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Abstract. We look at multidimensional random walks (Sn)n⩾0 in convex cones,
and address the question of whether two naturally associated generating functions
may define rational functions. The first series is the one of the survival probabilities
P(τ > n), where τ is the first exit time from a given cone; the second series is that
of the excursion probabilities P(τ > n, Sn = y). Our motivation to consider this
question is twofold: first, it goes along with a global effort of the combinatorial
community to classify the algebraic nature of the series counting random walks in
cones; second, rationality questions of the generating functions are strongly associated
with the asymptotic behaviors of the above probabilities, which have their own interest.
Using well-known relations between rationality of a series and possible asymptotics of
its coefficients, recent probabilistic estimates immediately imply that the excursion
generating function is not rational. Regarding the survival probabilities generating
function, we propose a short and self-contained proof that it cannot be rational neither.
Keywords: random walks in cones, survival probabilities, generating functions,
rational functions, Laplace transform, univariate singularity analysis.

1. Introduction

Main result and our approach. For a d-dimensional random walk (Sn)n⩾0 with
integrable and independent increments Xn = Sn − Sn−1 having common distribution µ,
we consider the generating function

F (t) =
∑
n⩾0

antn =
∑
n⩾0

Px(τ > n)tn, (1.1)

where Px is a probability distribution under which the random walk starts at S0 = x, and
τ denotes the first exit time from a given cone K, i.e.,

τ = inf{n > 0 : Sn /∈ K}.

See (1.7) for an explicit computation of (1.1) in a simple one-dimensional example. Our
first main result can be stated as follows:
Theorem 1.1. If the drift m = EX1 is not interior to the cone K, and if four further
assumptions (A1)–(A4) (to be introduced below) are satisfied, then the generating function
F (t) in (1.1) is not a rational function.
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Let us emphasize that in Theorem 1.1, the distribution of X1 is not assumed to be a
discrete measure. This theorem covers, amongst other cases, the class of walks with small
steps in orthants (with arbitrary weights on the steps), a model that has attracted a lot of
attention from the combinatorial community, but is much more general.

The non-rationality of the generating function (1.1) is based on the fact that the numbers
an don’t have an asymptotic behavior that is compatible with the Taylor coefficients of a
rational function. More precisely, we identify in Theorem 1.3 a rate ρ ∈ (0, 1] such that

an = ρnBn, (1.2)
with Bn satisfying

(i) n
√

Bn → 1,
(ii) Bn → 0.

Using then classical analytic combinatorics techniques (see in particular Theorem 4.1
and Lemma 4.2), one will directly deduce that the generating function (1.1) cannot be
rational.

In this paper, we provide proofs of estimates (i) and (ii) which are self-contained, and
as simple and elementary as possible. Only item (ii) is new. Item (i) (in particular the
value of the rate ρ in (1.2)) is already obtained in [11], but for the reader’s convenience,
we shall give here a detailed proof in a simplified setting, that covers the cases which are
relevant to combinatorialists. In a special case (when the drift is, in some sense, directed
towards the vertex of the cone), the precise asymptotics of the survival probability (hence
in particular items (i) and (ii)) is derived in [8].

Drift inside of the cone. In case of a drift m = EX1 interior to the cone, the probabilistic
behavior is rather constrained as we have Px(τ > n) → Px(τ = ∞) > 0. The positivity
of the escape probability is intuitively clear, based on the law of large numbers and the
fluctuations of the random walk; see Lemma 3.1 for a precise statement. Equivalently, in
the neighborhood of t = 1, one has

F (t) ∼ Px(τ = ∞)
1 − t

,

which contains no contradiction with F being a rational function. However, for one-
dimensional walks with bounded jumps, it is proved in [1, Thm 4] that Px(τ > n) =
Px(τ = ∞) + cρn

n3/2 + · · · , with ρ ∈ (0, 1), which is not compatible with F being rational.
One of the simplest examples for which the rationality of F in (1.1) was an open question

before the present paper is the following: in the quarter plane K = N2, take a uniform
distribution µ on {(1, 0), (0, −1), (−1, 0), (0, 1), (1, 1)}. Here, we answer this question and,
more generally, solve the problem for the orthant K = [0, ∞)d and any (weighted) small
step walk, i.e., random walk with increments Xk that belong to {−1, 0, 1}d almost surely.
If P(Xk ∈ K) = 1, then the random walk is trapped forever in K and an = Px(τ > n) = 1
for all n, so that F (t) = 1

1−t
is a rational function. Let us say the walk is not trapped if

P(Xk /∈ K) > 0. Our second main result is the following:

Theorem 1.2. For all d-dimensional weighted small step walks with a drift interior to
the orthant K = [0, ∞)d, not trapped and satisfying (A2), the generating function F (t)
in (1.1) is not rational.
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Here again, the non-rationality of the generating F (t) is obtained as a consequence of
estimates on an = Px(τ > n). More precisely, in Theorem 1.4, we prove that

Px(τ > n) = Px(τ = ∞) + Θ(ρnBn), (1.3)

where ρ ∈ (0, 1) and Bn satisfies n
√

Bn → 1 and Bn → 0, and the notation fn = Θ(gn)
means that there exist constants 0 < c < C such that cgn ⩽ fn ⩽ Cgn.

We could have unified the presentation of the interior and non-interior drift estimates,
since Px(τ = ∞) = 0 when the drift is not in Ko. However, we choose not to do so,
because the last double-sided estimate (1.3) is obtained only in the small step walk setting.
We leave open the general case of this interesting interior drift problem.

In the papers [12, 13] (see also [7]), the authors prove the non-rationality of F (t), for
certain models of singular walks in the quarter plane, by proving that F (t) admits infinitely
many poles.

Combinatorial motivations. Up to a scaling of the t-variable, our framework is equiva-
lent to a more combinatorial question, related to the enumeration of walks. More precisely,
in case µ is a uniform distribution on a finite set S (with cardinality |S|), one has

F (|S|t) =
∑
n⩾0

qntn,

where qn denotes the number of walks starting from x, having length n and staying in the
cone K. More generally, when µ is any distribution, the series F (t) counts the numbers of
µ-weighted walks of length n staying in the cone K. Accordingly, all our results admit
direct combinatorial interpretations.

Recently, in the combinatorial literature, the seminal paper [3] inspired the following
question, which has attracted a lot of attention: given an orthant K = Nd = {0, 1, . . .}d

and a distribution µ on Zd (a step set in the combinatorial terminology), is the generating
function (1.1), or its refined version

F (x1, . . . , xd; t) =
∑
n⩾0

∑
(n1,...,nd)∈Nd

Px(τ > n, Sn = (n1, . . . , nd))xn1
1 · · · xnd

d tn (1.4)

a rational function? An algebraic function? A function satisfying a linear (or non-linear)
differential equation? A hypertranscendental function, meaning that like Euler’s Γ function
it does not satisfy any differential equation? In the present article, we look at the possible
rationality of the generating function.

Notice the following relation between (1.1) and (1.4):

F (1, . . . , 1; t) = F (t).

On the other hand, F (0, . . . , 0; t) is the generating function of the excursion sequence

F (0, . . . , 0; t) =
∑
n⩾0

Px(τ > n, Sn = (0, . . . , 0))tn,

which will be studied (based on earlier literature [5]) in Section 5.
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K

K∗

Figure 1. A cone K (in red) and its dual cone cone K∗ (in blue)

Technical assumptions. In order to present the hypotheses in the statement of our main
results, we need to introduce two objects, through which the exponential rate ρ in (1.2)
will be determined:

• the Laplace transform L of the increment distribution µ:

L(t) = E
(
e⟨t,Xk⟩

)
=
∫
Rd

e⟨t,y⟩µ(dy),

• the dual cone K∗ associated with K (see Figure 1 for an example):

K∗ = {x ∈ Rd : ⟨x, y⟩ ⩾ 0 for all y ∈ K}. (1.5)

Obviously, K∗ is a closed convex cone.
Throughout this paper, we make the following assumptions on the cone K and on the

distribution µ of the random walk increments:
(A1) The cone K is closed, convex, with non-empty interior.
(A2) The random walk is truly d-dimensional, i.e., there is no u ̸= 0 such that ⟨u, X1⟩ = 0

almost surely. Moreover, the random walk started at zero can reach the interior
Ko of the cone: there exists k > 0 such that P0(τ > k, Sk ∈ Ko) > 0.

(A3) The random walk increments are L1. We call m = EX1 =
∫

yµ(dy) the drift.
(A4) There exists a point t0 ∈ K∗ and a neighborhood V of t0 such that the Laplace

transform L of µ is finite in V and t0 is a minimum point of L restricted to K∗ ∩ V .
We would like to give some intuition on the hypothesis (A4), which is designed to perform an
exponential change of measure adapted to the geometry of the problem (see Subsection 2.1).
First, (A4) implies the existence of some exponential moments, but not all; it is even not
necessary that the increments have a moment of order one.
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For example, consider a random variable X with probability density function

f(x) = cγ

(
e−x2

1 + x2 1{x>0} + eγ2

1 + x2 1{x⩽0}

)
,

where γ > 0 is some fixed parameter and cγ is the normalizing constant. Since the negative
part of X has a half-Cauchy distribution, the variable X is not integrable. However, its
Laplace transform

L(t) = E(etX) = cγ

∫ ∞

0

e−txeγ2 + etxe−x2

1 + x2 dx

is finite and differentiable for all t > 0, and its derivative

L′(t) = cγ

∫ ∞

0
(e2tx−x2 − eγ2) xe−tx

1 + x2 dx

is negative for t ∈ (0, γ). Thus L reaches a minimum at some t0 > 0 (clearly L(t) → ∞
as t → ∞). Now taking a random vector Z = (X, Y ) with density f(x)f(y) gives a
two-dimensional example where Z is not integrable but its Laplace transform is finite in
the quadrant [0, ∞)2 and reaches a global minimum inside the quadrant.

Regarding the existence of a local minimum in K∗, hypothesis (A4) is discussed in [11]
(see its subsection 2.3; the condition is called (H2) there), where an equivalent geometric
condition is given: in the presence of all exponential moments, condition (A4) is satisfied
if and only if the support of the distribution µ is not included in any ‘bad’ half-space
{x ∈ Rd : ⟨x, u⟩ ⩽ 0}, with u in the dual cone K∗ \ {0}.

Under assumptions (A1)–(A4), we proved in [11] that the exponential rate ρ of the
survival probability is equal to L(t0), meaning that for all x ∈ K,

lim
n→∞

Px(τ > n)1/n = L(t0).

Furthermore, L(t0) < 1 if and only if the drift m does not belong to the closed cone K.
Here, we shall prove a little bit more:

Theorem 1.3. Assume hypotheses (A1)–(A4) above. If m /∈ Ko, then

Px(τ > n) = ρnBn,

where ρ = L(t0) ∈ (0, 1], n
√

Bn → 1 and Bn → 0.

Regarding the interior drift case, we shall prove the following estimate, in the setting of
small step walks in orthants:

Theorem 1.4. For all d-dimensional weighted small step walks with a drift interior to the
orthant K = [0, ∞)d, not trapped and satisfying (A2), we have for all x ∈ Nd

Px(τ > n) − Px(τ = ∞) = Θ(ρnBn),

where ρ ∈ (0, 1) and Bn satisfies n
√

Bn → 1 and Bn → 0.
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A one-dimensional example. We now illustrate our previous results on the example of
the simple random walk on Z, with jump probabilities q to the left (−1) and p = 1 − q to
the right (+1) and let K = [0, ∞). In this setting,

τ = inf{n > 0 : Sn < 0} = inf{n > 0 : Sn = −1}. (1.6)
It is well known that, for any positive starting point x ∈ N, the series (1.1) equals

F (t) = 1 − ϕ(t)x+1

1 − t
, with ϕ(t) = 1 −

√
1 − 4pqt2

2pt
. (1.7)

We may directly observe on (1.7) that, as stated in our Theorems 1.1 and 1.2, the function
F (t) is not rational. Indeed F (t) ∈ R(t) if and only if (1 −

√
1 − 4pqt2)x+1 ∈ R(t). But

an expression like (1 −
√

P )n where P is a polynomial belongs to R(t) if and only if
√

P

belongs to R(t), as seen by a binomial expansion, and
√

P is rational if and only if P is
a square in R[t]. This is not the case here with P (t) = 1 − 4pqt2, unless p or q equals 0.
However, F (t) defines an algebraic function (as usual for one-dimensional random walks;
see [1]).

In the zero drift case (meaning that p = q = 1
2), expanding (1.7) at t = 1 and using

singularity analysis, one finds

Px(τ > n) ∼ (x + 1)
√

2
π

1
n1/2 (in particular ρ = 1).

If the drift is negative (q > p), the function F in (1.7) is analytic at 1 as ϕ(1) = 1, and
the singularities t = ± 1

2√
pq

will both contribute to the asymptotics, which reads

Px(τ > n) ∼ (x + 1)
(

q

p

)(x+1)/2
 1

1
2√

pq
− 1 + (−1)x+n

1
2√

pq
+ 1

 (2√
pq)n

√
2πn3/2

.

Finally, when the drift is positive (p > q), the probability of survival admits the following
two-term asymptotics (observe the similarity with the negative drift situation)

Px(τ > n) =
(

1 −
(

q

p

)x+1
)

+(x+1)
(

q

p

)(x+1)/2
 1

1
2√

pq
− 1 + (−1)x+n

1
2√

pq
+ 1

 (2√
pq)n

√
2πn3/2

+· · · .

The three asymptotics above, which illustrate our Theorems 1.3 and 1.4, are obtained by
studying the singularities of the generating function (1.7) and by using classical transfer
theorems on the coefficients.

2. Survival probability in the non-interior drift case:
proof of Theorem 1.3

2.1. Basics on the Laplace transform. Let us first recall some basic properties. The
Laplace transform of a random vector X = (X(1), . . . , X(d)) ∈ Rd with probability distri-
bution µ is the function L defined for t ∈ Rd by

L(t) = E
(
e⟨t,X⟩

)
=
∫
Rd

e⟨t,y⟩µ(dy).
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It is finite in some neighborhood of the origin if and only if E
(
eα∥X∥

)
is finite for some

α > 0. If L is finite in some neighborhood of the origin, say B(0, r), then L is infinitely
differentiable in B(0, r) and its partial derivatives are given there by

∂L(t)
∂ti

= E
(
X(i)e⟨t,X⟩

)
.

Therefore, the expectation EX = (EX(1), . . . ,EX(d)) of X is equal to the gradient of L at
the origin ∇L(0). Notice that X is centered (i.e., EX = 0) if and only if 0 is a critical
point of L. Since L is a convex function, this means that 0 is a minimum point of L in
B(0, r). Now suppose that L is finite in some ball B(t0, r), and define a new probability
measure µ∗ by

µ∗(dy) = e⟨t0,y⟩

L(t0)
µ(dy).

The Laplace transform L∗ of µ∗ is linked to that of µ by the relation L∗(t) = L(t0 +t)/L(t0),
and therefore L∗ is finite in some neighborhood of the origin. As a consequence, applying
the results above shows that any random vector X∗ with distribution µ∗ satisfies:

• E
(
eα∥X∗∥

)
< ∞ for some α > 0;

• EX∗ = ∇L(t0)/L(t0).
As we shall see later, the relevant value of L for our problem is its minimum on the dual

cone K∗ defined by (1.5).
We now investigate further properties of EX∗ when t0 satisfies the assumption (A4),

i.e., t0 is a local minimum point of L restricted to K∗. By convexity of L, the point t0 is
necessarily a global minimum on K∗; we don’t assume t0 to be a global minimum on Rd.
Define the two sets

S =
{
u ∈ Rd : ∃ε > 0, ∀s ∈ [−ε, ε], t0 + su ∈ K∗

}
,

S+ =
{
u ∈ Rd : ∃ε > 0, ∀s ∈ [0, ε], t0 + su ∈ K∗

}
.

Of course S ⊂ S+. Since K∗ is a convex cone, the set S contains at least t0, while the set
S+ contains at least K∗. Assuming (A4), we observe the following:

• if u belongs to S+, then the function ϕ(s) = L(t0 + su) defined on some small
interval [0, ε] reaches a minimum at s = 0, hence ϕ′(0) = ⟨∇L(t0), u⟩ ⩾ 0. This
holds for all u ∈ K∗ since K∗ ⊂ S+, therefore ∇L(t0) belongs to the dual cone (K∗)∗

associated with K∗;
• if u belongs to S, the function ϕ(s) defined on some small interval [−ε, ε] reaches

its minimum at s = 0, hence ϕ′(0) = 0. Therefore ∇L(t0) is orthogonal to S (and
so at least to t0 itself).

Translating these observations in terms of the expectation of X∗, we obtain:

Lemma 2.1. Assume (A1) and (A4). The expectation EX∗ of any random vector with
distribution µ∗ belongs to the cone K and is orthogonal to t0.

Proof. Since K is a closed convex cone, it is well known that (K∗)∗ = K (see Exercise 2.31
in [4] for example). Everything now follows from the relation EX∗ = ∇L(t0)/L(t0). □
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2.2. Proof of Theorem 1.3. We shall use the preceding t0 and µ∗ in order to perform an
exponential change of measure. For any non-negative and measurable function f : Rn →
[0, ∞), elementary algebraic manipulations give:

Ex
(
f(S1, . . . , Sn)

)
=
∫
Rn

f

(
x + x1, x +

2∑
i=1

xi, . . . , x +
n∑

i=1
xi

)
n∏

i=1
µ(dxi)

= ρn
∫
Rn

f

(
x + x1, x +

2∑
i=1

xi, . . . , x +
n∑

i=1
xi

)
e−⟨t0,

∑n

i=1 xi⟩
n∏

i=1
µ∗(dxi)

= ρne⟨t0,x⟩Ex
∗

(
f(S1, . . . , Sn)e−⟨t0,Sn⟩

)
,

where
• ρ = L(t0),
• Ex

∗ is the expectation with respect to Px
∗ , a probability distribution under which

(Sn)n⩾0 is a random walk with increment distribution µ∗ and started at S0 = x.
Taking f(s1, . . . , sn) = ∏n

i=1 1K(si) leads to

Px(τ > n) = ρne⟨t0,x⟩Ex
∗

(
e−⟨t0,Sn⟩, τ > n

)
,

so that Theorem 1.3 will follow from the two lemmas below:

Lemma 2.2. Assume (A1)–(A4). Then, for all x ∈ K,

lim
n→∞

n

√
Ex

∗

(
e−⟨t0,Sn⟩, τ > n

)
= 1.

Lemma 2.3. Assume (A1)–(A4). If the drift m = EX1 does not belong to Ko, then for
all x ∈ K,

lim
n→∞

Ex
∗

(
e−⟨t0,Sn⟩, τ > n

)
= 0.

Lemma 2.2 is fully proved in [11]. However, to make our paper self-contained, we
propose here a short proof of it in a simplified setting. Instead of (A2) we will work under
the following hypothesis: there exist k > 0 and z ∈ Ko such that P(τ > k, Sk = z) > 0. In
the majority of classical lattice random walks, the previous hypothesis is satisfied, as for
instance for all 74 non-singular small step random walks considered in [3].

Proof of Lemma 2.2. First observe that on the event {τ > n}, we have Sn ∈ K, hence
⟨t0, Sn⟩ ⩾ 0 since t0 ∈ K∗. As a consequence Ex

∗

(
e−⟨t0,Sn⟩, τ > n

)
⩽ Px

∗(τ > n) ⩽ 1, and
what remains to prove is that

lim inf
n→∞

n

√
Ex

∗

(
e−⟨t0,Sn⟩, τ > n

)
⩾ 1.

By inclusion of events and basic properties of the n-th root limit, it suffices to prove the
result for x = 0, in which case we get rid of the x superscript on E∗ and P∗. We compute
a lower bound of the expectation as follows:

E∗
(
e−⟨t0,Sn⟩, τ > n

)
⩾ e−anP∗

(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
,

with an = n3/4. The e−an term goes to 1 in the n-th root limit, thus we focus on the
probability in the right-hand side.



Survival probabilities in a cone 9

Using our hypothesis, we can use the first k⌊
√

n⌋ steps to push the walk ⌊
√

n⌋ times in
the direction z without leaving the cone: by inclusion of events and the Markov property,
we have

P∗
(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
⩾ αbnPbnz

∗

(
|⟨t0, Sn−kbn⟩| ⩽ an, τ > n − kbn

)
,

where α = P(τ > k, Sk = z) > 0 and bn = ⌊
√

n⌋. Here again, the αbn term will disappear
in the n-th root limit, and the −kbn does not play any significant role in n − kbn, so we
are left to consider the probability

Pbnz
∗

(
|⟨t0, Sn⟩| ⩽ an, τ > n

)
.

At this point, we take into account the “new drift” d = E∗X1 of the random walk under
P∗, and consider the centered random walk S̃n = Sn − nd. Lemma 2.1 asserts that:

• d is orthogonal to t0, so that ⟨t0, Sn⟩ = ⟨t0, S̃n⟩,
• d belongs to K, hence

{τ(S̃ℓ) > n} = {S̃1, . . . , S̃n ∈ K} ⊂ {S1, . . . , Sn ∈ K} = {τ > n}.

Due to these facts, our probability can be bounded from below by

Pbnz
∗

(
|⟨t0, S̃n⟩| ⩽ an, τ(S̃ℓ) > n

)
= P∗

(
|⟨t0, bnz + S̃n⟩| ⩽ an, τ(bnz + S̃ℓ) > n

)
= P∗

(
|⟨t0, z + S̃nb−1

n ⟩| ⩽ anb−1
n , τ(z + S̃ℓb

−1
n ) > n

)
⩾ P∗

(
∥S̃ℓb

−1
n ∥ < ε for all ℓ = 1, . . . , n

)
,

where we have used the homogeneity of the cone, namely K/bn = K on the second line, and
then chosen ε > 0 so that the ball B(z, ε) ⊂ K. Now recall that, under P∗, the increments
Xn of the random walk Sn have a distribution µ∗ with some exponential moments, hence
the Xn’s are in L2, and so do the increments Xn − d of the centered random walk S̃n.
Therefore, the functional central limit theorem [2, Thm 8.2] is in force and, in conjunction
with Portmanteau theorem [2, Thm 2.1], we obtain

lim inf
n→∞

Pbnz
∗

(
|⟨t0, S̃n⟩| ⩽ an, τ(S̃ℓ) > n

)
⩾ P∗

(
∥Bt∥ < ε for all t ∈ [0, 1]

)
> 0,

where (Bt)t∈[0,1] is the image of a standard Brownian motion started at 0 under a (possibly
degenerate) linear transformation. This concludes the proof of Lemma 2.2. □

Proof of Lemma 2.3. The proof will be done separately, according to whether t0 is zero
or not. First assume t0 ≠ 0. On the event {τ > n}, for all k = 1, . . . , n, we have that
Sk ∈ K, hence Rk = ⟨t0, Sk⟩ ⩾ 0 since t0 ∈ K∗. Therefore

Ex
∗

(
e−⟨t0,Sn⟩, τ > n

)
⩽ Px

∗

(
Rk ⩾ 0 for all k = 1, . . . , n

)
.

Now, under Px
∗ , the process Rk = ⟨t0, Sk⟩ is a random walk with increments Yk = ⟨t0, Xk⟩

having mean ⟨t0,E∗X1⟩ = 0 (see Lemma 2.1). Since the initial distribution µ is truly
d-dimensional and µ∗ is absolutely continuous with respect to µ, the new distribution µ∗
is also truly d-dimensional.

Thus, under Px
∗ , the increments Yk are non-degenerate (i.e., it does not hold that

Yk = 0 almost surely). It is well known (see [9, Thm 1 & 2 of XII,2]) that for such a
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one-dimensional random walk, almost surely,
−∞ = lim inf Rn < lim sup Rn = +∞.

Accordingly,

lim
n→∞

Px
∗

(
Rk ⩾ 0 for all k = 1, . . . , n

)
= Px

∗

(
Rk ⩾ 0 for all k ⩾ 1

)
= 0.

We now turn to the case t0 = 0. This time ⟨t0, Sn⟩ = 0, so we don’t learn anything by
considering this specific one-dimensional random walk. The idea is to replace t0 with an
appropriate t̃0 and apply the same argument as before. To do this, observe that we know
from Lemma 2.1 that E∗X1 belongs to the cone K, but when t0 = 0 the change of measure
has no effect: µ∗ = µ. Hence the original drift m = EX1 belongs to K. Since we assumed
m /∈ Ko, we are left with a drift m on the boundary ∂K of the cone K.

If C is a closed cone, the interior of its dual cone has the following description:

(C∗)o =
{
x ∈ Rd : ⟨x, y⟩ > 0 for all y ∈ C \ {0}

}
(see Exercise 2.31(d) in [4] for example). As a consequence, the boundary is given by

∂C∗ =
{
x ∈ C∗ : ⟨x, y⟩ = 0 for some y ∈ C \ {0}

}
,

and applying this to the closed convex cone C = K∗ gives

∂K =
{
x ∈ K : ⟨x, y⟩ = 0 for some y ∈ K∗ \ {0}

}
,

since (K∗)∗ = K. Going back to our drift m ∈ ∂K, there exists some t̃0 ∈ K∗ \ {0}
such that ⟨t̃0, m⟩ = 0. Setting R̃k = ⟨t̃0, Sk⟩, we obtain a centered and non-degenerate
one-dimensional random walk such that Sk ∈ K implies R̃k ⩾ 0. Therefore

Ex
∗

(
e−⟨t0,Sn⟩, τ > n

)
= Px(τ > n) ⩽ Px

∗

(
R̃k ⩾ 0 for all k = 1, . . . , n

)
,

and the conclusion follows as in the first case. □

The proof of Theorem 1.3 is complete.

3. Survival probability in the interior drift case: proof of Theorem 1.4

In this section, we restrict our attention to the cone K = [0, ∞)d and small step walks,
i.e., random walks on Zd with increments Xk satisfying Xk ∈ {−1, 0, 1}d almost surely.
For such walks, we investigate the case of a drift m = EXk interior to the cone K, i.e.,
such that ⟨m, ei⟩ > 0 for i = 1, . . . , d, where (e1, . . . , ed) denotes the standard basis of Rd.
We will use the notation X

(i)
k = ⟨Xk, ei⟩. Since the drift is in the interior of K, we know

that
lim

n→∞
Px(τ > n) = Px(τ = ∞) > 0

for all x ∈ K; see Lemma 3.1 for a precise statement and a proof.
Here we wish to estimate the error term δn = Px(τ > n) − Px(τ = ∞). We exclude the

case where δn = 0 for all n by assuming that the random walk is not trapped, i.e., the
increments satisfy P(Xk /∈ K) > 0. Under this assumption we will prove Theorem 1.4,
namely that

Px(τ > n) − Px(τ = ∞) = Θ (ρnBn) .

Before going into the proof, we collect preliminary estimates on Px(τ = ∞).
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3.1. Exact formula for a one-dimensional small step walk. First of all, we consider
the one-dimensional setting with p = P(Xk = 1), r = P(Xk = 0), q = P(Xk = −1),
p + r + q = 1. Let τ be as in (1.6) and assume m = p − q > 0. Then it is known that, for
all x ∈ N,

Px(τ = ∞) = 1 −
(

q

p

)x+1

.

If q > 0, this can be rewritten as

Px(τ = ∞) = 1 − γe−sx, (3.1)

where γ = q/p and s > 0 is the unique solution to e−s = q/p.
One way to obtain the formula above is to use the discrete harmonicity of the function

ux = Px(τ = ∞): by the Markov property, we have ux = qux−1 + rux + pux+1 for all x ⩾ 1,
which is solved in ux = a + b

(
q
p

)x
. Then a and b are determined through initial and limit

behaviors of ux.
For future use, we notice the following fact: let

L(t) = E
(
etXk

)
= pet + r + qe−t

be the Laplace transform associated with the random walk increments. Its derivative is
given by L′(t) = pet − qe−t. Evaluating at t = −s, where s is as above the solution to
e−s = q/p, leads to

L(−s) = 1 and L′(−s) = q − p = −m < 0. (3.2)

The last value is exactly the opposite of the drift.

3.2. Estimate for Px(τ < ∞) in the d-dimensional small step case. Let us go back
to our d-dimensional small step walk (Sn)n with drift m interior to the cone K = [0, ∞)d

and such that P(Xk ̸∈ K) > 0. The simple inclusion of events

{
∃n > 0, ⟨Sn, ei⟩ < 0

}
⊂
{
τ < ∞

}
⊂

d⋃
i=1

{
∃n > 0, ⟨Sn, ei⟩ < 0

}
leads to the bounds

g(x)
d

⩽ Px(τ < ∞) ⩽ g(x), (3.3)

where g(x) = ∑d
i=1 Px(∃n > 0, ⟨Sn, ei⟩ < 0). Now, for each i, the one-dimensional

small step walk (⟨Sn, ei⟩)n with increments X
(i)
k has a drift EX

(i)
k = ⟨m, ei⟩ > 0. Since

P(Xk ̸∈ K) > 0, the set I of indices i for which P(X(i)
k = −1) > 0 is non-empty, and

applying the exact formula (3.1) of the preceding paragraph, we obtain:

g(x) =
∑
i∈I

γie
−si⟨x,ei⟩,

where γi = P(X(i)
k = −1)/P(X(i)

k = 1) ∈ (0, 1) and si > 0 is the unique solution to
e−si = γi.
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3.3. Proof of Theorem 1.4. Fix x ∈ Nd and set

δn = Px(τ > n) − Px(τ = ∞) = Px(τ > n, but Sm /∈ K for some m > n).

By the Markov property of the random walk, we can express δn as follows:

δn = Ex
(
τ > n,PSn(τ < ∞)

)
,

so that inequality (3.3) leads to δn = Θ(gn), where gn = Ex(τ > n, g(Sn)). It remains to
estimate

gn =
∑
i∈I

γiEx
(
τ > n, e⟨Sn,−siei⟩

)
.

To do this, we apply to each term in the sum a specific exponential change of measure. Set

µ∗i(dy) = e⟨−siei,y⟩

L(−siei)
µ(dy),

where µ is the common distribution of the increments Xk of the random walk, and
L(t) = E(e⟨t,Xk⟩) is their Laplace transform. Then basic algebraic manipulations as in
Section 2.2 lead to

Ex
(
τ > n, e⟨Sn,−siei⟩

)
= L(−siei)ne⟨−siei,x⟩Px

∗i (τ > n) .

Now observe that t 7→ L(tei) = E
(
etX

(i)
k

)
is the one-dimensional Laplace transform of the

increments X
(i)
k . Since si is the solution to e−si = γi = P(X(i)

k
=−1)

P(X(i)
k

=1)
, we are in the same

situation as in (3.2), so that

L(−siei) = 1 and ∂L

∂ti

(−siei) = −⟨m, ei⟩ < 0.

Therefore, equation (3.3) reads

Ex
(
τ > n, e⟨Sn,−siei⟩

)
= e⟨−siei,x⟩Px

∗i (τ > n) ,

and the new drift under Px
∗i, which is given by the gradient of L at the point −siei, has

a strictly negative i-th coordinate. As a consequence, this drift does not belong to the
cone K = [0, ∞)d, and it follows from Theorem 1.3 that

Px
∗i(τ > n) = ρn

i Bi,n,

where ρi ∈ (0, 1), n

√
Bi,n → 1 and Bi,n → 0 as n → ∞. Finally, we get

gn =
∑
i∈I

γiρ
n
i Bi,n,

which can be rewritten in the form gn = ρnBn, by selecting

ρ = max{ρi : i ∈ I} < 1.

It is then clear that n
√

Bn → 1 and Bn → 0, and the proof is complete.



Survival probabilities in a cone 13

3.4. Positivity of the escape probability.

Lemma 3.1. Assume (A1) and (A2). If the drift m = EX1 belongs to Ko, then the
function h(x) = Px(τ = ∞) satisfies:

(1) h is harmonic for the killed random walk, i.e.,

h(x) = Ex(h(Sn), τ > n).

(2) h(x) > 0 for all x ∈ K.
(3) limt→∞ h(tu) = 1 for all u ∈ Ko.

Proof. Item (1) is just the Markov property applied at time n. The relation is valid
disregarding the position of the drift. We now prove (2).

First step. We begin with a simple geometric fact. For any z ∈ Ko, the non-decreasing
sequence of sets K − kz will ultimately cover the whole space, i.e., ∪k⩾0(K − kz) = Rd. To
see this, select ε > 0 such that B(z, ε) ⊂ K. For any x ∈ Rd, there exists k > 0 such that
∥x/k∥ < ε, hence z + x

k
belongs to K. By homogeneity of K, it follows that kz + x ∈ K,

i.e., x ∈ K − kz.
Second step. Let us consider the random walk (Sn) with drift m ∈ Ko and select ε > 0

such that B(m, ε) ⊂ K. By the strong law of large numbers Sn/n → m almost surely,
therefore, for almost all ω, there exists n0 = n0(ω) such that

n ⩾ n0 ⇒
∥∥∥∥Sn(ω)

n
− m

∥∥∥∥ < ε ⇒ Sn(ω) ∈ K.

Considering now the first positions S1(ω), S2(ω), . . . , Sn0−1(ω), the first step of the proof
ensures that there exists k ⩾ 0 such that they all belong to K − kz, where z ∈ K0 is to be
fixed in the last step of the proof. Since one has

K ⊂ K − kz (recall that K + K ⊂ K),

all positions Sn(ω), n ⩾ n0, also belong to K − kz and we obtain the following:

P
(
∪k⩾0{Sn ∈ K − kz for all n ⩾ 0}

)
= 1.

Since the events inside the probability above form a non-decreasing sequence, it follows
that

lim
k→∞

P
(
Sn ∈ K − kz for all n ⩾ 0

)
= 1. (3.4)

Last step. To conclude, we invoke hypothesis (A2), that claims the existence of an
integer ℓ ⩾ 1 such that

P(τ > ℓ, Sℓ ∈ Ko) > 0.

Fix some u ∈ Ko. Since Ko = ∪λ>0(K + λu), there is a z = λu ∈ Ko such that

P(τ > ℓ, Sℓ ∈ K + z) = p > 0.

By the Markov property, a concatenation of m such ℓ-steps paths leads to

P(τ > mℓ, Smℓ ∈ K + mz) ⩾ pm > 0.

On the other hand, it follows from (3.4) that there exists k ⩾ 0 such that

P(Sn ∈ K − kz for all n ⩾ 0) ⩾ 1/2.
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Now choose m ⩾ k. Since Smℓ ∈ K + mz and Sn − Smℓ ∈ K − kz imply Sn ∈ K, we obtain

P(τ = ∞) ⩾ P(τ > mℓ, Smℓ ∈ K + mz) × P(Sn ∈ K − kz for all n ⩾ 0) > 0.

We have just proved that g(0) > 0. The result follows since g(x) ⩾ g(0) for all x ∈ K, by
inclusion of events.

We conclude with the proof of (3). The limit (3.4) obtained in the second step of Item (2)
can be recast as:

lim
k→∞

Pkz(τ = ∞) = 1,

where z is any vector in Ko. Since g(x) = Px(τ = ∞) is non-decreasing in every direction,
the proof is completed. □

4. Proof of Theorems 1.1 and 1.2

In this section, we show that our estimates on an = Px(τ > n) given in Theorems 1.3
and 1.4 are not compatible with the generating function F (t) = ∑

n⩾0 antn being rational,
using classical singularity analysis for rational functions. The starting point is Theorem
IV.9 in [10], which asserts the following:

Theorem 4.1. If F (z) = ∑
n⩾0 anzn is a rational function that is analytic at 0 and has

poles at points α1, α2, . . . , αk, then its coefficients are sums of exponential-polynomials:
there exist k polynomials Pj such that, for n larger than some fixed n0,

an =
k∑

j=1
Pj(n)α−n

j .

Both estimates in Theorems 1.3 and 1.4 have the following form:

an = a + Θ(ρnBn),

where a ⩾ 0, ρ ∈ (0, 1], n
√

Bn → 1 and Bn → 0. Therefore Theorems 1.1 and 1.2 asserting
the non-rationality of F will follow in both cases from the following elementary lemma.

Lemma 4.2. Let c1, . . . , ck be distinct non-zero complex numbers and P1, . . . , Pk be non-
zero complex polynomials. Set an = ∑k

j=1 Pj(n)cn
j . If an = a + Θ(ρnBn) for some a ⩾ 0,

ρ > 0 and Bn > 0 such that n
√

Bn → 1, then necessarily Bn ̸→ 0.

Proof. If an = ∑k
j=1 Pj(n)cn

j , then an − a has the same form, thus, without loss of
generality, we can assume a = 0. Write cj = rjzj with rj > 0 and |zj| = 1. Let
r = max{rj : j = 1, . . . , k} and let J be the subset of indices j such that rj = r. Then

an =
k∑

j=1
Pj(n)cn

j = rn

∑
j∈J

Pj(n)zn
j + o(tn)

 ,

where 0 < t < 1. For future use, note that the numbers zj, j ∈ J are all distinct (this is so
since we kept at most one cj in any fixed “direction” zj : the one with maximum modulus).

We first show that r = ρ. Since an = Θ(ρnBn) and n
√

Bn → 1, it follows that an/ρn

goes to one in the n-th root limit. Thus, for any ε > 0,(
(1 − ε)ρ

)n
⩽ an ⩽

(
(1 + ε)ρ

)n
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for n large enough. Therefore(
(1 − ε)ρ

r

)n

⩽

∣∣∣∣∣∣
∑
j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣ ⩽
(

(1 + ε)ρ
r

)n

(4.1)

for n large enough. If ρ > r then we can choose ε > 0 such that the lower bound is An for
some A > 1.
But then we would have

An ⩽

∣∣∣∣∣∣
∑
j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣ ⩽
∑
j∈J

|Pj(n)| + |o(tn)|

and this is impossible since ∑j∈J |Pj(n)| grows polynomially. On the other hand, if ρ < r
then we can choose ε > 0 such that the upper bound in (4.1) is An for some A < 1. This
implies ∑

j∈J

Pj(n)zn
j → 0.

Dividing this by np, where p stands for the maximum degree of polynomials Pj, leads to
the convergence ∑

j∈J ′
ajz

n
j → 0,

where J ′ ⊂ J is a non-empty subset of indices (those j for which Pj has degree p) and the
aj’s are non-zero complex numbers. Since the numbers zj are distinct complex numbers
with modulus 1, this contradicts Lemma 4.3 below. The assertion r = ρ is now established,
hence we have ∣∣∣∣∣∣

∑
j∈J

Pj(n)zn
j + o(tn)

∣∣∣∣∣∣ = an

ρn
= Θ(Bn).

We have seen just before that this expression cannot go to zero as n → ∞, thus Bn ̸→ 0. □

Lemma 4.3. Let z1, . . . , zk be distinct complex numbers with modulus ⩾ 1. If

lim
n→∞

k∑
j=1

ajz
n
j = 0,

then necessarily a1 = · · · = ak = 0.

Proof. Denote by An the quantity ∑k
j=1 ajz

n
j . Clearly, given any complex numbers

α0, . . . , αk−1,
k−1∑
i=0

αiAn+i =
k∑

j=1
ajP (zj)zn

j , (4.2)

where P (z) = ∑k−1
i=0 αiz

i. We can choose the polynomial P so as to have P (z1) = 1 and
all other P (zj) = 0. We then take the limit of (4.2) as n → ∞, using the assumption of
Lemma 4.3. We find that the term a1z

n
1 should go to zero, which implies that a1 = 0, since

|z1| ⩾ 1. A similar reasoning gives that all aj = 0, and thus Lemma 4.3 is proved. □
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5. The excursion generating function

In this section, we look at lattice random walks in convex cones. Besides the generating
function of the survival probabilities (1.1), it is natural to ask whether the excursion
generating function

E(t) =
∑
n⩾0

Px(τ > n, Sn = y)tn (5.1)

can be rational, for given starting and ending points x, y ∈ K. When the cone K is an
orthant Nd and x = y = (0, . . . , 0), the function E(t) reduces to the series F (0, . . . , 0; t)
of (1.4). In order to state the result of this section, we introduce the following assumption:
(A4’) There exists a point t̃0 ∈ Rd and a neighborhood V of t̃0 such that the Laplace

transform L of µ is finite in V and t̃0 is a minimum point of L restricted to V .
Since L is a convex function, the point t̃0 above is necessarily a global minimum. If µ is
truly d-dimensional (as assumed in (A2)), the function L is strictly convex and a necessary
and sufficient condition for the existence of a global minimum is that the support of µ is
not included in any closed half-space.

Theorem 5.1. For any distribution satisfying to (A1)–(A3), (A4’) and such that the
random walk takes its values on a lattice, the generating function E(t) in (5.1) is not a
rational function.

Contrary to our elementary and self-contained proof of Theorem 1.1, we don’t have any
elementary argument to prove Theorem 5.1. Instead, we may give a one-line proof based
on earlier literature. Indeed, Denisov and Wachtel provide the following estimate in [5,
Eq. (10)] (we use the generalization to convex cones as in [6, Cor. 1.3]): Px(τ > n, Sn = y)
is either 0 (for periodicity reasons) or asymptotic to

C(x, y)ρ̃ nn−p−d/2,

where ρ̃ = L(t̃0) with t̃0 as in (A4’), d is the dimension and p > 0 is a geometric quantity
related to the cone. One immediately concludes because the exponent of n is negative.

Acknowledgments. KR would like to thank Cyril Banderier, Mireille Bousquet-Mélou,
Thomas Dreyfus and Éric Fusy for preliminary discussions. We thank Vitali Wachtel and
Michael Wallner for interesting discussions. We further thank Christophe Devulder for the
elegant proof of Lemma 4.3. Finally, we thank the anonymous referees for their careful
reading and their suggestions, which helped us to improve our presentation.

References
[1] Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theor.

Comput. Sci., 281(1-2):37–80, 2002.
[2] Patrick Billingsley. Convergence of Probability Measures. Wiley, 2nd edition, 1999.
[3] Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. In Algorith-

mic probability and combinatorics. Papers from the AMS special sessions, Chicago, IL, USA, October
5–6, 2007 and Vancouver, BC, Canada, October 4–5, 2008, pages 1–39. American Mathematical
Society, 2010.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

http://dx.doi.org/10.1016/S0304-3975(02)00007-5
https://www.wiley.com/en-sg/Convergence+of+Probability+Measures%2C+2nd+Edition-p-9781118625965
https://hal.archives-ouvertes.fr/hal-00333741/document
https://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf


Survival probabilities in a cone 17

[5] Denis Denisov and Vitali Wachtel. Random walks in cones. Ann. Probab., 43(3):992–1044, 2015.
[6] Denis Denisov and Vitali Wachtel. Alternative constructions of a harmonic function for a random

walk in a cone. Electron. J. Probab., 24:26 pp., 2019.
[7] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer. Walks in the quarter

plane: genus zero case. J. Comb. Theory, Ser. A, 174:24 pp., 2020.
[8] Jetlir Duraj. Random walks in cones: the case of nonzero drift. Stochastic Processes Appl., 124(4):1503–

1518, 2014.
[9] William Feller. An Introduction to Probability Theory and Its Applications. Vol II . John Wiley &

Sons, 2nd edition, 1971.
[10] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, 2009.
[11] Rodolphe Garbit and Kilian Raschel. On the exit time from a cone for random walks with drift. Rev.

Mat. Iberoam., 32(2):511–532, 2016.
[12] Stephen Melczer and Marni Mishna. Singularity analysis via the iterated kernel method. Comb.

Probab. Comput., 23(5):861–888, 2014.
[13] Marni Mishna and Andrew Rechnitzer. Two non-holonomic lattice walks in the quarter plane. Theor.

Comput. Sci., 410(38-40):3616–3630, 2009.

http://dx.doi.org/10.1214/13-AOP867
http://dx.doi.org/10.1214/19-EJP349
http://dx.doi.org/10.1214/19-EJP349
http://dx.doi.org/10.1016/j.jcta.2020.105251
http://dx.doi.org/10.1016/j.jcta.2020.105251
http://dx.doi.org/10.1016/j.spa.2013.12.003
https://www.wiley.com/en-us/An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Volume+2%2C+2nd+Edition-p-9780471257097
http://algo.inria.fr/flajolet/Publications/book.pdf
http://dx.doi.org/10.4171/RMI/893
http://dx.doi.org/10.1017/S0963548314000145
http://dx.doi.org/10.1016/j.tcs.2009.04.008

	1. Introduction
	Main result and our approach
	Drift inside of the cone
	Combinatorial motivations
	Technical assumptions
	A one-dimensional example

	2. Survival probability in the non-interior drift case: proof of Theorem 1.3
	2.1. Basics on the Laplace transform
	2.2. Proof of Theorem 1.3

	3. Survival probability in the interior drift case: proof of Theorem 1.4
	3.1. Exact formula for a one-dimensional small step walk
	3.2. Estimate for tau bounded in the d-dimensional small step case
	3.3. Proof of Theorem 1.4
	3.4. Positivity of the escape probability

	4. Proof of Theorems 1.1 and 1.2
	5. The excursion generating function
	Acknowledgments

	References

