An Introduction to Symmetric Functions

Ira M. Gessel

Department of Mathematics
Brandeis University
Séminaire Lotharingien Combinatoire 91
Salobreña, Spain
March 18, 2024

What are symmetric functions?

Symmetric functions are not functions.

What are symmetric functions?

Symmetric functions are not functions.
They are formal power series in the infinitely many variables x_{1}, x_{2}, \ldots that are invariant under permutation of the subscripts.

What are symmetric functions?

Symmetric functions are not functions.
They are formal power series in the infinitely many variables x_{1}, x_{2}, \ldots that are invariant under permutation of the subscripts.
In other words, if i_{1}, \ldots, i_{m} are distinct positive integers and $\alpha_{1}, \ldots, \alpha_{m}$ are arbitrary nonnegative integers then the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{m}}^{\alpha_{m}}$ in a symmetric function is the same as the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$.

What are symmetric functions?

Symmetric functions are not functions.
They are formal power series in the infinitely many variables x_{1}, x_{2}, \ldots that are invariant under permutation of the subscripts.
In other words, if i_{1}, \ldots, i_{m} are distinct positive integers and $\alpha_{1}, \ldots, \alpha_{m}$ are arbitrary nonnegative integers then the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{m}}^{\alpha_{m}}$ in a symmetric function is the same as the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$.
Examples:

- $x_{1}^{2}+x_{2}^{2}+\ldots$
- $\sum_{i \leq j} x_{i} x_{j}$

What are symmetric functions?

Symmetric functions are not functions.
They are formal power series in the infinitely many variables x_{1}, x_{2}, \ldots that are invariant under permutation of the subscripts.
In other words, if i_{1}, \ldots, i_{m} are distinct positive integers and $\alpha_{1}, \ldots, \alpha_{m}$ are arbitrary nonnegative integers then the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{m}}^{\alpha_{m}}$ in a symmetric function is the same as the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$.
Examples:

- $x_{1}^{2}+x_{2}^{2}+\ldots$
- $\sum_{i \leq j} x_{i} x_{j}$

But not $\sum_{i \leq j} x_{i} x_{j}^{2}$

What are symmetric functions good for?

- Some combinatorial problems have symmetric function generating functions. For example, $\prod_{i<j}\left(1+x_{i} x_{j}\right)$ counts graphs by the degrees of the vertices.

What are symmetric functions good for?

- Some combinatorial problems have symmetric function generating functions. For example, $\prod_{i<j}\left(1+x_{i} x_{j}\right)$ counts graphs by the degrees of the vertices.
- Symmetric functions are useful in counting plane partitions.

What are symmetric functions good for?

- Some combinatorial problems have symmetric function generating functions. For example, $\prod_{i<j}\left(1+x_{i} x_{j}\right)$ counts graphs by the degrees of the vertices.
- Symmetric functions are useful in counting plane partitions.
- Symmetric functions are closely related to representations of symmetric and general linear groups

What are symmetric functions good for?

- Some combinatorial problems have symmetric function generating functions. For example, $\prod_{i<j}\left(1+x_{i} x_{j}\right)$ counts graphs by the degrees of the vertices.
- Symmetric functions are useful in counting plane partitions.
- Symmetric functions are closely related to representations of symmetric and general linear groups
- Symmetric functions are useful in counting unlabeled graphs (Pólya theory).

The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λ^{n} be the vector space of symmetric functions homogeneous of degree n.

The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λ^{n} be the vector space of symmetric functions homogeneous of degree n. Then the dimension of Λ^{n} is $p(n)$, the number of partitions of n.

The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λ^{n} be the vector space of symmetric functions homogeneous of degree n. Then the dimension of Λ^{n} is $p(n)$, the number of partitions of n.
A partition of n is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with sum n.

The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λ^{n} be the vector space of symmetric functions homogeneous of degree n. Then the dimension of Λ^{n} is $p(n)$, the number of partitions of n.

A partition of n is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with sum n.

For example, the partitions of 4 are (4), $(3,1),(2,2),(2,1,1)$, and (1, 1, 1, 1).

The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λ^{n} be the vector space of symmetric functions homogeneous of degree n. Then the dimension of Λ^{n} is $p(n)$, the number of partitions of n.

A partition of n is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with sum n.

For example, the partitions of 4 are (4), $(3,1),(2,2),(2,1,1)$, and (1, 1, 1, 1).

There are several important bases for Λ^{n}, all indexed by partitions.

Monomial symmetric functions

If a symmetric function has a term $x_{1}^{2} x_{2} x_{3}$ with coefficient 1 , then it must contain all terms of the form $x_{i}^{2} x_{j} x_{k}$, with i, j, and k distinct, with coefficient 1 . If we add up all of these terms, we get the monomial symmetric function

$$
m_{(2,1,1)}=\sum x_{i}^{2} x_{j} x_{k}
$$

where the sum is over all distinct terms of the form $x_{i}^{2} x_{j} x_{k}$ with i, j, and k distinct.

Monomial symmetric functions

If a symmetric function has a term $x_{1}^{2} x_{2} x_{3}$ with coefficient 1 , then it must contain all terms of the form $x_{i}^{2} x_{j} x_{k}$, with i, j, and k distinct, with coefficient 1 . If we add up all of these terms, we get the monomial symmetric function

$$
m_{(2,1,1)}=\sum x_{i}^{2} x_{j} x_{k}
$$

where the sum is over all distinct terms of the form $x_{i}^{2} x_{j} x_{k}$ with i, j, and k distinct. So

$$
m_{(2,1,1)}=x_{1}^{2} x_{2} x_{3}+x_{3}^{2} x_{1} x_{4}+x_{1}^{2} x_{3} x_{5}+\cdots .
$$

More generally, for any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right), m_{\lambda}$ is the sum of all distinct monomials of the form

$$
x_{i_{1}}^{\lambda_{1}} \cdots x_{i_{k}}^{\lambda_{k}} .
$$

It's easy to see that $\left\{m_{\lambda}\right\}_{\lambda \vdash n}$ is a basis for Λ^{n}.

Multiplicative bases

There are three important multiplicative bases for Λ^{n}.
Suppose that for each n, u_{n} is a symmetric function homogeneous of degree n. Then for any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, we may define u_{λ} to be $u_{\lambda_{1}} \cdots u_{\lambda_{k}}$.

Multiplicative bases

There are three important multiplicative bases for Λ^{n}.
Suppose that for each n, u_{n} is a symmetric function homogeneous of degree n. Then for any partition
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, we may define u_{λ} to be $u_{\lambda_{1}} \cdots u_{\lambda_{k}}$.
If u_{1}, u_{2}, \ldots are algebraically independent, then $\left\{u_{\lambda}\right\}_{\lambda \vdash n}$ will be a basis for Λ^{n}.

We define the nth elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \cdots x_{i_{n}}
$$

so $e_{n}=m_{\left(1^{n}\right)}$.

We define the nth elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \cdots x_{i_{n}}
$$

so $e_{n}=m_{\left(1^{n}\right)}$.
The nth complete symmetric function is

$$
h_{n}=\sum_{i_{1} \leq \cdots \leq i_{n}} x_{i_{1}} \cdots x_{i_{n}},
$$

so h_{n} is the sum of all distinct monomials of degree n.

We define the nth elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \cdots x_{i_{n}}
$$

so $e_{n}=m_{\left(1^{n}\right)}$.
The nth complete symmetric function is

$$
h_{n}=\sum_{i_{1} \leq \cdots \leq i_{n}} x_{i_{1}} \cdots x_{i_{n}}
$$

so h_{n} is the sum of all distinct monomials of degree n.
The nth power sum symmetric function is

$$
p_{n}=\sum_{i=1}^{\infty} x_{i}^{n}
$$

so $p_{n}=m_{(n)}$.

Theorem. Each of $\left\{h_{\lambda}\right\}_{\lambda \vdash n},\left\{\boldsymbol{e}_{\lambda}\right\}_{\lambda \vdash n}$, and $\left\{p_{\lambda}\right\}_{\lambda \vdash n}$ is a basis for Λ^{n}.

Some generating functions

We have

$$
\sum_{n=0}^{\infty} e_{n} t^{n}=\prod_{i=1}^{\infty}\left(1+x_{i} t\right)
$$

and

$$
\begin{aligned}
\sum_{n=0}^{\infty} h_{n} t^{n} & =\prod_{i=1}^{\infty}\left(1+x_{i} t+x_{i}^{2} t^{2}+\cdots\right) \\
& =\prod_{i=1}^{\infty} \frac{1}{1-x_{i} t}
\end{aligned}
$$

(Note that the variable t is redundant, since if we set $t=1$ we can get it back by replacing each x_{i} with $x_{i} t$.)

Some generating functions

We have

$$
\sum_{n=0}^{\infty} e_{n} t^{n}=\prod_{i=1}^{\infty}\left(1+x_{i} t\right)
$$

and

$$
\begin{aligned}
\sum_{n=0}^{\infty} h_{n} t^{n} & =\prod_{i=1}^{\infty}\left(1+x_{i} t+x_{i}^{2} t^{2}+\cdots\right) \\
& =\prod_{i=1}^{\infty} \frac{1}{1-x_{i} t}
\end{aligned}
$$

(Note that the variable t is redundant, since if we set $t=1$ we can get it back by replacing each x_{i} with $x_{i} t$.)
It follows that

$$
\sum_{n=0}^{\infty} h_{n} t^{n}=\left(\sum_{n=0}^{\infty}(-1)^{n} e_{n} t^{n}\right)^{-1}
$$

Also

$$
\begin{aligned}
\log \prod_{i=1}^{\infty} \frac{1}{1-x_{i} t} & =\sum_{i=1}^{\infty} \log \frac{1}{1-x_{i} t} \\
& =\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} x_{i}^{n} \frac{t^{n}}{n} \\
& =\sum_{n=1}^{\infty} \frac{p_{n}}{n} t^{n}
\end{aligned}
$$

Therefore

$$
\sum_{n=0}^{\infty} h_{n} t^{n}=\exp \left(\sum_{n=1}^{\infty} \frac{p_{n}}{n} t^{n}\right)
$$

Also

$$
\begin{aligned}
\log \prod_{i=1}^{\infty} \frac{1}{1-x_{i} t} & =\sum_{i=1}^{\infty} \log \frac{1}{1-x_{i} t} \\
& =\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} x_{i}^{n} \frac{t^{n}}{n} \\
& =\sum_{n=1}^{\infty} \frac{p_{n}}{n} t^{n} .
\end{aligned}
$$

Therefore

$$
\sum_{n=0}^{\infty} h_{n} t^{n}=\exp \left(\sum_{n=1}^{\infty} \frac{p_{n}}{n} t^{n}\right)
$$

If we expand the right side and equate coefficients of t^{n}
then we get

$$
h_{n}=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}
$$

Here if $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ then $z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$.
then we get

$$
h_{n}=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}
$$

Here if $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ then $z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$.
It is not hard to show that if λ is a partition of n then $n!/ z_{\lambda}$ is the number of permutations in the symmetric group \mathfrak{S}_{n} of cycle type λ and that z_{λ} is the number of permutations in \mathfrak{S}_{n} that commute with a given permutation of cycle type λ.
then we get

$$
h_{n}=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}} .
$$

Here if $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ then $z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots$.
It is not hard to show that if λ is a partition of n then $n!/ z_{\lambda}$ is the number of permutations in the symmetric group \mathfrak{S}_{n} of cycle type λ and that z_{λ} is the number of permutations in \mathfrak{S}_{n} that commute with a given permutation of cycle type λ.

For example, for $n=3$ we have $z_{(3)}=3, z_{(2,1)}=2$, and
$z_{(1,1,1)}=6$, so

$$
\begin{aligned}
h_{3} & =\frac{p_{(1,1,1)}}{6}+\frac{p_{(2,1)}}{2}+\frac{p_{(3)}}{3} \\
& =\frac{p_{1}^{3}}{6}+\frac{p_{2} p_{1}}{2}+\frac{p_{3}}{3} .
\end{aligned}
$$

The Cauchy kernel

The infinite product

$$
\prod_{i, j=1}^{\infty} \frac{1}{1-x_{i} y_{j}}
$$

is sometimes called the Cauchy kernel. It is symmetric in both x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots

The Cauchy kernel

The infinite product

$$
\prod_{i, j=1}^{\infty} \frac{1}{1-x_{i} y_{j}}
$$

is sometimes called the Cauchy kernel. It is symmetric in both x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots

In working with symmetric functions in two sets of variables, we'll use the notation $f[x]$ to mean $f\left(x_{1}, x_{2}, \ldots\right)$ and $f[y]$ to mean $f\left(y_{1}, y_{2}, \ldots\right)$.

The Cauchy kernel

The infinite product

$$
\prod_{i, j=1}^{\infty} \frac{1}{1-x_{i} y_{j}}
$$

is sometimes called the Cauchy kernel. It is symmetric in both x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots

In working with symmetric functions in two sets of variables, we'll use the notation $f[x]$ to mean $f\left(x_{1}, x_{2}, \ldots\right)$ and $f[y]$ to mean $f\left(y_{1}, y_{2}, \ldots\right)$.
First we note that the coefficient $N_{\lambda, \mu}$ of $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots y_{1}^{\mu_{1}} y_{2}^{\mu_{2}} \cdots$ in this product is the same as the coefficient of $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots y_{1}^{\lambda_{1}} y_{2}^{\lambda_{2}} \cdots$.

Now let's expand the product:

$$
\prod_{i=1}^{\infty} \prod_{j=1}^{\infty} \frac{1}{1-x_{i} y_{j}}=\prod_{i=1}^{\infty} \sum_{k=0}^{\infty} x_{i}^{k} h_{k}[y]
$$

Now let's expand the product:

$$
\begin{aligned}
\prod_{i=1}^{\infty} \prod_{j=1}^{\infty} \frac{1}{1-x_{i} y_{j}} & =\prod_{i=1}^{\infty} \sum_{k=0}^{\infty} x_{i}^{k} h_{k}[y] \\
& =\sum_{\lambda} m_{\lambda}[x] h_{\lambda}[y]
\end{aligned}
$$

Now let's expand the product:

$$
\begin{aligned}
\prod_{i=1}^{\infty} \prod_{j=1}^{\infty} \frac{1}{1-x_{i} y_{j}} & =\prod_{i=1}^{\infty} \sum_{k=0}^{\infty} x_{i}^{k} h_{k}[y] \\
& =\sum_{\lambda} m_{\lambda}[x] h_{\lambda}[y] .
\end{aligned}
$$

Now $N_{\lambda, \mu}$ is the coefficient of $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots y_{1}^{\mu_{1}} y_{2}^{\mu_{2}} \ldots$ in this product, which is the same as the coefficient of $y_{1}^{\mu_{1}} y_{2}^{\mu_{2}} \cdots$ in $h_{\lambda}[y]$.

MacMahon's law of symmetry

Since $N_{\lambda, \mu}=N_{\mu, \lambda}$, we have MacMahon's law of symmetry: The coefficient of $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots$ in h_{μ} is equal to the coefficient of $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots$ in h_{λ}.

The scalar product

Now we define a scalar product on \wedge by

$$
\left\langle h_{\lambda}, f\right\rangle=\text { coefficient of } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots \text { in } f
$$

extended by linearity. By MacMahon's law of symmetry, $\left\langle h_{\lambda}, h_{\mu}\right\rangle=\left\langle h_{\mu}, h_{\lambda}\right\rangle$, so by linearity $\langle f, g\rangle=\langle g, f\rangle$ for all $f, g \in \Lambda$.

The scalar product

Now we define a scalar product on Λ by

$$
\left\langle h_{\lambda}, f\right\rangle=\text { coefficient of } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots \text { in } f
$$

extended by linearity. By MacMahon's law of symmetry, $\left\langle h_{\lambda}, h_{\mu}\right\rangle=\left\langle h_{\mu}, h_{\lambda}\right\rangle$, so by linearity $\langle f, g\rangle=\langle g, f\rangle$ for all $f, g \in \Lambda$. Also

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

The scalar product

Now we define a scalar product on \wedge by

$$
\left\langle h_{\lambda}, f\right\rangle=\text { coefficient of } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots \text { in } f
$$

extended by linearity. By MacMahon's law of symmetry, $\left\langle h_{\lambda}, h_{\mu}\right\rangle=\left\langle h_{\mu}, h_{\lambda}\right\rangle$, so by linearity $\langle f, g\rangle=\langle g, f\rangle$ for all $f, g \in \Lambda$.
Also

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

A short calculation shows that

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda, \mu} .
$$

The characteristic map

Let ρ be a representation of the symmetric group \mathfrak{S}_{n}; i.e., an "action" of \mathfrak{S}_{n} on a finite-dimensional vector space V (over \mathbb{C}).

The characteristic map

Let ρ be a representation of the symmetric group \mathfrak{S}_{n}; i.e., an "action" of \mathfrak{S}_{n} on a finite-dimensional vector space V (over \mathbb{C}).

More formally, ρ is a homomorphism from \mathfrak{S}_{n} to the group of automorphisms of $V, \mathrm{GL}(V)$ (which we can think of as a group of matrices).

The characteristic map

Let ρ be a representation of the symmetric group \mathfrak{S}_{n}; i.e., an "action" of \mathfrak{S}_{n} on a finite-dimensional vector space V (over \mathbb{C}).

More formally, ρ is a homomorphism from \mathfrak{S}_{n} to the group of automorphisms of $V, \mathrm{GL}(V)$ (which we can think of as a group of matrices).

From ρ we can construct a function $\chi^{\rho}: \mathfrak{S}_{n} \rightarrow \mathbb{C}$, called the character of ρ, defined by

$$
\chi^{\rho}(g)=\operatorname{trace} \rho(g)
$$

Then the character of ρ determines ρ up to equivalence.

We define the characteristic of ρ to be the symmetric function

$$
\operatorname{ch} \rho=\frac{1}{n!} \sum_{g \in \mathfrak{S}_{n}} \chi^{\rho}(g) p_{\mathrm{cyc}(g)}
$$

where $\operatorname{cyc}(g)$ is the cycle type of g.

We define the characteristic of ρ to be the symmetric function

$$
\operatorname{ch} \rho=\frac{1}{n!} \sum_{g \in \mathfrak{S}_{n}} \chi^{\rho}(g) p_{\mathrm{cyc}(g)}
$$

where $\operatorname{cyc}(g)$ is the cycle type of g.
Since $\chi^{\rho}(g)$ depends only on the cycle type of g, if we define $\chi^{\rho}(\lambda)$, for λ a partition of n, by $\chi^{\rho}(\lambda)=\chi^{\rho}(g)$ for g with $\operatorname{cyc}(g)=\lambda$, then we can write this as

$$
\begin{aligned}
\operatorname{ch} \rho & =\frac{1}{n!} \sum_{\lambda \vdash n} \frac{n!}{z_{\lambda}} \chi^{\rho}(\lambda) p_{\lambda} \\
& =\sum_{\lambda \vdash n} \chi^{\rho}(\lambda) \frac{p_{\lambda}}{z_{\lambda}}
\end{aligned}
$$

Then ch ρ contains the same information as χ^{ρ}.

Then ch ρ contains the same information as χ^{ρ}.
Two very simple examples:
(1) The trivial representation. Here V is a one-dimensional vector space and for every $g \in \mathfrak{S}_{n}, \rho(g)$ is the identity transformation. Then $\chi^{\rho}(g)=1$ for all $g \in \mathfrak{S}_{n}$ so

$$
\operatorname{ch} \rho=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}
$$

Then ch ρ contains the same information as χ^{ρ}.
Two very simple examples:
(1) The trivial representation. Here V is a one-dimensional vector space and for every $g \in \mathfrak{S}_{n}, \rho(g)$ is the identity transformation. Then $\chi^{\rho}(g)=1$ for all $g \in \mathfrak{S}_{n}$ so

$$
\operatorname{ch} \rho=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}=h_{n}
$$

Then ch ρ contains the same information as χ^{ρ}.
Two very simple examples:
(1) The trivial representation. Here V is a one-dimensional vector space and for every $g \in \mathfrak{S}_{n}, \rho(g)$ is the identity transformation. Then $\chi^{\rho}(g)=1$ for all $g \in \mathfrak{S}_{n}$ so

$$
\operatorname{ch} \rho=\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}=h_{n}
$$

(2) The regular representation. Here V is the vector space spanned by \mathfrak{S}_{n} and \mathfrak{S}_{n} acts by left multiplication. Then $\chi^{\rho}(g)=n!$ if g is the identity element of \mathfrak{S}_{n} and $\chi^{\rho}(g)=0$ otherwise. So

$$
\text { ch } \rho=p_{1}^{n}
$$

Group actions

Let G be a finite group and let S be a finite set. An action of G on S is map $\phi: G \times S \rightarrow S,(g, s) \mapsto g \cdot s$ satisfying

- $g h \cdot s=g \cdot(h \cdot s)$ for $g, h \in G$ and $s \in S$
- $e \cdot s=s$ for all $s \in S$.

Group actions

Let G be a finite group and let S be a finite set. An action of G on S is $\operatorname{map} \phi: G \times S \rightarrow S,(g, s) \mapsto g \cdot s$ satisfying

- $g h \cdot s=g \cdot(h \cdot s)$ for $g, h \in G$ and $s \in S$
- $e \cdot s=s$ for all $s \in S$.

Given an action of G on S, we get a representation of G on the vector space spanned by S :

$$
\rho(g)\left(\sum_{s \in S} c_{s} s\right)=\sum_{s \in S} c_{s} g \cdot s
$$

Then the trace of $\rho(g)$ is the number of elements of S for which $g \cdot s=s$, which we denote by fix (g).

An important fact is Burnside's Lemma (also called the orbit-counting theorem): The number of orbits of G acting S is

$$
\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)
$$

Now we take G to be the symmetric group \mathfrak{S}_{n}.

The characteristic of the corresponding representation is

$$
\frac{1}{n!} \sum_{g \in \mathfrak{S}_{n}} \operatorname{fix}(g) p_{\mathrm{cyc}(g)}=\sum_{\lambda \vdash n} \mathrm{fix}(\lambda) \frac{p_{\lambda}}{z_{\lambda}}
$$

It is called the cycle index of the action of \mathfrak{S}_{n}, denoted Z_{ϕ}.

The characteristic of the corresponding representation is

$$
\frac{1}{n!} \sum_{g \in \mathfrak{S}_{n}} \operatorname{fix}(g) p_{\mathrm{cyc}(g)}=\sum_{\lambda \vdash n} \mathrm{fix}(\lambda) \frac{p_{\lambda}}{z_{\lambda}}
$$

It is called the cycle index of the action of \mathfrak{S}_{n}, denoted Z_{ϕ}.
If we set all the p_{i} to 1 (or equivalently, set $x_{1}=1, x_{i}=0$ for $i>0$) then by Burnside's lemma we get the number of orbits. This is also equal to the scalar product $\left\langle Z_{\phi}, h_{n}\right\rangle$.

There is a combinatorial interpretation to the coefficients of Z_{ϕ} : The coefficient of $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$ in Z_{ϕ} is the number of orbits of the Young subgroup $\mathfrak{S}_{\alpha}=\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{m}}$ of \mathfrak{S}_{n}, where $\mathfrak{S}_{\alpha_{1}}$ permutes $1,2, \ldots, \alpha_{1} ; \mathfrak{S}_{\alpha_{2}}$ permutates $\alpha_{1}+1, \ldots, \alpha_{1}+\alpha_{2}$, and so on.

This coefficient is equal to the scalar product $\left\langle Z_{\phi}, h_{\alpha}\right\rangle$.

There is a combinatorial interpretation to the coefficients of Z_{ϕ} :
The coefficient of $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$ in Z_{ϕ} is the number of orbits of the Young subgroup $\mathfrak{S}_{\alpha}=\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{m}}$ of \mathfrak{S}_{n}, where $\mathfrak{S}_{\alpha_{1}}$ permutes $1,2, \ldots, \alpha_{1} ; \mathfrak{S}_{\alpha_{2}}$ permutates $\alpha_{1}+1, \ldots, \alpha_{1}+\alpha_{2}$, and so on.

This coefficient is equal to the scalar product $\left\langle Z_{\phi}, h_{\alpha}\right\rangle$.
This result is a form of Pólya's theorem. If \mathfrak{S}_{n} is acting on a set of "graphs" with vertex set $\{1,2, \ldots, n\}$ then we can construct the orbits of \mathfrak{S}_{α} by coloring vertices $1,2, \ldots, \alpha_{1}$ in color 1 ; vertices $\alpha_{1}+1, \ldots \alpha_{1}+\alpha_{2}$ in color 2 , and so on, and then "erasing" the labels, leaving only the colors.

Example: The coefficient of $x_{1}^{2} x_{2} x_{3}^{2}$ in the cycle index for \mathfrak{S}_{5} acting on directed 5 -cycles, $\frac{1}{5}\left(p_{1}^{5}+4 p_{5}\right)$

Example: The coefficient of $x_{1}^{2} x_{2} x_{3}^{2}$ in the cycle index for \mathfrak{S}_{5} acting on directed 5 -cycles, $\frac{1}{5}\left(p_{1}^{5}+4 p_{5}\right)$

Example: The coefficient of $x_{1}^{2} x_{2} x_{3}^{2}$ in the cycle index for \mathfrak{S}_{5} acting on directed 5-cycles, $\frac{1}{5}\left(p_{1}^{5}+4 p_{5}\right)$

There are 6 of these.

Schur functions

Another important basis for symmetric functions is the Schur function basis $\left\{s_{\lambda}\right\}$. The Schur functions are the characteristics of the irreducible representations of \mathfrak{S}_{n}, and they are orthonormal with respect to the the scalar product:

$$
\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

Schur functions

Another important basis for symmetric functions is the Schur function basis $\left\{s_{\lambda}\right\}$. The Schur functions are the characteristics of the irreducible representations of \mathfrak{S}_{n}, and they are orthonormal with respect to the the scalar product:

$$
\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle=\delta_{\lambda, \mu} .
$$

They are, up to sign, the unique orthonormal basis that can be expressed as integer linear combinations of the m_{λ}.

Schur functions

Another important basis for symmetric functions is the Schur function basis $\left\{s_{\lambda}\right\}$. The Schur functions are the characteristics of the irreducible representations of \mathfrak{S}_{n}, and they are orthonormal with respect to the the scalar product:

$$
\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle=\delta_{\lambda, \mu}
$$

They are, up to sign, the unique orthonormal basis that can be expressed as integer linear combinations of the m_{λ}.
If f is the characteristic of any representation of \mathfrak{S}_{n}, then f is a nonnegative integer linear combination of Schur functions.

There are several useful operations on symmetric functions, in addition to addition and multiplication.

There are several useful operations on symmetric functions, in addition to addition and multiplication.

One of them is called the Kronecker (or internal or inner) product. It has a very simple definition:

There are several useful operations on symmetric functions, in addition to addition and multiplication.

One of them is called the Kronecker (or internal or inner) product. It has a very simple definition: For power sum symmetric functions, it satisfies

$$
p_{\lambda} * p_{\mu}=\delta_{\lambda, \mu} z_{\lambda} p_{\lambda}
$$

In other words,

$$
\frac{p_{\lambda}}{z_{\lambda}} * \frac{p_{\mu}}{z_{\mu}}=\delta_{\lambda, \mu} \frac{p_{\lambda}}{z_{\lambda}} .
$$

There are several useful operations on symmetric functions, in addition to addition and multiplication.

One of them is called the Kronecker (or internal or inner) product. It has a very simple definition: For power sum symmetric functions, it satisfies

$$
p_{\lambda} * p_{\mu}=\delta_{\lambda, \mu} z_{\lambda} p_{\lambda}
$$

In other words,

$$
\frac{p_{\lambda}}{z_{\lambda}} * \frac{p_{\mu}}{z_{\mu}}=\delta_{\lambda, \mu} \frac{p_{\lambda}}{z_{\lambda}} .
$$

It is extended by linearity to all symmetric functions, so

$$
\sum_{\lambda} a_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} * \sum_{\lambda} b_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}=\sum_{\lambda} a_{\lambda} b_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}
$$

There are several useful operations on symmetric functions, in addition to addition and multiplication.

One of them is called the Kronecker (or internal or inner) product. It has a very simple definition: For power sum symmetric functions, it satisfies

$$
p_{\lambda} * p_{\mu}=\delta_{\lambda, \mu} z_{\lambda} p_{\lambda}
$$

In other words,

$$
\frac{p_{\lambda}}{z_{\lambda}} * \frac{p_{\mu}}{z_{\mu}}=\delta_{\lambda, \mu} \frac{p_{\lambda}}{z_{\lambda}} .
$$

It is extended by linearity to all symmetric functions, so

$$
\sum_{\lambda} a_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} * \sum_{\lambda} b_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}=\sum_{\lambda} a_{\lambda} b_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}
$$

The Kronecker product of symmetric functions corresponds to the tensor product of representations of \mathfrak{S}_{n}.

Another important, though more complicated, operation is called plethysm (also called substitution or composition).

Another important, though more complicated, operation is called plethysm (also called substitution or composition).

Let f and g be symmetric functions. The plethysm of f and g is denoted $f[g]$ or $f \circ g$.

Another important, though more complicated, operation is called plethysm (also called substitution or composition).

Let f and g be symmetric functions. The plethysm of f and g is denoted $f[g]$ or $f \circ g$.

First suppose that g can be expressed as a sum of monic terms, that is, monomials $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots$ with coefficient 1 . For example, m_{λ} is a sum of monic terms.

Another important, though more complicated, operation is called plethysm (also called substitution or composition).

Let f and g be symmetric functions. The plethysm of f and g is denoted $f[g]$ or $f \circ g$.

First suppose that g can be expressed as a sum of monic terms, that is, monomials $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots$ with coefficient 1 . For example, m_{λ} is a sum of monic terms.

If we have a sum of monomials with positive integer coefficients then we can also write it as a sum of monic terms:

$$
2 p_{2}=x_{1}^{2}+x_{1}^{2}+x_{2}^{2}+x_{2}^{2}+\cdots
$$

In this case, if $g=t_{1}+t_{2}+\cdots$, where the t_{i} are monic terms, then

$$
f[g]=f\left(t_{1}, t_{2}, \ldots\right)
$$

For example

$$
\begin{gathered}
f\left[e_{2}\right]=f\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, \ldots\right) \\
f\left[2 p_{2}\right]=f\left(x_{1}^{2}, x_{1}^{2}, x_{2}^{2}, x_{2}^{2}, \ldots\right)
\end{gathered}
$$

In this case, if $g=t_{1}+t_{2}+\cdots$, where the t_{i} are monic terms, then

$$
f[g]=f\left(t_{1}, t_{2}, \ldots\right)
$$

For example

$$
\begin{gathered}
f\left[e_{2}\right]=f\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, \ldots\right) \\
f\left[2 p_{2}\right]=f\left(x_{1}^{2}, x_{1}^{2}, x_{2}^{2}, x_{2}^{2}, \ldots\right)
\end{gathered}
$$

More specifically,

$$
\begin{aligned}
& e_{2}\left[p_{3}\right]=\sum_{i<j} x_{i}^{3} x_{j}^{3} \\
& p_{3}\left[e_{2}\right]=\sum_{i<j} x_{i}^{3} x_{j}^{3}
\end{aligned}
$$

In this case, if $g=t_{1}+t_{2}+\cdots$, where the t_{i} are monic terms, then

$$
f[g]=f\left(t_{1}, t_{2}, \ldots\right)
$$

For example

$$
\begin{gathered}
f\left[e_{2}\right]=f\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, \ldots\right) \\
f\left[2 p_{2}\right]=f\left(x_{1}^{2}, x_{1}^{2}, x_{2}^{2}, x_{2}^{2}, \ldots\right)
\end{gathered}
$$

More specifically,

$$
\begin{aligned}
& e_{2}\left[p_{3}\right]=\sum_{i<j} x_{i}^{3} x_{j}^{3} \\
& p_{3}\left[e_{2}\right]=\sum_{i<j} x_{i}^{3} x_{j}^{3}=e_{2}\left[p_{3}\right]
\end{aligned}
$$

We would like to generalize plethysm to the case in which g is an arbitrary symmetric function.

We would like to generalize plethysm to the case in which g is an arbitrary symmetric function.

To do this we make several observations:

- For fixed g, the map $f \mapsto f[g]$ is an endomorphism of Λ.

We would like to generalize plethysm to the case in which g is an arbitrary symmetric function.

To do this we make several observations:

- For fixed g, the map $f \mapsto f[g]$ is an endomorphism of Λ.
- For any $g, p_{n}[g]=g\left[p_{n}\right]$

We would like to generalize plethysm to the case in which g is an arbitrary symmetric function.

To do this we make several observations:

- For fixed g, the map $f \mapsto f[g]$ is an endomorphism of Λ.
- For any $g, p_{n}[g]=g\left[p_{n}\right]$
$-p_{m}\left[p_{n}\right]=p_{m n}$
- If c is a constant then $c\left[p_{n}\right]=c$.

These formulas allow us to define $f[g]$ for any symmetric functions f and g.

Examples of plethysm

First note that if c is a constant then

$$
p_{m}\left[c p_{n}\right]=\left(c p_{n}\right)\left[p_{m}\right]=c\left[p_{m}\right] p_{n}\left[p_{m}\right]=c p_{m n}
$$

Then since $h_{2}=\left(p_{1}^{2}+p_{2}\right) / 2$, we have

$$
h_{2}\left[-p_{1}\right]=\frac{1}{2}\left(p_{1}\left[-p_{1}\right]^{2}+p_{2}\left[-p_{1}\right]\right)=\frac{1}{2}\left(\left(-p_{1}\right)^{2}-p_{2}\right)=e_{2}
$$

More generally, we can show that $h_{n}\left[-p_{1}\right]=(-1)^{n} e_{n}$. Also

$$
\begin{aligned}
h_{2}\left[1+p_{1}\right] & =\frac{1}{2}\left(p_{1}\left[1+p_{1}\right]^{2}+p_{2}\left[1+p_{1}\right]\right) \\
& =\frac{1}{2}\left(\left(1+p_{1}\right)^{2}+\left(1+p_{2}\right)\right)=1+p_{1}+h_{2}
\end{aligned}
$$

Another example: Since

$$
\prod_{i=1}^{\infty}\left(1+x_{i}\right)=\sum_{n=0}^{\infty} e_{n}
$$

we have

$$
\prod_{i<j}\left(1+x_{i} x_{j}\right)=\sum_{n=0}^{\infty} e_{n}\left[e_{2}\right] .
$$

Coefficient extraction

There are two special cases where we can often get simpler formulas for certain coefficients of symmetric functions, especially when they're expressed in terms of the power sums.

Coefficient extraction

There are two special cases where we can often get simpler formulas for certain coefficients of symmetric functions, especially when they're expressed in terms of the power sums.
First, the coefficient of x_{1}^{n} in a symmetric function f is the coefficient of x^{n} in $f(x, 0,0,0)$, and if f is expressed in terms of the p_{i} we get this by setting $p_{i}=x^{i}$ for all i.

Second, we can often get a simple formula or generating function for the coefficient of $x_{1} x_{2} \cdots x_{n}$ in a symmetric function.

Second, we can often get a simple formula or generating function for the coefficient of $x_{1} x_{2} \cdots x_{n}$ in a symmetric function.

Let $E(f)$ be obtained from the symmetric function f (expressed in the p_{i}) by setting $p_{1}=z$ and $p_{i}=0$ for all $i>1$. Then

$$
E(f)=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}
$$

where a_{n} is the coefficient of $x_{1} x_{2} \cdots x_{n}$ in f.

Second, we can often get a simple formula or generating function for the coefficient of $x_{1} x_{2} \cdots x_{n}$ in a symmetric function.

Let $E(f)$ be obtained from the symmetric function f (expressed in the p_{i}) by setting $p_{1}=z$ and $p_{i}=0$ for all $i>1$. Then

$$
E(f)=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}
$$

where a_{n} is the coefficient of $x_{1} x_{2} \cdots x_{n}$ in f.
Moreover, E is a homorphism,

$$
E(f+g)=E(f)+E(g) \quad \text { and } \quad E(f g)=E(f) E(g)
$$

and it respects composition,

$$
E(f \circ g)=E(f) \circ E(g)
$$

as long as g has no constant term.

