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Bijective and Automated Approaches to Abel Sums

Gil KALAI and Doron ZEILBERGER

Dedicated to Dominique Foata (b. Oct. 12, 1934), on his forthcoming 90th birthday

Abstract. In this tribute to our guru, Dominique Foata, we return to one of our (and
Foata’s) first loves, and revisit Abel sums and their identities, from two different viewpoints.

Preface

In the very first issue of Crelle’s journal (the first mathematical periodical solely dedicated to

mathematics), Niels Henrik Abel published a two-page paper [A], stating and proving his eponymous

identity. This led to an intensive study of general Abel Sums by many people (see [R] [C] and their

numerous references), and to beautiful bijective approaches pioneered by Dominique Foata and

Aimé Fuchs [Fo] [FoFu] that led to Françon’s elegant proof [Fr] (see [C], p. 129). This tribute

consists of two independent parts. The first part is bijective, while the second part is automated,

elaborating and extending John Majewicz’s 1997 Ph.D. thesis [M1] [M2], and more importantly,

fully implementing it (and its extension) in a Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/AbelCeline.txt .

(Majewicz’s original Maple code, unfortunately, was lost).

Part I: Bijective proofs (à la Foata) of an Abel-type identity and a generalization

In [Ka] (see also [Ka’]), the first author proved (as a special case of more general results) the

following Abel-type identity. Let n, p by non-negative integers, then

n
∑

k=0

(

n

k

)

kk(n− k)n−k+p =

n
∑

k=0

(

n

k

)

nk(n− k)!S(p+ n− k, n− k) . (1)

Here, S(n, k) are the Stirling numbers of the second kind, and k!S(n, k) is the number of maps from

a set of size k onto a set of size n. (This property can serve as the definition of these numbers.)

A special case of this formula is attributed to Cauchy (Equation (24) in Chapter 1 of [R]):

n
∑

k=0

(

n

k

)

kk(n− k)n−k =
n
∑

k=0

(

n

k

)

nk(n− k)! . (2)

Here we present a combinatorial proof, in the style of Foata [Fo] [FoFu] for Formulas (2) and (1).

We use the notation [n] = {1, 2, . . . , n}, and to make the argument clearer we will present both

proofs.
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The Proofs

Proof of Equation (2): The left-hand side counts triples f,A,B where f is a function from [n]

to [n] and the following conditions hold:

A ∪B = [n], A ∩B = ∅, f(A) ⊂ A and f(B) ⊂ B. (3)

Indeed, if |A| = k, there are
(

n
k

)

ways to choose A (B is now determined, B = [n]\A), kk ways to

choose the restriction of f to A subject to the condition f(A) ⊂ A and (n− k)n−k ways to choose

the restriction of f to B subject to the condition f(B) ⊂ B.

The right-hand side counts triples f, C,D where f is a function from [n] to [n] and the following

conditions hold:

C ∪D = [n], C ∩D = ∅, f(D) = D. (4)

(Here, f(D) = D means that f is a bijection from D to D; note that we relaxed the condition for

C compared to A and strengthened the condition for D compared to B.) Indeed, if |C| = k, there

are
(

n
k

)

ways to choose C, nk ways to choose the restriction of f to C (no conditions here) and

(n− k)! ways to choose the restriction of f to D subject to the condition f(D) = D.

The crucial observation is:

• For every function f from [n] to [n] the number of pairs (A,B) that satisfy Equation (3) equals

the number of pairs (C,D) that satisfy Equation (4).

Indeed if (A,B) is a pair that satisfies Equation (3), we can take

D = f(f(· · · (f(B)) · · ·) and C = [n]\D. (5)

In other words

D = {d ∈ [n] such that for every k ≥ 0 there exists b ∈ B with d = fk(b)}.

Taking the inverse operation B = f−1(f−1(· · · (f−1(D)) · · ·) (and A = [n]\B) brings you from a

pair (C,D) to a pair (A,B).

Proof of Equation (1):

Let X = [n] = {1, 2, . . . .n}, and Y = [n+ p] Consider all triples (f,A,B) where, this time, f maps

[n+ p] to [n], and A,B satisfy

A ∪B = [n], A ∩B = ∅, f(A) ⊂ A and f(B ∪ [n+ 1, n+ p]) ⊂ B.

We also consider triples (f, C,D) where, f maps [n+ p] to [n], and C,D satisfy

C ∪D = [n], C ∩D = ∅, f(D ∪ [n+ 1, n+ p]) = D. (7)
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Also in this case a stronger statement holds: For every function f : [n+p] → [n] there is a bijection

between between pairs (A,B) satisfying Equation (6) and pairs (C,D) satisfying Equation (7) and

the bijection is given again by (5).

This bijection is implemented in the Maple package AbelBijection.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/AbelBijection.txt .

See the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/abelKZ.html for a sam-

ple input file and its corresponding output file.

Remark: If we give each element k ∈ [n] a weight wk and a function f from [n + p] to [n] the

weight w(f) :=
∏n

k=1 wf(k) then our bijective proof gives a Hurwitz-type generalization of Abel’s

formula, see Hurwitz [H] and Excercise 30 in Section 2.3.4.4 of Knuth [Kn]. (For Formula (1) we

obtain a Hurwitz-type generalization of the Stirling numbers of the second kind.)

Part II: Automating Abel sums

Abel’s original identity had many proofs, but the one by Shalosh B. Ekhad and John Majewicz [EM]

(written 30 years ago, and dedicated to Dominique Foata on his 60th birthday) has the distinction

that it was computer-generated, yet with a bit of patience, humanly readable and verifiable. In order

to motivate the sequel, let us reproduce it in its entirety.

Abel’s identity: For any non-negative integer n,

n
∑

k=0

(

n

k

)

(r + k)k−1(s− k)n−k =
(r + s)n

r
. (8)

Proof: Let Fn,k(r, s) and an(r, s) denote, respectively, the summand and sum on the LHS of (8),

and let Gn,k := (s− n)
(

n−1
k−1

)

(k + r)k−1(s− k)n−k−1. Since

Fn,k(r, s)−sFn−1,k(r, s)−(n+r)Fn−1,k(r+1, s−1)+(n−1)(r+s)Fn−2,k(r+1, s−1) = Gn,k−Gn,k+1 ,

(check!), we have by summing from k = 0 to k = n, due to the telescoping on the right:

an(r, s)− san−1(r, s)− (n+ r)an−1(r + 1, s− 1) + (n− 1)(r + s)an−2(r + 1, s− 1) = 0. (9)

Since (r+ s)n · r−1 also satisfies this recurrence (check!), with the same initial conditions a0(r, s) =

r−1 and a1(r, s) = (r + s) · r−1, Equation (8) follows.

This proof was derived using John Majewicz’s brilliant adaptation of Sister Celine’s technique

[Fa1] [Fa2] [Z] (see also [PWZ], Chapter 4). Recall that Sister Celine was interested in finding pure

recurrence relations of the form

c0(n)an + c1(n)an+1 + · · ·+ cL(n)an+L = 0 , (10)



4 Gil Kalai and Doron Zeilberger

where c0(n), . . . , cL(n) are polynomials in n for sequences an, that are defined by expressions of the

form

an :=
∞
∑

k=−∞

Fn,k ,

where Fn,k is proper hypergeometric (see [PWZ] for the definition, in particular, Fn+1,k/Fn,k and

Fn,k+1/Fn,k are both rational functions of n and k). The way she did it was to search for a

recurrence of the form:
L
∑

i=0

M
∑

j=0

bij(n)Fn+i,k+j = 0 , (11)

for some positive integers L and M . (In her case by hand, but nowadays it has all been fully

automated.)

Dividing by Fn,k, and clearing denominators, looking at the numerator, and then setting all the

coefficients of powers of k to 0, we obtain a system of linear equations (with coefficients that are

polynomials in n) for the undetermined bij(n).

Having found the bij(n), summing Equation (11) from k = −∞ to k = ∞, we obtain Equation (10)

with

ci(n) =
M
∑

j=0

bij(n) , 0 ≤ i ≤ L .

In his Ph.D. thesis [M1] [M2] (written under the direction of the second author), John Majewicz

adapted Sister Celine’s method to Abel-type sums, of the form

an(r, s) =
n
∑

k=0

Fn,k (r + k)k−1+p(s− k)n−k+qxk , (12)

where Fn,k is hypergeometric in n and k. Here p and q are arbitrary integers, and x is any number

(or symbol). It is no longer the case that an(r, s) satisfies a pure recurrence in n, with r and s

fixed, but it does satisfy a functional recurrence, similar (but often much more complicated) to

Equation (10). Denoting the summand of (12) by Fn,k(r, s)

Fn,k(r, s) := Fn,k(r + k)k−1+p(s− k)n−k+qxk ,

one looks for polynomials bij(n) (that also depend on r, s, p, q and x, but are free of k), such that

L
∑

i=0

M
∑

j=0

bij(n)Fn+i,k+j(r − j, s+ j) = 0 . (13)

Dividing by Fn,k(r, s) (since Fn+i,k+j(r − j, s + j)/Fn,k(r, s) is still a rational function of n and

k), clearing denominators, looking at the numerator, and setting all the coefficients of powers of k

to 0, we get again a system of linear equations for the undetermined quantities bij(n). We then ask

Maple to kindly solve them, and if in luck we get a non-zero solution. It can be shown ([M1] [M2])
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that one can always find orders L and M for which such a system is solvable (for sufficiently large

L and M , there are more unknowns than equations). Having found such a recurrence for Fn,k,

summing over k we obtain a functional recurrence for an(r, s):

L
∑

i=0

M
∑

j=0

bij(n)an+i(r − j, s+ j) = 0 . (14)

Implementation

We fully implemented the Celine–Majewicz algorithm in a Maple packge AbelCeline.txt available

from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/AbelCeline.txt .

The function call is

FindOpe(F,n,k,r,s,R,S,N,K,MaxOrd); ,

where MaxOrd is the maximal order of the recurrence you are willing to tolerate.

It inputs a hypergeometric term Fn,k and outputs the recurrence in the form of the corresponding

operator, where N , R, and S are the forward shift operators in n, r, and s, respectively. To get a

computer-generated paper, in humanese, the function call is

Paper(F,n,k,r,s,R,S,N,K,MaxOrd): .

Sample Output

Typing

Paper(binomial(n,k)*x**k,n,k,r,s,2):,

we get in 0.12 seconds the following deep fact.

Let, for any integers p and q and number (or symbol) x

an(r, s) :=
n
∑

k=0

(

n

k

)

(r + k)k−1+p(s− k)n−k+q xk ,

then

an(r, s) = (nx+ rx) an−1(r + 1, s− 1)+san−1(r, s)+(−nrx− nsx+ rx+ sx) an−2(r + 1, s− 1) .

Typing

Paper(1/(k!**2*(n-k)!)*x**k,n,k,r,s,3):
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we get that the sequence of polynomials in (r, s) defined by

an(r, s) :=
n
∑

k=0

1

k!2(n− k)!
(r + k)k−1+p(s− k)n−k+q xk

satisfies the functional recurrence

an(r, s) =
x (n+ r) an−1(r + 1, s− 1)

n2
+

(

2n2 − 2ns− 2n+ s
)

san−1(r, s)

(n− 1− s)n2

−

(

n2 + 2nr − 2rs− s2 − n− r
)

xan−2(r + 1, s− 1)

(n− 1− s)n2

−
(n− s) s2an−2(r, s)

(n− 1− s)n2
+

(

nr + ns− rs− s2
)

xan−3(r + 1, s− 1)

(n− 1− s)n2
.

To see numerous other examples, read the output files in the front of this article:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/abelKZ.html .

In particular, to see the functional recurrence satisfied by the ‘innocent’ sum:

an(r, s) :=
n
∑

k=0

(

n

k

)(

n+ k

k

)

(r + k)k−1+p(s− k)n−k+q xk ,

see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oAbelCeline4.txt .

Notice how complicated things get!

Getting differential recurrences

Since r and s, as opposed to n and k, are ‘continuous variables’, and since the functional recurrences

gotten by Majewicz’s Abel–Celine technique get so complicated even with very simple summands,

it occurred to us to look for differential recurrences. For any bi-variate (proper) hypergeometric

term Fn,k, defining (as above)

an(r, s) :=
n
∑

k=0

Fn,k(r + k)k−1+p(s− k)n−k+q xk ,

where p and q are integers (but may be left symbolic) and x is a number (again, it can be left

symbolic), one looks for differential-recurrence equations of the form

L
∑

i=0

M
∑

j=0

bi,j(n, r, s)
di

dri
an+j(r, s) = 0 ,
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and
L
∑

i=0

M
∑

j=0

ci,j(n, r, s)
di

dsi
an+j(r, s) = 0 ,

Together these pairs of differential recurrence equations, combined with initial conditions, uniquely

determine an(r, s).

In fact, one can consider far more general ‘kernels’. We can find a pair of differential recurrence

equations for sums of the form

an(r, s) :=

n
∑

k=0

Fn,kK(r, s, n, k) ,

for any kernel K(r, s, n, k) such that (∂K
∂r

)/K, and (∂K
∂s

)/K are rational functions of (r, s) (and k).

We proceed analogously. One applies the generic operator to the summand F (n, k), expands, clears

denominators, looks at the numerator, then equates all the powers of k to 0, getting a system of

linear equations that Maple can solve for you.

To get these pairs of equations, in verbose, human-readable form, type:

PaperD(F,n,k,r,s,MaxOrd,KER):

where MaxOrd is the maximum order you are willing to tolerate, and KER is the kernel. For example,

typing

PaperD(binomial(n,k),n,k,r,s,2,(r+k)**(k-1+p)*(s-k)**(n-k+q)*x**k): ,

we obtain in a fraction of a second the facts that the sequence of polynomials in r and s, an(r, s)

(for any p and q and x)

an(r, s) :=
n
∑

k=0

(

n

k

)

(r + k)k−1+p(s− k)n−k+q xk ,

satisfy the pair of differential-recurrence equations (the first in r, the second in s)

− (pn+ ns− n+ p+ s− 1) an(r, s) + (nr + ns+ r + s)

(

∂

∂r
an(r, s)

)

+(n+ p)an+1(r, s)− (n+ r + 1)

(

∂

∂r
an+1(r, s)

)

= 0 ,

and

− (n+ 1) (q + n− s+ 1) an(r, s) + qan+1(r, s) + (n− s+ 1)

(

∂

∂s
an+1(r, s)

)

= 0 .

Note that setting x = 1 and p = 0, q = 0 we obtain yet-another (automatic) proof of the original

identity (8). In fact it is closer in spirit to Niels Abel’s original proof, that also used differentiation

(or rather integration).
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Remark: The proof technique of this part can prove (2) and can be adapted (with some pre-

processing) to prove (1).

To see many other examples, look at the output files

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oAbelCeline5.txt ,

and

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oAbelCeline6.txt .

To see examples with more complicated kernels, see

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oAbelCeline7.txt .

Readers can easily find many other such deep facts by playing with AbelCeline.txt. Enjoy!

Comment: The anonymous referees and the non-anonymous editor (Christian Krattenthaler)

made the following interesting remarks. We thank them for allowing us to quote them verbatim.

The paper has a nice and interesting observation (namely that in some cases it might be more fruitful

to consider differential operators instead of difference operators). However, the corresponding theory

has already been developed in very general form by Frédéric Chyzak, Manuel Kauers, and Bruno

Salvy in the interesting paper [CKS],

In this general form (Ore algebras) the corresponding algorithms have been implemented in Chris-

toph Koutschan’s Mathematica package. It may however be that the present paper’s specialized

implementation is faster and more efficient than the general-purpose implementation of Koutschan.

It also seems that one may be able to get differential recurrences, where one takes both differenti-

ations with respect to r and with respect to s.
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[H] Adolf Hurwitz, Über Abels Verallgemeinerung der binomischen Formel, Acta Math. 26 (1902),

199–203.

[Ka] Gil Kalai, A note on an evaluation of Abel sums, J. Combin. Theory (Ser. A), 27 (1979),

213–217.

https://sites.math.rutgers.edu/~zeilberg/akherim/kalai1979.pdf .

[Ka’] Gil Kalai, Nostalgia corner: John Riordan’s referee report of my first paper, blog post on

Combinatorics and More, 2021.

https://gilkalai.wordpress.com/2021/02/19/nostalgia-corner-john-riordans-referee-

report-of-my-first-paper/ .

[Kn] Donald E. Knuth, “The Art of Computer Programming”, Vol. I: Fundamental Algorithms

(Addison–Wesley, Reading, MA, 1969).

[M1] John Majewicz, WZ-type certification procedures and Sister Celine’s technique for Abel-type

sums, J. Difference Equ. Appl. 2 (1996), 55-65.

[M2] John Majewicz, “WZ Certification of Abel-Type Identities and Askey’s Positivity Conjecture”,

Ph.D. thesis, Temple University 1997.

https://sites.math.rutgers.edu/~zeilberg/Theses/JohnMajewiczThesis.pdf .
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