Right and left symplectic keys, virtual keys and applications

Olga Azenhas

CMUC, Centre for Mathematics, University of Coimbra based on a partially joint work with João Miguel Santos

$$
\text { SLC } 91
$$

Salobreña, March 17-20, 2024

Basics

- Let $G=G L(n, \mathbb{C})$ or $\operatorname{Sp}(2 n, \mathbb{C})$.
- Fix $T \subseteq B \subseteq G, T$ a maximal torus of G, B a Borel subgroup of G.
B^{-}the opposite Borel subgroup to B, the unique Borel subgroup of G such that $B \cap B^{-}=T$.
- Example: $G=G L_{n}(\mathbb{C})$:
T the subgroup of diagonal matrices.
B the subgroup of upper triangular matrices.
B^{-}the subgroup of lower triangular matrices.
- Let the Lie algebras of G and B be \mathfrak{g} respectively \mathfrak{b} a Borel subalgebra of \mathfrak{g}. Let $V(\lambda)$ be the irreducible G-module with highest weight λ a partition with at most n parts.
- Let W be the Weyl group of G, and $w \in W / W_{\lambda} \leftrightarrow W^{\lambda}$, The Demazure module (opposite) $V_{w}(\lambda) \subseteq V(\lambda)\left(V^{w}(\lambda) \subseteq V(\lambda)\right)$ is the B-submodule (B^{-}-submodule)

$$
V_{w}(\lambda)=\mathcal{U}(\mathfrak{b}) \cdot V(\lambda)_{w \lambda}, \quad V^{w}(\lambda)=\mathcal{U}\left(\mathfrak{b}^{-}\right) \cdot V(\lambda)_{w \lambda} .
$$

$V(\lambda)_{w \lambda}$ is the one dimensional weight space of $V(\lambda)$ with extremal weight $w \lambda$.

- $V_{w_{0}}(\lambda)=V(\lambda)=V^{e}, w_{0}$ the longest element of W. If $G=S p(2 n, \mathbb{C}), w_{0}=-$ Id.

Kashiwara crystal and Demazure crystal

- The Kashiwara crystal $B(\lambda)$ is a combinatorial skeleton for the G-module $V(\lambda)$.
- Demazure characters are the characters of the B-submodules $V_{w}(\lambda)$.
- Kashiwara, Littelmann 90's. Demazure characters are generated by certain subsets $B_{w}(\lambda), w \in W / W_{\lambda}$, in the crystal $B(\lambda)$, called Demazure crystals.
- For $w \in W / W_{\lambda}, B_{w}(\lambda)$ is a combinatorial skeleton of the Demazure module $V_{w}(\lambda)$.
- Question: Given $w \in W / W_{\lambda}$ and $b \in B(\lambda)$, how to check whether b is in the Demazure crystal $B_{w}(\lambda)$?

Symplectic C_{2} crystal $B((2,1)): 1<2<\overline{2}<\overline{1}$

The type C_{2} crystal graph $\mathcal{K} \mathcal{N}((2,1), 2)$ containing the A_{1} crystal $\mathcal{S S} \mathcal{Y} \mathcal{T}((2,1), 2)$, consisting of the two top left most tableaux, as a subcrystal. The type C_{2} lowering crystal operators are f_{1}, \rightarrow, and f_{2}, \rightarrow.

Demazure crystal and its opposite

- For $w=s_{i_{\ell}} \cdots s_{i_{1}} \in W^{\lambda}$ a reduced word in the Bruhat order \leq in W, Demazure crystal $B_{w}(\lambda) \subseteq B(\lambda)$

$$
B_{w}(\lambda):=\left\{f_{i_{\ell}}^{k_{\ell}} \cdots f_{i_{1}}^{k_{1}}\left(b_{\lambda}\right) \mid\left(k_{\ell}, \ldots, k_{1}\right) \in \mathbb{Z}_{\geq 0}^{\ell}\right\} \backslash\{0\}
$$

opposite Demazure crystal

$$
\begin{aligned}
B^{w_{0} w}(\lambda) & :=\left\{e_{\theta\left(i_{\ell}\right)}^{k_{\ell}} \cdots e_{\theta\left(i_{1}\right)}^{k_{1}}\left(b_{w_{0} \lambda}\right) \mid\left(k_{\ell}, \ldots, k_{1}\right) \in \mathbb{Z}_{\geq 0}^{\ell}\right\} \backslash\{0\}=\iota B_{w}(\lambda) \\
B^{w}(\lambda) & =\iota\left(B_{w_{0} w}(\lambda)\right), \quad \iota \text { Lusztig-Schützenberger involution } \\
\theta & \text { Dynkin diagram automorphism. }
\end{aligned}
$$

$$
B_{e}(\lambda)=\left\{b_{\lambda}\right\}=B^{w_{0}}, B_{w_{0}}(\lambda)=B^{e}(\lambda) .
$$

- For $\rho \leq w$ in $W^{\lambda}, B_{\rho}(\lambda) \subseteq B_{w}(\lambda) \Leftrightarrow B^{\rho}(\lambda) \supseteq B^{w}(\lambda)$

Demazure crystal atom $\bar{B}_{w}(\lambda)$ and opposite Demazure crystal atom $\bar{B}^{w}(\lambda)$

$$
\bar{B}_{w}(\lambda)=B_{w}(\lambda) \backslash \bigsqcup_{\substack{\rho \in W^{\lambda} \\ \rho<w}} B_{\rho}(\lambda) \quad \bar{B}^{w}(\lambda)=\iota\left(\bar{B}_{w_{0} w}(\lambda)\right)
$$

- Decomposition into Demazure and opposite Demazure atoms

$$
B_{w}(\lambda)=\bigsqcup_{\substack{\rho \in W^{\lambda} \\ \rho \leq w}} \bar{B}_{\rho}(\lambda) \quad B^{w}(\lambda)=\bigsqcup_{\substack{\rho \in W^{\lambda} \\ \rho \geq w}} \bar{B}^{\rho}(\lambda)
$$

Schubert varieties and Demazure crystals

- G a simply-connected semisimple algebraic group over \mathbb{C}.
- Bruhat decomposition of G and (full) flag variety in G.

The Bruhat decomposition describes the $B \times B$, respectively $B^{-} \times B$ orbits in G and are parameterized by W

$$
G=\bigsqcup_{w \in W} B w B=\bigsqcup_{w \in W} B^{-} w B
$$

- $G / B=\{g B: g \in G\}$ the (full) flag variety in G.
-

$$
G / B=\bigsqcup_{w \in W} B w B / B=\bigsqcup_{w \in W} B^{-} w B / B
$$

- The Schubert cell C_{w} is $C_{w}=B w B / B=B \dot{w}$.
- The opposite Schubert cell C^{w} is $C^{w}=w_{0} C_{w_{0} w}=B^{-} w B / B=B^{-} \dot{w}$.
- The Schubert variety X_{w}, respectively the opposite Schubert variety X^{w}, in G / B

$$
X_{w}=\bigsqcup_{v \leq w} C_{v}, \quad X^{w}=\bigsqcup_{u \geq w} C^{u}=w_{0} X_{w_{0} w} \subseteq G / B
$$

Relations among Schubert varieties/Demazure crystals

- For $w, w^{\prime} \in W$,

$$
X_{w} \subseteq X_{w^{\prime}} \Leftrightarrow w \leq w^{\prime} \Leftrightarrow X^{w} \supseteq X^{w^{\prime}} .
$$

- The Richardson variety X_{α}^{β} in G / B corresponding to the pair $(\alpha, \beta), \alpha, \beta \in W$, is the (set theoretic) intersection

$$
X_{\alpha}^{\beta}:=X_{\alpha} \cap X^{\beta}=\bigsqcup_{\beta \leq \nu^{\prime} \leq u^{\prime} \leq \alpha} C_{u^{\prime}} \cap C^{v^{\prime}} \neq \emptyset \Leftrightarrow \beta \leq \alpha .
$$

Let $u, v, x, y \in W^{\lambda}$ and $b \in B(\lambda)$. Then
(1) $B_{x}(\lambda) \subseteq B_{y}(\lambda) \Leftrightarrow B^{\times}(\lambda) \supseteq B^{y}(\lambda) \Leftrightarrow x \leq y$.
(2) $B^{u}(\lambda) \cap B_{v}(\lambda) \neq \emptyset \Leftrightarrow u \leq v$.

Borel-Weil theorem, Demazure modules and Schubert

 varieties- Let \mathfrak{g} be the Lie algebra of G. Let $V(\lambda)$ be the irreducible highest weight G-module over \mathbb{C} with highest weight λ, and let $B(\lambda)$ its combinatorial skeleton.
- Let L_{λ} be a line bundle on the flag variety G / B.
- By the Borel-Weil theorem the space $H^{0}\left(G / B, L_{\lambda}\right)$ of global sections is a G-module isomorphic to $V(\lambda)^{*}$ the dual of $V(\lambda)$,

$$
\begin{gathered}
H^{0}\left(G / B, L_{\lambda}\right) \simeq V(\lambda)^{*}=V\left(-w_{0} \lambda\right) \\
H^{0}\left(X_{w}, L_{\lambda}\right) \simeq V_{w}(\lambda)^{*}=V_{w}\left(-w_{0} \lambda\right) \quad H^{0}\left(X^{w}, L_{\lambda}\right) \simeq V^{w}(\lambda)^{*}=V^{w}\left(-w_{0} \lambda\right)
\end{gathered}
$$

- Kashiwara constructed a specific \mathbb{C}-basis of $H^{0}\left(G / B, L_{\lambda}\right)$ via the quantized enveloping algebra associated to \mathfrak{g}, specialized at $q=1$. This \mathbb{C}-basis, $\left\{G_{\lambda}^{u p}(b): b \in B(\lambda)\right\}$ the upper global basis (specialized at $q=1$) is compatible with Schubert varieties $\left\{G_{\lambda}^{u p}(b): b \in B_{w}(\lambda)\right\}$ and opposite Schubert varieties $\left\{G_{\lambda}^{u p}(b): b \in B^{w}(\lambda)\right\}$.
- Associated to the combinatorial path model given by the crystal $\mathbf{B}(\lambda)$ of LS paths of shape λ, Lakshmibai and Littelmann constructed a basis for $H^{0}\left(G / B, L_{\lambda}\right)$ compatible with Schubert varieties and opposite Schubert varieties and their intersections, satisfying certain quadratic relations similar to the quadratic straightening relations.

Crystal of LS paths

- If $\pi=(\tau, \mathbf{a})$ is an LS path of shape λ, the sequence $\tau=\left(\tau_{0}, \ldots, \tau_{r}\right)$ is strictly decreasing in W^{λ}.
The initial direction of the path π is $i(\pi)=\tau_{0}$, and the ending direction of the path π is $e(\pi)=\tau_{r}$.
- The LS path π in $\mathbf{B}(\lambda)$ is said to be standard on a Richardson variety $X_{\tau}^{\kappa}=X^{\kappa} \cap X_{\tau}, \kappa, \tau \in W^{\lambda}$ if $\kappa \leq e(\pi) \leq i(\pi) \leq \tau$ in the Bruhat order in W^{λ}
- $\mathbf{B}^{\kappa}(\lambda)=\{\pi \in \mathbf{B}(\lambda): e(\pi) \geq \kappa\}$, opposite Demazure crystal, is the set of all L-S paths of shape λ, standard on the opposite Schubert variety X^{κ}.
- $\mathbf{B}_{\tau}(\lambda)=\{\pi \in \mathbf{B}(\lambda): i(\pi) \leq \tau\}$, Demazure crystal, is the set of all L-S paths of shape λ, standard on the Schubert variety X_{τ}.

Demazure keys: Dilatation of crystals

- For any positive integer m, there exists a unique embedding of crystals

$$
\psi_{m}: B(\lambda) \hookrightarrow B(m \lambda)
$$

such that for $b \in B(\lambda)$ and any path $b=f_{i_{1}} \cdots f_{i_{j}}\left(b_{\lambda}\right)$ in $B(\lambda)$, we have

$$
\psi_{m}(b)=f_{i_{1}}^{m} \cdots f_{i,}^{m}\left(b_{m \lambda}\right)
$$

- $b_{\lambda}^{\otimes m}$ is of highest weight $m \lambda$ in $B(\lambda)^{\otimes m} \Rightarrow B\left(b_{\lambda}^{\otimes m}\right)$ is a realization of $B(m \lambda)$ in $B(\lambda)^{\otimes m}$ with highest weight vertex $b_{\lambda}^{\otimes m}$.
- This gives a canonical embedding

$$
\theta_{m}:\left\{\begin{aligned}
B\left(b_{\lambda}\right) & \hookrightarrow B\left(b_{\lambda}^{\otimes m}\right) \subset B\left(b_{\lambda}\right)^{\otimes m} \\
b & \longmapsto b_{1} \otimes \cdots \otimes b_{m}
\end{aligned}\right.
$$

with important properties.

- For $\sigma \in W^{\lambda}, \theta_{m}\left(b_{\sigma \lambda}\right)=b_{\sigma \lambda}^{\otimes m}$.
- When m has sufficiently many factors, there exist elements $\sigma_{1}, \ldots, \sigma_{m}$ in W^{λ} such that $\theta_{m}(b)=\mathbf{b}_{\sigma_{1}} \lambda \otimes \cdots \otimes \mathbf{b}_{\sigma_{\mathbf{m}}} \lambda$ tensor product of keys.
- the elements $\mathbf{b}_{\sigma_{1} \lambda}$ and $\mathbf{b}_{\sigma_{\mathfrak{m}} \lambda}$ in $\theta_{m}(b)$ do not depend on m :
- up to repetition, the sequence $\left(\sigma_{1} \lambda, \ldots, \sigma_{m} \lambda\right)$ in $\theta_{m}(b)$ does not depend on the realization of the crystal $B(\lambda)$ and we have $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{m}$.

Demazure keys:right and left

- $O(\lambda)=\left\{f_{i_{r}}^{\max } \ldots f_{i_{1}}^{\max }(b(\lambda)) \mid i_{1}, \ldots, i_{r} \in[n], r \geq 0\right\}$.
- $O(\lambda)=\left\{b_{\sigma \lambda}: \sigma \in W^{\lambda}\right\}$ the set of keys in $B(\lambda)$.
- For $b \in B(\lambda)$ and $\theta_{m}(b)=b_{\sigma_{1} \lambda} \otimes \cdots \otimes b_{\sigma_{m} \lambda}$:
- The right key $K^{+}(b)$ and left key $K^{-}(b)$ of b are defined as follows:

$$
K^{+}(b)=b_{\sigma_{1} \lambda} \text { and } K^{-}(b)=b_{\sigma_{m} \lambda} .
$$

In particular, $K^{+}\left(b_{\sigma \lambda}\right)=K^{-}\left(b_{\sigma \lambda}\right)=b_{\sigma \lambda}$ for any $\sigma \in W^{\lambda}$.

- $K^{-}(b) \leq K^{+}(b)$ for any $b \in B(\lambda)$, and
- $K^{-}(b)=K^{+}(b)$ if and only if b is in $O(\lambda)=\left\{b_{\sigma \lambda}: \sigma \in W^{\lambda}\right\}$,

The dilatation of the crystal $\operatorname{KN}((2,1), 2)$, by $m=6$, the least common multiple of the maximal i-string lengths, inside $K N((12,6), 2) \simeq B\left(K(2,1)^{\otimes 6}, 2\right)$, exhibiting the right and left keys of each vertex of $\mathrm{KN}((2,1), 2)$ as the leftmost respectively rightmost factor in each 6-fold tensor product of keys

The crystal $\mathbf{B}(2,1)$ of Lakshmibai-Seshadri, L-S, paths, of shape $\lambda=\Lambda_{2}+\Lambda_{1}=(2,1)$ obtained from the dilatation of the C_{2} crystal $B(2,1)$. The C_{2} Weyl group $B_{2}=<s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1,\left(s_{1} s_{2}\right)^{4}=1>$ with long element $\mathbf{w}_{0}=s_{2} s_{1} s_{2} s_{1}$.

Virtual symplectic keys

$C_{n} \stackrel{2}{1} \quad \bullet \quad \bullet \quad{ }^{n-1}{ }^{n} \longrightarrow \quad \longrightarrow \quad A_{2 n-1}$ folded

$W^{C}=$ hyperoctahedral group B_{n} embedded as a subgroup of $\mathfrak{S}_{2 n}=\left\langle s_{i}^{A}: 1 \leq i<2 n\right\rangle$. $W^{C}=B_{n} \simeq B_{n}^{A}:=\left\langle\tilde{s}_{i}:=s_{i}^{A} s_{2 n-i}^{A}, \tilde{s}_{n}:=s_{n}^{A}, 1 \leq i<n\right\rangle$ as a subgroup of $\mathfrak{S}_{2 n}$.

- Baker crystal virtualization

$$
\begin{gathered}
\psi: \operatorname{KN}\left(\Lambda_{i}, n\right) \hookrightarrow \operatorname{SSYT}\left(\Lambda_{2 n-i}^{A}+\Lambda_{i}^{A}, 2 n\right) \subseteq \operatorname{SSYT}\left(\Lambda_{i}^{A}, 2 n\right) \otimes \operatorname{SSY}\left(\Lambda_{2 n-i}^{A}, 2 n\right) \\
C=f_{i_{1}} \cdots f_{i_{k}}\left(\Lambda_{i}\right) \mapsto \psi(C)=f_{i_{1}}^{A} f_{2 n-i_{1}}^{A} \cdots f_{i_{k}}^{A} f_{2 n-i_{k}}^{A}\left(\Lambda_{2 n-i}^{A}+\Lambda_{i}^{A}\right) \\
\mathrm{E}: \operatorname{KN}(\lambda, n) \longleftrightarrow \operatorname{SSYT}\left(\lambda^{A}, 2 n\right) \subseteq \bigotimes_{i=1}^{k} \operatorname{SSYT}\left(\Lambda_{i}^{A}+\Lambda_{2 n-i}^{A}, 2 n\right) \\
T=C_{k} \otimes \cdots \otimes C_{1} \mapsto \mathrm{E}(T)=\psi\left(C_{k}\right) \otimes \cdots \otimes \psi\left(C_{1}\right) \\
=
\end{gathered}
$$

- Embedding of symplectic keys into $\mathfrak{s l}_{2 n}$ keys

$$
\begin{aligned}
& O(\lambda) \rightarrow E(O(\lambda))=O_{B_{n}}\left(\lambda^{A}\right) \subseteq O_{\mathfrak{S}_{2 n}}\left(\lambda^{A}\right) \\
& K(u) \quad \mapsto\left(u^{A}\right)
\end{aligned}
$$

Baker crystal embedding and crystal dilatation commute

Proposition

For any positive integer $m>0$, the injections θ_{m} and E commute in $K N(\lambda, n)$: $\theta_{m} E=E \theta_{m}$.

Embedding of symplectic Demazure atoms and opposite

 into $\mathfrak{S l}_{2 n}$ ones
Theorem

(a) Let m be a positive integer such that, for each $T \in K N(\lambda, n)$, the m-dilatation map θ_{m} on $K N(\lambda, n)$ gives $\theta_{m}(T)=K\left(\sigma_{1} \lambda\right) \otimes \cdots \otimes K\left(\sigma_{m} \lambda\right)$ for some $\sigma_{1} \geq \cdots \geq \sigma_{m}$ in B_{n}^{λ}. Then
$\theta_{m}(E(T))=E\left(\theta_{m}(T)\right)=E\left(K\left(\sigma_{1} \lambda\right)\right) \otimes \cdots \otimes E\left(K\left(\sigma_{m} \lambda\right)\right)=K\left(\tilde{\sigma}_{1} \lambda^{A}\right) \otimes \cdots \otimes K\left(\tilde{\sigma}_{m} \lambda^{A}\right)$, where $E\left(K\left(\sigma_{i} \lambda\right)\right)=K\left(\tilde{\sigma}_{i} \lambda^{A}\right) \in O_{B_{n}^{A}}\left(\lambda^{A}\right), 1 \leq i \leq m$.
(b) $E\left(K^{+}(T)\right)=K^{+}(E(T))$ and $E\left(K^{-}(T)\right)=K^{-}(E(T))$ for all $T \in K N(\lambda, n)$.
(b) For $\sigma \in W^{\lambda}, E\left(\bar{B}_{\sigma}(\lambda)\right) \hookrightarrow \bar{B}_{\tilde{\sigma}}\left(\lambda^{A}\right)$ and $E\left(\bar{B}^{\sigma}(\lambda)\right) \hookrightarrow \bar{B}^{\tilde{\sigma}}\left(\lambda^{A}\right)$.

Example

$$
\begin{aligned}
& T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \overline{5} \\
\hline \overline{4} & \overline{3} \\
\hline \overline{3} &
\end{array}, \quad \operatorname{wt}(T)=(1,1,-1,-1,-1) . \\
& \psi\left(C_{2}\right)=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline 2 & \overline{5} \\
\hline 4 & \overline{3} \\
\hline \overline{5} & \\
\hline \overline{4} & , \\
\hline \overline{3} & , \\
\hline \overline{1} & \\
\hline
\end{array}
\end{aligned}
$$

$$
Q_{\lambda}=\begin{array}{|c|c|c|c|}
\hline 1 & 4 & 1 & 15 \\
\hline 2 & 5 & 12 & 16 \\
\hline 3 & 6 & 13 & 17 \\
\hline 7 & 14 & 18 \\
\hline 8 & 19 & \\
\hline 9 & 20 & \\
\hline 10 & & \begin{array}{|c|c|c|}
\hline 2 & 2 \\
\hline 4 & \overline{5} \\
\hline \overline{5} & \overline{3} \\
\hline \overline{4} & \overline{1} \\
\hline \overline{3} & \\
\hline \overline{1} \\
\hline
\end{array}, \quad \psi\left(C_{2}^{\prime}\right)=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline 2 & \overline{5} \\
\hline 4 & \overline{3} \\
\hline \overline{5} & \\
\hline \overline{4} & \\
\hline \overline{3} & \\
\hline \overline{1} \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\Longrightarrow K_{+}(T)=C_{1}^{\prime} C_{2}^{\prime}=\begin{array}{|c|c|}
\hline 2 & 2 \\
\hline \overline{5} & \overline{5} \\
\hline \overline{3} & \overline{3} \\
\hline \overline{1} & \\
\hline
\end{array}
$$

