2, . . . , m − 1 with the property that among
the children of any vertex, those of color 1 come first, then
those of color 2, and so on. (But not every color must appear.)
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Thank you!


