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What are combinatorial species?

The theory of combinatorial species, introduced by André Joyal
in 1980, is a method for counting labeled structures, such as
graphs.

The main reference for the theory of combinatorial species is
the book Combinatorial Species and Tree-Like Structures by
François Bergeron, Gilbert Labelle, and Pierre Leroux.
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What is a labeled structure?

Intuitive idea: Some sort of graph or graph-like object with
labels that can be replaced with other labels.

If a structure has label set U and we have a bijection σ : U → V
then we can replace each label u ∈ U with its image σ(u) in V .

2

3

1

a

b

c
1 7! c

2 7! a

3 7! b



What is a labeled structure?

Intuitive idea: Some sort of graph or graph-like object with
labels that can be replaced with other labels.

If a structure has label set U and we have a bijection σ : U → V
then we can replace each label u ∈ U with its image σ(u) in V .

2

3

1

a

b

c
1 7! c

2 7! a

3 7! b



What are species good for?

The theory of species allows us to count labeled structures,
using exponential generating functions.

More interestingly, it allows us to count unlabeled versions of
labeled structures (unlabeled structures). If we have a bijection
A → A then we also get a bijection from the set of structures
with label set A to itself, so we have an action of the symmetric
group on A acting on these structures. The orbits of these
structures are the unlabeled structures.
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Species are especially helpful in counting certain types of
(unlabeled) graphs, such as nonseparable graphs and bipartite
graphs.

The theory of species also sheds some light on actions of
symmetric groups and symmetric functions.
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Definition of a species

A species is a functor from the category of finite sets with
bijections to itself.

This means that if F is a species then for every finite set U,
there is a finite set F [U] (the set of F -structures on U), and for
any bijection σ : U → V there is a bijection F [σ] : F [U] → F [V ].

Moreover, we have the functorial properties
▶ If σ : U → V and τ : V → W then F [τ ◦ σ] = F [τ ] ◦ F [σ].
▶ For the identity map IdU : U → U we have F [IdU ] = IdF [U]

Think of F [U] as some sort of graph with label set U, even
though there are no “labels” in the definition.
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Examples of species

▶ The species E of sets: E [U] = {U}.
▶ The species En of n-sets:

En[U] =

{
{U} if |U| = n
∅ if |U| ≠ n

▶ We write X for E1, the species of singletons.
▶ The species Par of set partitions
▶ The species L of linear orders
▶ The species S of permutations (bijections from a set to

itself).
▶ The species C of cyclic permutations
▶ the species G of graphs
▶ the species Gc of connected graphs



Isomorphism of species

Let F and G be species. An isomorphism α from F to G is a
family of bijections αU : F [U] → G[U] for every finite set U such
that for every bijection σ : U → V , and every s ∈ F [U] we have
G[σ](αU(s)) = αV (F [σ](σ)).

In categorical terms, α is a natural isomorphism.

Notation: We write [n] for {1,2, . . . ,n} and we write F [n]
instead of F [[n]].

As an example, the species of subsets is isomorphic to the
species of ordered partitions into two (possibly empty) blocks.

For example, the subset {1,3,4} of [5] corresponds to the
ordered partition ({1,3,4}, {2,5}).
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A nonisomorphic example

The species S of permutations is not isomorphic to the species
L of linear orders, even though for every n, |S[n]| = |L[n]| = n!.

Let’s see what happens for n = 2. Here we have
|S[2]| = |L[2]| = 2 and

S[2] = {(1)(2), (1 2)}, L[2] = {12,21}

There doesn’t seem to be an reasonable bijection between
these two sets that doesn’t depend on the total ordering 1 < 2.

What happens if apply the bijection [2] → [2] that switches 1
and 2? Both elements of S[2] are fixed, but the two elements of
L[2] switch. So S and L can’t be isomorphic.
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Operations on species

There are several important operations on species.

The simplest is addition, which is just disjoint union:

(F + G)[U] = F [U] ⊔ G[U].

So an (F + G)-structure is either an F -structure or a
G-structure.

We can also have infinite sums, as long as they “converge”

E =
∞∑

n=0

En
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Next is Cartesian product:

(F × G)[U] = F [U]× G[U]

So an (F × G)-structure is an F -structure and a G-structure on
the same set of points.

F G



The ordinary product FG is more useful than the Cartesian
product, but the definition is more complicated:

(FG)[U] =
∑

U1,U2

F [U1]× G[U2],

where the sum is over all decompositions of U into U1 and U2,
so that U1 ∪ U2 = U and U1 ∩ U2 = ∅.

F

G



Note that (FG)[U] is not the same as (GF )[U], but the species
FG and GF are isomorphic. We usually identify species that
are isomorphic.



We can define powers inductively, and we find that the species
Ln of linear orders of n-sets is isomorphic to X n, and

L =
∞∑

n=0

X n.

(Note that X 0 = E0.)



Finally, we have composition or substitution of species, F ◦ G.
An element of (F ◦ G)[U] consists of a partition of U into (not
necessarily nonempty) blocks, a G-structure on each block, and
an F -structure on the set of blocks.

Formally,
(F ◦ G)[U] =

⋃
π

(
F [π]××

V∈π
G[V ]

)
.

where the union is over all partitions π of U and the Cartesian
product is over all the blocks of π.

F
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The most important special case is F = E , the species of sets,
or F = En, the species of n-sets. Then E ◦ G is the species of
sets of G-structures and En ◦ G is the species of n-sets of
G-structures.

Since a partition is a set of nonempty sets, the species of
partitions Par is E ◦ E+, where

E+ =
∞∑

n=1

En

is the species of nonempty sets.

Since a permutation is a set of cycles, S = E ◦ C.

Since a graph is a set of connected graphs, G = E ◦ Gc
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Generating functions for species

To a species F we may associate three generating functions.

First we have the exponential generating function

F (x) =
∞∑

n=0

fn
xn

n!
,

where fn = |F [n]|.
The unlabeled generating function is

F̃ (x) =
∞∑

n=0

f̃n xn,

where f̃ n is the number of unlabeled F -structures on [n].
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These generating functions are compatible with addition and
multiplication:

(F + G)(x) = F (x) + G(x) ˜(F + G)(x) = F̃ (x) + G̃(x)

(FG)(x) = F (x)G(x) (F̃G)(x) = F̃ (x)G̃(x)

Also, the exponential generating function is compatible with
composition:

(F ◦ G)(x) = F (x) ◦ G(x)

as long as G(x) has no constant term; i.e., G[∅] = ∅.

However, ˜(F ◦ G)(x) cannot be computed from F̃ (x) and G̃(x).
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Examples

For the species En of n-sets, En(x) = xn/n! and Ẽn(x) = xn.

For the species E of sets,

E(x) =
∞∑

n=0

xn

n!
= ex and Ẽ(x) =

1
1 − x

.

For the species C of cyclic permutations,

C(x) =
∞∑

n=0

(n − 1)!
xn

n!
= log

(
1

1 − x

)
and C̃(x) =

x
1 − x

.
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1
1 − x

.

For the species C of cyclic permutations,

C(x) =
∞∑

n=0

(n − 1)!
xn

n!
= log

(
1

1 − x

)
and C̃(x) =

x
1 − x

.



For the species S = E ◦ S of permutations,

S(x) = exp(C(x)) =
1

1 − x
=

∞∑
n=0

n!
xn

n!
and S̃(x) =

∞∏
k=1

1
1 − xk

For the species Par = E ◦ E+ of partitions, we have

Par(x) = exp(E+(x)) = eex−1
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The cycle index series

The third important generating function associated with a
species is the cycle index series, which contains the other two
as special cases.

Let F be a species. For the moment, suppose that F is
homogeneous of degree n; that is, F [A] = ∅ unless |A| = n.

For any bijection π : [n] → [n] there is a corresponding bijection
F [π] : F [n] → F [n]. Thus there is an action of the symmetric
group Sn on F [n].

The cycle index ZF of F is the characteristic of this action of Sn.
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For each π in Sn, let fixF [π] be the number of elements of F [n]
fixed by F [π]. Let ci(π) be the number of cycles of π of length i .
Then we define

ZF =
1
n!

∑
π∈Sn

fixF [π]pc1(π)
1 pc2(π)

2 . . . ,

where pj is the power sum symmetric function x j
1 +x j

2 +x j
3 + · · · .

Since fixF [π] depends only on the cycle type of π, we can write
this formula in another way.



For each π in Sn, let fixF [π] be the number of elements of F [n]
fixed by F [π]. Let ci(π) be the number of cycles of π of length i .
Then we define

ZF =
1
n!

∑
π∈Sn

fixF [π]pc1(π)
1 pc2(π)

2 . . . ,

where pj is the power sum symmetric function x j
1 +x j

2 +x j
3 + · · · .

Since fixF [π] depends only on the cycle type of π, we can write
this formula in another way.



Let λ = (1m12m2 · · · ) be a partition of n. The number of
permutations in Sn of cycle type λ is n!/zλ, where

zλ = 1m1m1!2m2m2! · · · .

Let fixF [λ] = fixF [π] where π is any permutation in Sn of cycle
type λ. Then

ZF =
∑
λ⊢n

fixF [λ]
pλ

zλ
.

where pλ = pm1
1 pm2

2 . . . .



Examples

First let’s look at F = X = E1. So here n = 1 and ZE1 = p1.

Next for F = E2, we have n = 2. Here we have n = 2 and
ZE2 = 1

2p2
1 + 1

2p2.

More generally, let’s take F = En. Then En[n] has only one
element, [n], and it’s fixed by every element of Sn. So for every
partition λ of n, we have fixEn[λ] = 1, so

ZEn =
∑
λ⊢n

pλ

zλ
.

This is equal to the complete symmetric function

hn =
∑

i1≤i2≤···≤in

xi1xi2 · · · xin .
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For the species Ln = X n of linear orders of size n, only the
identity element fixes anything, and it fixes all n! linear orders,
so

ZLn =
1
n!

· n!pn
1 = pn

1 .

For the species Cn of n-cycles, a permutation π doesn’t fix
anything unless π consists of n/d d-cycles for some d dividing
n. It’s not too hard to show that

ZCn =
1
n

∑
d |n

φ(d)pn/d
d

where φ is Euler’s function.



For the species Ln = X n of linear orders of size n, only the
identity element fixes anything, and it fixes all n! linear orders,
so

ZLn =
1
n!

· n!pn
1 = pn

1 .

For the species Cn of n-cycles, a permutation π doesn’t fix
anything unless π consists of n/d d-cycles for some d dividing
n. It’s not too hard to show that

ZCn =
1
n

∑
d |n

φ(d)pn/d
d

where φ is Euler’s function.



For species that are not homogeneous, the cycle index is the
sum of the cycle indices of the homogeneous components. So

ZE =
∞∑

n=0

ZEn =
∞∑

n=0

hn =
∞∏

i=1

1
1 − xi

= exp

( ∞∑
j=1

pj

j

)

and

ZL =
∞∑

n=0

ZLn =
∞∑

n=0

pn
1 =

1
1 − p1



Applications of the cycle index

First we can get the exponential generating function and the
unlabeled generating function from the cycle index:

F (x) is obtained from ZF by replacing p1 with x and pi with 0 for
i > 1.

F̃ (x) is obtained from ZF be replacing each pi with x i , or
equivalently, replacing x1 with x and xi with 0 for i > 1.
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Species operations and the cycle index

Addition and multiplication are easy:

ZF+G = ZF + ZG

ZFG = ZF ZG

Corresponding to the Cartesian product of species is an
operation on symmetric functions called the Kronecker product:

pλ ∗ pµ = zλδλ,µ pλ.

Then
ZF×G = ZF ∗ ZG.

This is because

fix(F × G)[π] = fixF [π] fixG[π].
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For composition of species, we have a corresponding operation
on symmetric functions called composition or plethysm:

ZF◦G = ZF ◦ ZG.

Plethysm can be defined in several equivalent ways. The most
intuitive way to define f ◦ g when g has positive integer
coefficients, is to write g as a sum of monic terms and
substitute them for the variables of f .

But if f and g expressed in terms of the pi , a more efficient
procedure is to first define pj ◦ g to be the result of replacing
each pi in g with pij , and then replacing each pj in f with pj ◦ g.
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Pólya’s theorem and the coefficients of the cycle index

There is a simple and sometimes useful interpretation for the
coefficients of the cycle index. We know that the coefficient of
xn

1 in ZF is the number of unlabeled F -structures on n points.

More generally, the coefficient of xn1
1 xn2

2 · · · in ZF is the number
of “F -structures labeled with the multiset {1n1 ,2n2 , . . . }.”

Example: One of the structures counted by the coefficient of
x2

1 x3
2 in ZC5 is

2

12

2

1
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Indirect decompositions

We have seen that the species of set partitions can be
expressed as a composition E ◦ E+. There are other cases,
where we can’t easily construct a species directly, but we can
find an equation that it satisfies.

For example, consider the species Gc of connected graphs.
Every graph may be viewed as a set of connected graphs, so
the species G of graphs and the species Gc of connected
graphs are related by G = E ◦ Gc and so ZG = ZE ◦ ZGc . This
formula can be inverted to compute ZGc and thereby count
labeled and unlabeled connected graphs.
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Trees

Indirect decompositions also arise in counting trees of various
types. For now, I will talk about leaf-labeled (unordered) rooted
binary trees, which I’ll call simply binary trees.

1 5

2 3

4



A binary tree is either a single labeled vertex or an unordered
pair of binary trees. So the species R of binary trees satisfies

R = X + E2 ◦ R

and therefore the cycle index satisfies

ZR = p1 + h2 ◦ ZR.

For the exponential generating function this reduces to

R(x) = x + R(x)2/2,

which can easily be solved to give

R(x) = 1 −
√

1 − 2x =
∞∑

n=1

1 · 3 · · · (2n − 3)
xn

n!



For the cycle index, there is a surprisingly simple formula
discovered a few years ago by Sara Billey, Matjaž Konvalinka,
and Frederick A. Matsen IV:

ZR =
∑
λ

rλ
pλ

zλ
,

where rλ is zero if λ is not a binary partition (a partition in which
every part is a power of 2), and if λ is a binary partition,
λ = (λ1, λ2, . . . , λk ) where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 then

rλ =
k∏

i=2

(
2(λi + · · ·+ λk )− 1

)
,

So the number of unlabeled binary trees with n leaves is∑
λ⊢n

rλ/zλ.
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Billey, Konvalinka, and Matsen were interested in tanglegrams,
which are ordered pairs of binary trees that share the same
leaves. They wanted to count unlabeled tanglegrams.
Here’s a tanglegram

1 12 23 3

which we can also draw as

1

2

3



Since a tanglegram is an ordered pair of trees, the species of
tanglegrams is the Cartesian product R × R, so the cycle index
for tanglegrams is

ZR×R = ZR ∗ ZR =
∑
λ

r 2
λ

pλ

zλ
.

and therefore the number of unlabeled tanglegrams with n
leaves is ∑

λ⊢n

r2
λ

zλ
.


