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Abstract. In this paper we study a subfamily of a classic lattice path, the Dyck paths,
called restricted d-Dyck paths, in short d-Dyck. A valley of a Dyck path P is a local
minimum of P ; if the difference between the heights of two consecutive valleys (from
left to right) is at least d, we say that P is a restricted d-Dyck path. The area of a
Dyck path is the sum of the absolute values of y-components of all points in the path.
We find the number of peaks and the area of all paths of a given length in the set of
d-Dyck paths. We give a bivariate generating function to count the number of the
d-Dyck paths with respect to the semi-length and number of peaks. After that, we
analyze in detail the case d = −1. Among other things, we give both the generating
function and a recursive relation for the total area.
Keywords: Dyck path, d-Dyck path, generating function.

1. Introduction

A classic concept, the Dyck paths, has been widely studied. Recently, a subfamily of
these paths, non-decreasing Dyck paths, has received a certain level of interest. It is
because of some statistics are given by linear combinations of Fibonacci numbers and
Lucas numbers. In this paper we keep studying a generalization of the non-decreasing
Dyck paths. Other generalizations of non-decreasing Dyck paths have been given for
Motzkin paths and for Łukasiewicz paths [14,15].

We now give some definitions that we use in this paper. A Dyck path is a lattice path in
the first quadrant of the xy-plane that starts at the origin, ends on the x-axis, and consists
of (the same number of) North-East steps U := (1, 1) and South-East steps D := (1, −1).
The semi-length of a path is the total number of U ’s that the path has.
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A valley (peak) is a subpath of the form DU (UD) and the valley vertex of DU is the
lowest point (a local minimum) of DU . The level of a valley is the y-component of its
valley vertex. Following [16,17] we define the valley vertices vector of a Dyck path P as
the vector ν = (ν1, ν2, . . . , νk) formed by all y-coordinates (listed from left to right) of all
valley vertices of P .

For a fixed d ∈ Z, a Dyck path P is called restricted d-Dyck or d-Dyck (for simplicity),
if either P has at most one valley, or if its valley vertex vector ν satisfies that νi+1 − νi ≥ d,
where 1 ≤ i < k. The set of all d-Dyck paths of semi-length n is denoted Dd(n), where
rd(n) denotes its cardinality, and the set of all d-Dyck paths is denoted by Dd.

The first well-known example of these paths is the set of 0-Dyck paths; in the literature,
see [4, 6, 7, 9, 10, 12], this family is known as non-decreasing Dyck paths. The whole family
of Dyck paths can be seen as a limit of d-Dyck and it occurs when d → −∞. Another
example, from Figure 1 we observe that ν = (0, 1, 0, 3, 4, 3, 2) and that νi+1 − νi ≥ −1, for
i = 1, . . . , 6, so the figure depicts a (−1)-Dyck path of length 28 (or semi-length 14).

ν1 = 0 ν2 = 1 ν3 = 0 ν4 = 3 ν5 = 4 ν6 = 3 ν7 = 2

Figure 1. A (−1)-Dyck path of length 28.

The recurrence relations and/or the generating functions for d-Dyck when d ≥ 0 have
different behavior than the case d < 0. For example, generating functions accounting for
the number of valleys, the number of peaks, and the area, for d-Dyck when d ≥ 0, are all
rational for all variables (see [4,6,7,10,12,16,17]). However, when we analyze in this paper
several aspects for d < 0 (the number of paths, the area of the paths, and the number of
peaks) we find that the generating functions are all algebraic (non-rational).

In this paper we give a bivariate generating function to count the number of paths
in Dd(n), for d ≤ 0, with respect to the number of peaks and semi-length. We also
give a relationship between the total number of d-Dyck paths and the Catalan numbers.
Additionally, we give an explicit symbolic expression for the generating function with
respect to the semi-length. For the particular case d = −1 we give a combinatorial
expression and a recursive relation for the total number of paths. We also analyze the
asymptotic behavior for the sequence r−1(n).

It is well known that there are many bijections between Dyck paths and other combi-
natorial objects, we are wondering if there are other bijections between d-Dyck paths for
d < −1 and other object of combinatorics.

The area of a Dyck path P is the sum of the values of y-components of all points in the
path. That is, the area of P , denoted by area(P ), corresponds to the surface area under
P and above of the x-axis. For example, if P is the path in Figure 1, then area(P ) = 70.
We use generating functions and recursive relations to analyze the distribution of the area
of all paths in D−1(n).
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The problem of enumerating the area in directed lattice paths, in a general setting, was
solved by Banderier and Gittenberger [3], building on the enumerative and asymptotics
results from [2], where Dyck, Motzkin, and Łukasiewicz paths are particular cases.

A summary of notation used throughout the paper appears in Table 1 in the appendix.

2. Number of d-Dyck paths and Peaks Statistic

Given a family of lattice paths, a classic question is how many lattice paths are there of
certain length, and a second classic question is how many peaks are there depending on
the length of the path. These questions have been completely answered, for instance, for
Dyck paths [8], d-Dyck paths for d ≥ 0 [4, 17], and Motzkin paths [20] among others. In
this section we give a bivariate generating function according to the semi-length and the
number of peaks of the d-Dyck paths with d < 0.

Given a d-Dyck path P , we denote the semi-length of P by ℓ(P ) and denote the number
of peaks of P by ρ(P ). So, the bivariate generating function to count the number of paths
and peaks of d-Dyck paths is defined by

Ld(x, y) :=
∑

P ∈Dd

xℓ(P )yρ(P ).

2.1. Some facts known when d ≥ 0. These results can be found in [17].
• If d ≥ 0, then the generating function Fd(x, y) is given by

Ld(x, y) = 1 + xy(1 − 2x + x2 + xy − xd+1y)
(1 − x)(1 − 2x + x2 − xd+1y) .

• If d ≥ 1,

rd(n) =
⌊ n+d−2

d
⌋∑

k=0

(
n − (d − 1)(k − 1)

2k

)
.

• If n > d, then we have the recursive relation

rd(n) = 2rd(n − 1) − rd(n − 2) + rd(n − d − 1),

with the initial values rd(n) =
(

n
2

)
+ 1, for 0 ≤ n ≤ d.

• Let pd(n, k) be the number of d-Dyck paths of semi-length n, having exactly k
peaks. If d ≥ 0, then

pd(n, k) =
(

n + k − d(k − 2) − 2
2(k − 1)

)
.

For the whole set of Dyck paths, the number p−∞(n, k), is given by the Narayana
numbers N(n, k) = 1

n

(
n
k

)(
n

k−1

)
.

2.2. Peaks statistic for d a negative integer. For the remaining part of the paper we
consider only the case d < 0 and use e to denote |d|. A pyramid of semi-length h ≥ 1 is a
subpath of the form XhY h; it is maximal, denote by ∆h, if it can not be extended to a
pyramid Xh+1Y h+1.
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Theorem 2.1. If d is a negative integer and e := |d|, then the generating function Le(x, y)
satisfies the functional equation

Le(x, y) = xy + xLe(x, y) + xSe(x, y)Le(x, y), (2.1)
where Se(x) satisfies the algebraic equation

(1 − xSe(x, y))e(y + (1 − y)xSe(x, y)) − Se(x, y)(1 − xSe(x, y))e+1 − xe+2y

1 − x
Se(x, y) = 0.

Proof. We start this proof by introducing some notation. The set Qd,i ⊆ Dd denotes the
family of non-empty paths where the last valley is at level i. We consider the generating
function

Q
(e)
i (x, y) :=

∑
P ∈Qd,i

xℓ(P )yρ(P ).

It is convenient to consider the sum over the Q
(e)
i (x, y). We also consider the generating

function, with respect to the lengths and peaks, that counts the d-Dyck paths that have
either no valleys or the last valley is at level less than e. That is,

Se(x, y) = y

1 − x
+

e−1∑
j=0

Q
(e)
j (x, y). (2.2)

A path P can be uniquely decomposed as either UD, UTD, or UQDT (by considering
the first return decomposition), where T ∈ Dd and Q is either a pyramid or is a path in
∪e−1

i=0 Qd,i (see Figure 2, for a graphical representation of this decomposition). Notice that
νi+1 − νi ≥ d and the decomposition UQDT ensures that Q holds as in the former line.

i < e

Figure 2. Decomposition of a d-Dyck path.

From the symbolic method we obtain the functional equation
Le(x, y) = xy + xLe(x, y) + xSe(x, y)Le(x, y).

Now we are going to obtain a system of equations for the generating functions Qi(x, y).
Let Q be a path in the set Qd,i. If i = 0, then the path Q can be decomposed uniquely as
either UQ′D∆ or UQ′DR, where ∆ is a pyramid, R is a path in Qd,0, and Q′ is either a
pyramid or Q′ ∈ ∪e−1

i=0 Qd,i. Therefore, we have the functional equation

Q
(e)
0 (x, y) = xSe(x, y) xy

1 − x
+ xSe(x, y)Q(e)

0 (x, y).

For i > 0, any path Q can be decomposed uniquely in one of these two forms UR1D or
UQDR2, where R1 ∈ Qd,i−1, R2 ∈ Qd,i, and Q is either a pyramid or Q ∈ ∪e−1

i=0 Qd,i. So,
we have the functional equation

Q
(e)
i (x, y) = xQ

(e)
i−1(x, y) + xSe(x, y)Q(e)

i (x, y). (2.3)
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Summarizing the discussion above, we obtain the system of equations:

Q
(e)
0 (x, y) = xSe(x, y) xy

1−x
+ xSe(x, y)Q(e)

0 (x, y)
Q

(e)
1 (x, y) = xQ

(e)
0 (x, y) + xSe(x, y)Q(e)

1 (x, y)
...

Q
(e)
i (x, y) = xQ

(e)
i−1(x, y) + xSe(x, y)Q(e)

i (x, y)
...

Q
(e)
e−1(x, y) = xQ

(e)
e−2(x, y) + xSe(x, y)Q(e)

e−1(x, y).

(2.4)

Summing up the equations in (2.4), we obtain that
e−1∑
j=0

Q
(e)
j (x, y) = xSe(x, y)

e−1∑
j=0

Q
(e)
j (x, y) + xy

1 − x

+ x
e−2∑
j=0

Q
(e)
j (x, y).

From this and (2.2) we have

Se(x, y) − y

1 − x
= x

(
Se(x, y) − y

1 − x
− Q

(e)
e−1(x, y)

)
+ xSe(x, y)

(
Se(x, y) − y

1 − x

)
+ x2y

1 − x
Se(x, y). (2.5)

Iterating (2.3), we have Q
(e)
i (x, y), with i ≥ 0, can be expressed as

Q
(e)
i (x, y) = xi+2ySe(x, y)

(1 − x)(1 − xSe(x, y))i+1 . (2.6)

Substituting (2.6) into (2.5) we obtain the desired functional equation. □

Solving (2.5) for Se(x, y) we have

Se(x, y) =
1 − x + xy −

√
1 − 2x + x2 − 2xy − 2x2y + x2y2 + 4x2Q

(e)
e−1(x, y)

2x
. (2.7)

We observe that substituting (2.7) into (2.1), we have

Le(x, y) = xy

1 − x − xSe(x, y)
= xy

1 − x −
1 − x + xy −

√
1 − 2x + x2 − 2xy − 2x2y + x2y2 + 4x2Q

(e)
e−1(x, y)

2

.

Since Se(x, y) is a power series and by (2.6), we obtain that Q
(e)
e−1(x, y) → 0 as e → ∞,

where here we assumed that |x| < 1 (for details on convergence of generating functions;
see [11, p. 731]). Therefore,

lim
e→∞

Le(x, y) = 1 − x − xy −
√

1 − 2x + x2 − 2xy − 2x2y + x2y2

2x
.

This last generating function is the distribution of the Narayana sequence. This corroborates
with the fact that the restricted (−∞)-Dyck paths coincide with the non-empty Dyck
paths.
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Theorem 2.2. If 1 ≤ k ≤ |d| + 3, then the k-th coefficient of the generating function
Le(x, 1) coincides with the Catalan number Ck = 1

k+1

(
2k
k

)
.

Proof. We first observe that the shortest Dyck path that contains a forbidden sequence of
valleys is P = U e+2DUDe+2UD (clearly, ℓ(P ) = e + 4) with e = |d|. Therefore, if d < 0,
then rd(n) = Cn, for n = 1, 2, . . . , |d| + 3. □

The first few values for the sequence rd(n), for d ∈ {−1, −2, −3, −4} are

{r−1(n)}n≥1 = {1, 2, 5, 14, 41, 123, 375, 1157, 3603, . . . },

{r−2(n)}n≥1 = {1, 2, 5, 14, 42, 131, 419, 1365, 4511, . . . },

{r−3(n)}n≥1 = {1, 2, 5, 14, 42, 132, 428, 1419, 4785, . . . },

{r−4(n)}n≥1 = {1, 2, 5, 14, 42, 132, 429, 1429, 4850, . . . }.

For example, there are 41 (−1)-Dyck paths out of the 42 Dyck paths of length 10. Figure 3
depicts the only Dyck path of length 10 that is not a (−1)-Dyck path.

ν1 = 2 ν2 = 0

Figure 3. The only Dyck path of length 10 that is not a (−1)-Dyck path.

Recall that d is a negative integer and that e := |d|. Then by Theorem 2.1, we have

(Le(x, y) + y)e
(
xL2

e(x, y) + (xy + x − 1)Le(x, y) + xy
)

− x

1 − x
((1 − x)Le(x, y) − xy)(Le(x, y))e+1 = 0.

This implies that

e+1∑
j=2

x

(
e

j − 2

)
ye+2−j(Le(x, y))j +

e+1∑
j=1

(xy + x − 1)
(

e

j − 1

)
ye+1−j(Le(x, y))j

+
e∑

j=0
x

(
e

j

)
ye+1−j(Le(x, y))j + x2y

1 − x
(Le(x, y))e+1 = 0.

Hence, by taking y = 1 and collecting powers of Le(x, 1), we have

Le(x, 1) = Z

a0 +
e+1∑
j=2

aj(x)(Le(x, 1))j

 ,
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where Z = 1, and

a0 = x

1 − (e + 2)x,

aj = 1
1 − (e + 2)x

(
x

(
e + 2

j

)
−
(

e

j − 1

))
, j = 2, 3, . . . , e,

ae+1 = (e + 2)x(1 − x) − 1 + x(1 + x)
(1 − x)(1 − (e + 2)x) .

Hence, by the Lagrange inversion formula, we expand the generating function Le(x, 1) as
a power series in Z to obtain

Le(x, 1) =
∑
n≥1

[Zn−1]
n

∑
i0+i2+i3+···+ie+1=n

n!
i0!i2! · · · ie+1!

ai0
0 Z2i2+···+(e+1)ie+1

e+1∏
j=2

a
ij

j ,

that leads to the following result.

Theorem 2.3. We have

Le(x, 1) =
∑
n≥1

∑
2i2+···+(e+1)ie+1=n−1

(
n

i2,...,ie+1

)
xn−i2−···−ie+1tie+1

∏e
j=2

(
x
(

e+2
j

)
−
(

e
j−1

))ij

n(1 − (e + 2)x)n
,

where(
n

i2, . . . , ie+1

)
= n!

i2! · · · ie+1!(n − i2 − · · · − ie+1)!
and t = (e + 2)x(1 − x) − 1 + x(1 + x)

1 − x
.

For example, Theorem 2.3 with e = 2 gives

L2(x, 1) =
∑
n≥1

∑
2i2+3i3=n−1

(
n

i2,i3

)
xn−i2−i3(6x − 2)i2(−3x2+5x−1

1−x
)i3

n(1 − 4x)n
.

Thus,

L2(x, 1) = x

1 − 4x
+ x2(6x − 2)

(1 − 4x)3 + x3t

(1 − 4x)4 + 2x3(6x − 2)2

(1 − 4x)5 + 5x4t(6x − 2)
(1 − 4x)6

+ 5x4(6x − 2)3 + 3x5t2

(1 − 4x)7 + 21x5(6x − 2)2t

(1 − 4x)8 + 28x6(−2 + 6x)t2 + 14x5(−2 + 6x)4

(1 − 4x)9 + · · · ,

where t = (−3x2 + 5x − 1)/(1 − x).

3. Some results for the case d = −1

In this section we keep analyzing the bivariate generating function given in the previous
section for the particular case d = −1. For this case, we provide more detailed results.
We denote by Q the set of all non-empty paths in D−1 having at least one valley, where
the last valley is at ground level. We denote by Qn the subset of Q formed by all paths
of semi-length n and denote by qn the cardinality of Qn. For simplicity, when d = −1
(or e = 1) we use L(x, y) instead of L1(x, y). As a consequence of Theorem 2.1, taking
d = −1, we obtain this theorem.
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Theorem 3.1. The bivariate generating function L(x, y) is given by

L(x, y) =
(x − 1)y

(
1 − x(2 + y) −

√
(1 − x − 2xy − 2x2y + x2y2 − x3y2)/(1 − x)

)
2(1 − 2x + x2 − 2xy + x2y) .

Notice that a path Q ∈ Q can be uniquely decomposed as either U∆DU∆′D, U∆DR,
UR1DR2, or URDU∆D, where ∆, ∆′ are pyramids, and R, R1, R2 ∈ Q (see Figure 4 for
a graphical representation of this decomposition).

Figure 4. Decomposition of a (−1)-Dyck path in Q.

Therefore, if
Q(x, y) :=

∑
Q∈Q

xℓ(Q)yρ(P ),

then

Q(x, y) = x2
(

y

1 − x

)2
+ x

(
y

1 − x

)
Q(x, y) + x(Q(x, y))2 + x2

(
y

1 − x

)
Q(x, y).

Solving the equation above for Q(x, y), we find that

Q(x, y) =
1 − x − xy − x2y −

√
(1 − x)(1 − x − 2xy − 2x2y + x2y2 − x3y2)

2(1 − x)x . (3.1)

Expressing L(x, y) as a series expansion we obtain these first few terms:

L(x, y) = xy + x2
(
y2 + y

)
+ x3

(
y3 + 3y2 + y

)
+ x4

(
y4 + 6y3 + 6y2 + y

)
+ x5

(
y5 + 10y4 + 19y3 + 10y2 + y

)
+ x6

(
y6 + 15y5 + 46y4 + 45y3 + 15y2 + y

)
+ · · · .

Figure 5 depicts all six paths in D−1(4) with exactly 3 peaks. Notice that this is the
coefficient of x4y3, in boldface type, in the above series.

The generating function for the (−1)-Dyck paths is given by

L(x) := L(x, 1) = −1 + 4x − 3x2 +
√

1 − 4x + 2x2 + x4

2(1 − 4x + 2x2) . (3.2)

Thus,

L(x) = x + 2x2 + 5x3 + 14x4 + 41x5 + 123x6 + 375x7 + 1157x8 + · · · .
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Figure 5. All six paths in D−1(4) with exactly 3 peaks.

For the sake of simplicity, if there is not ambiguity, for the remaining part of the paper
we use r(n) instead of r−1(n). Our interest here is to give a combinatorial formula for
this sequence. First of all, we give some preliminary results. Let b(n) be the number of
(−1)-Dyck paths of semi-length n that either have no valleys or the last valley is at ground
level. Note that b(n) − 1 is the n-th coefficient of the generating function Q(x, 1); see (3.1),
or equivalently

∑
n≥0

b(n)xn = Q(x, 1) + 1
1 − x

= 1 − x2 −
√

1 − 4x + 2x2 + x4

2(1 − x)x
= 1 + x + 2x2 + 4x3 + 9x4 + 22x5 + 57x6 + 154x7 + 429x8 + · · · .

This generating function coincides with the generating function of the number of Dyck
paths of semi-length n that avoid the subpath UUDU . From Proposition 5 of [19]
and [5, p. 10] we conclude the following proposition.

Proposition 3.2. For all n ≥ 0 we have

b(n) = 1 +
⌊ n−1

2 ⌋∑
j=0

(−1)j

n − j

(
n − j

j

)(
2n − 3j

n − j + 1

)
=

⌊ n
2 ⌋∑

k=0

n−k∑
j=0

(
n − k

j

)
N(j, k),

where N(n, k) = 1
n

(
n
k

)(
n

k−1

)
are the Narayana numbers, with N(0, 0) = 1.

We tried to find a combinatorial proof of the previous proposition. However, we were
not able to do it. This remark summarizes our observations toward a potential proof. It
will be interesting to see such a combinatorial proof.

Remark 3.3. Let B(n) = Qn ∪ {∆n} denote the set of (−1)-Dyck paths having either no
valleys or the last valley is at ground level. That is, b(n) = |B(n)|. A South-East step in
P ∈ B(n), satisfies one of these two conditions.

• The step belongs to a pyramid.
• The step is part of a valley, say for example, the m-th valley, such that νm −νm−1 =

−1. In this case, the valley with height νm is called (−1)-valley.
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We denote by Bj,k(n) the set of paths in B(n) with exactly j valleys, where k of them
are (−1)-valley. Now, a path P ∈ Bj,k(n) can be decomposed as

P = U s0∆t1U s1∆t2Dr1U s2 · · · ∆tj−1Drj−2U sj−1∆tj
Drj−1∆tj+1 ,

where ri ∈ {0, 1}, ti ≥ 1, si ≥ 0, and with the additional property that there are exactly k
indices i for which ri = 1.

There are n − k South-East steps that belong to one of the j + 1 pyramids in the path.
So, we can represent the possible choices of the ti as an integer composition of n − k into
j +1 parts in

(
n−k−1
j+1−1

)
=
(

n−k−1
j

)
ways. This means that setting ti = 1 for all i, in the spirit

of Proposition 3.2, the Narayana numbers N(j, k + 1) should correspond to the number
of (−1)-Dyck paths of semi-length j + 1 + k containing exactly j valleys and k ≤ j − 1
(−1)-valleys where the last valley is at ground level. That is |Bj,k(j + k + 1)| = N(j, k + 1)
for j > 0.

Theorem 3.4. The total number of paths in D−1(n) is given by

r(n) =
n∑

k=0

n−k−1∑
i=0

(
n − k − 1

i

)
q(i)(k),

where

q(i)(n) =
∑

n1+n2+···+ni=n

b(n1)b(n2) · · · b(ni).

Proof. Recall that ℓ(P ) denotes the semi-length of a path P . Let us denote by Q(i)(n) the
set of i-tuples (P1, . . . , Pi) of paths Pj ∈ B = ⋃

m≥0 B(m), such that ℓ (P1)+ · · ·+ℓ (Pi) = n.
It is clear that

∣∣∣Q(i)(n)
∣∣∣ = q(i)(n). Note that the empty path λ ∈ B. Let Ci(n) be the

set of integer compositions of n with i parts. The cardinality of this set is given by the
binomial coefficient

(
n−1
i−1

)
.

Let QC(n) be the set of (2i + 1)-tuples (c1, P1, . . . , ci, Pi, ci+1) such that the element
((P1, . . . , Pi), (c1, . . . , ci+1)) is in Q(i)(j) × Ci+1(n − j). (Note that QC(n) is isomorphic to⋃

i,j(Q(i)(j) × Ci+1(n − j)).) We now consider the function

φ : QC(n) −→ D−1(n),

defined by

φ ((c1, P1, c2, P2, . . . , ci, Pi, ci+1)) = U c1M1U
c2 · · · MiU

ci+1Dg,

where the integer g ≥ ci+1 is the number of necessary down-steps to reach the x-axis, and
Mj is given by

Mj =


Dcj , if Pj = λ;
Pj, if Pj = ∆;
PjD, otherwise.

Figure 6 depicts two examples on the application of the function φ.
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(c1,∆, c2,λ, c3)

∆

c 1

︷

︸
︸

︷

(c1, P1, c2)

P1

→

c 2

︷

︸
︸

︷

c 3

︷

︸
︸

︷

→

c 1

︷

︸
︸

︷
c 2

︷

︸
︸

︷

Figure 6. Function φ applied to the vectors (c1, ∆, c2, λ, c3) and (c1, P1, c2).

For the remaining part of this proof we use ∆0 = λ. We define ϕ from D−1(n) to QC(n)
via the Algorithm 1 below.

Algorithm 1 Function ϕ

(1) Let i = 1.
(2) If there are (−1)-valleys, go to step (3), else, the path is non-decreasing, and for some

integers sm ≥ 0, g ≥ 0, and tm > 0, it can be decomposed as
P = U s0∆t1U s1∆t2 · · · U sj−1∆tj

∆tj+1Dg.

• If no valleys, that is j = s0 = g = 0, then return the vector (t1).
• If there is just one valley, that is j = 1, set

(s′
0, t′

1) =

(s0, t1), if s0 > 0;
(t1, 0), otherwise;

and then return the vector (s′
0, ∆t′

1
, t2).

• In the general case, set

(s′
m, t′

m+1) =

(sm, tm+1), if sm > 0;
(tm+1, 0), otherwise;

for m < j and then return the vector (s′
0, ∆t′

1
, s′

1, . . . , ∆t′
j
, tj+1).

(3) Find the rightmost occurrence of an (−1)-valley, that is, a subpath of the form
D∆kDU , with k > 0. Denote the height of this valley as hi. Decompose the path P
as P = P̃0PiDP̃1, where Pi is the maximal subpath that is a Dyck path to the left of
the aforementioned (−1)-valley. Notice that Pi ends on D∆k and so, it belongs to B.
Let P̂0 = P̃0D

hi+1 and P̂1 = P̃1D
−hi , where D−r means deleting the last r South-East

steps of the path. By assumption, the path P̂1 is non-decreasing: go to step (2) using
P̂1 and call the returned tuple τ1. Increase the value of i by one and go to step (2)
with the path P̂0 and call the returning tuple τ0. Return (τ0, Pi, τ1).
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We now give an example of the application of the Algorithm 1. Consider, for instance,
the path given in Figure 7. First of all, search for the rightmost (−1)-valley (in the first
case, it is denoted by dashed circle after P1), they are decorated by a red circle around
them, the algorithm applied to P̂1 = UD (where P̃1 = UDD) gives τ1 = (1). We extract
the path P1 and we locate the next (−1)-valley, the right part on this instance, given
by UDUDU , corresponds to τ1 = (1, λ, 1, λ, 1), and the left part of P2 corresponds to
(1, ∆1, 1), and so the whole path is encoded by the vector (1, ∆1, 1, P2, 1, λ, 1, λ, 1, P1, 1).

P1

1

P2

1,∆1, 1 1,λ, 1,λ, 1

P

φ(P ) = (1,∆1, 1, P2, 1,λ, 1,λ, 1, P1, 1)

P̂0 P̂1

P̂0 P̂1

P1

P2

Figure 7. Example inverse function.

Using these decompositions, we show by induction that ϕ ◦ φ|QCk(n) = idQCk(n) and
φ ◦ ϕ|Bk(n) = idBk(n) for every k ≥ 0. These equalities and the functionality of ϕ, given by
choosing the paths Pi in a maximal way, imply that φ is a bijection and ϕ is its inverse.
Let S(k) be the statement

ϕ ◦ φ|QCk(n) = idQCk(n) and φ ◦ ϕ|Bk(n) = idBk(n).

For the basis step, S(0), first notice that if P ∈ B0(n), then the Algorithm 1 Part (2)
guarantees that ϕ(P ) contains only paths of the form ∆t for t ≥ 0. On the other hand,
φ returns a path without (−1)-valley when given a tuple τ ∈ QC0(n) by definition of
the Mj’s, and so the functions and their compositions are well defined when restricted
to B0(n) and QC0(n). Let P = U s0∆t1 · · · ∆ti

∆ti+1Dg ∈ B0(n), using Algorithm 1 we get
ϕ(P ) = (s′

0, ∆t′
1
, . . . , ∆t′

i
, ti+1).
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Now, we have
φ(ϕ(P )) = φ(s′

0, ∆t′
1
, . . . , ∆t′

i
, ti+1) = U s′

0M1 · · · MiU
ti+1Dg′

,

with Mm = Ds′
m−1 = Dtm if t′

m = 0 and s′
m−1 = tm, or Mm = ∆t′

m
= ∆tm if sm−1 > 0, for

1 ≤ m ≤ i. This gives φ(ϕ(P )) = P .
Let τ = (c1, ∆t1 , . . . , ci, ∆ti

, ci+1) with cm > 0 and tm ≥ 0, then
φ(τ) = U c1M1 · · · U ciMiU

ci+1Dg,

where

Mm =

Dcm , if tm = 0;
∆tm , otherwise;

and let 1 ≤ x1 < x2 < · · · < xq ≤ i be such that txm = 0, that is the paths ∆txm
in τ that

are of the form ∆0 = λ. Notice that cm > 0 and the definition of Mm imply that either
U cmMm = ∆cm exactly for tm = 0 or U cm∆tm for tm > 0, which allows us to decompose
φ(τ) as

φ(τ) =
(
U c1∆t1 · · · U cx1−1∆tx1−1

)
U0∆cx1

· · · U0∆cxq

(
U cxq+1∆txq+1 · · · ∆ti

)
∆ci+1Dg−ci+1 ,

where every pyramid in the decomposition is non-empty and so the decomposition is unique.
We now have that ϕ(φ(τ)) = (c1, ∆t1 , . . . , cx1−1, ∆txi−1 , cx1 , λ, . . . , cxq , λ, . . . , ci+1) = τ .
For the inductive step S(k), we assume that we have the desired equalities for ℓ < k.
Notice that any tuple τ ∈ QCk(n) can be decomposed as τ = (τ0, P1, τ1) with τ0 containing
ℓ < k paths that are not pyramids, P1 ̸= ∆t for any t ≥ 0, and τ1 ∈ QC0(n′). Notice,
further, that

φ((τ0, P1, τ1)) = φ(τ0)D−P1Dφ(τ1)Dg2 ,

where φ(τ0)D− means deleting the South-East steps suffix of φ(τ0). By the recursive
step in the Algorithm 1, we have that ϕ(φ(τ)) = τ by using the inductive hypothesis.
Analogously, we can decompose a path as in the recursive step of Algorithm 1, and the
inductive hypothesis give φ(ϕ(P )) = P . □

Proposition 3.5 is a direct consequence of the decomposition given in the proof of
Theorem 3.1. The first result follows from Figure 4 and the second result uses the first
part of this proposition and the decomposition UTD, U∆DT, or UQDT as given in the
proof of Theorem 3.1.

Proposition 3.5. If n > 1, then these hold
(1) If qn = |Qn|, then

qn = 2qn−1 + qn−2 + qn−3 +
n−4∑
i=2

qi(qn−i−1 − qn−i−2) + 1,

for n > 3, with the initial values q1 = 0, q2 = 1, and q3 = 3.
(2) If r(n) = |Dd(n)|, then

r(n) = 3r(n − 1) − r(n − 2) + qn−2 +
n−3∑
i=2

qi(r(n − i − 1) − r(n − i − 2)),

for n > 3, with the initial values r(1) = 1, r(2) = 2, and r(3) = 5.



14 R. Flórez and T. Mansour and J.L. Ramírez and F.A. Velandia and D. Villamizar

The generating function of the sequence r(n) is algebraic of order two, then r(n) satisfies
a recurrence relation with polynomial coefficients; see [1, Proposition 4]. This can be
automatically solved with implementation of Kauers in Mathematica [18]. In particular
we obtain that r(n) satisfies the recurrence relation:

2nr(n) − 4nr(n + 1) + (12 + 5n)r(n + 2) − 4(15 + 4n)r(n + 3)
+ 10(9 + 2n)r(n + 4) − 2(21 + 4n)r(n + 5) + (6 + n)r(n + 6) = 0, with n ≥ 6

and the initial values r(0) = 0, r(1) = 1, r(2) = 2, r(3) = 5, r(4) = 14, and r(5) = 41.
In Theorem 3.6 we give an asymptotic approximation for the sequence r(n). To

accomplish this goal, we use the singularity analysis method to find the asymptotes of the
coefficients of a generating function (see, for example, [11] for the details).

We recall that in literature fn ∼ gn means that fn and gn are asymptotic equivalent.
That is, fn/gn → 1 as n → ∞.

Theorem 3.6. If ρ is the smallest real positive root of 1 − 4x + 2x2 + x4, then the number
of (−1)-Dyck paths has this asymptotic approximation

r(n) ∼ ρ−n

√
n3π

·

√
ρ(4 − 4ρ − 4ρ3)

4(−1 + 4ρ − 2ρ2) ,

where ρ is called the dominant singularity of the generating function L(x).

Proof. From a symbolic computation we find that

ρ = 1
3

−1 − 4 22/3

3
√

13 + 3
√

33
+ 3

√
2
(
13 + 3

√
33
) ≈ 0.295598.

From the expression given in (3.2) for L(x) we have

L(x) = −1 + 4x − 3x2

2(1 − 4x + 2x2) +
√

1 − 4x + 2x2 + x4

2(1 − 4x + 2x2) ∼ (ρ−x)1/2

√
ρ(4 − 4ρ − 4ρ3)

2(1 − 4ρ + 2ρ2) as x → ρ−.

Therefore,

r(n) ∼ n−1/2−1

ρn(−2
√

π)

√
ρ(4 − 4ρ − 4ρ3)

2(1 − 4ρ + 2ρ2) = ρ−n

√
n3π

√
ρ(4 − 4ρ − 4ρ3)

4(−1 + 4ρ − 2ρ2) . □

4. The area of the (−1)-Dyck paths

In this section we use generating functions and recursive relations to analyze the
distribution of the area of the paths in the set of restricted (−1)-Dyck paths. We recall
that the area of a Dyck path is the sum of the absolute values of y-components of all
points in the path. We use area(P ) to denote the area of a path P . From Figure 1 on
Page 2, we can see that area(P ) = 70. We use a(n) to denote the total area of all paths
in D−1(n). In Theorem 4.1 we give a generating function for the sequence a(n). We now
introduce a bivariate generating function depending on this previous parameter and ℓ(P )
(the semi-length of P ). So,

A(x, q) :=
∑

P ∈D−1

xℓ(P )qarea(P ).
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Let Q ⊂ D−1(n) be the set formed by all paths having at least one valley, where the last
valley is at ground level; let Qn ⊂ Q be the set formed by all paths of semi-length n, and
let qn = |Qn|.

Theorem 4.1. The generating function for the sequence a(n) is given by

V (x) =
∑
n≥0

a(n)xn = b(x) − c(x)
√

1 − 4x + 2x2 + x4

(1 − x)2(1 − 4x + 2x2)3(1 − 3x − x2 − x3) ,

where
b(x) = 2x − 23x2 + 107x3 − 262x4 + 359x5 − 256x6 + 82x7 − 5x8 − 10x9 + 6x10,

c(x) = x − 10x2 + 41x3 − 89x4 + 108x5 − 73x6 + 18x7 + 2x8.

Proof. From the decomposition UD, UTD, U∆DT, or UQDT given in the proof of Theo-
rem 3.1 we obtain the functional equation

A(x, q) = xq + xqA(xq2, q) + E(x, q)A(x, q) + xqB(xq2, q)A(x, q), (4.1)

where E(x, q) := ∑
j≥1 xjqj2 and B(x, q) := ∑

P ∈Q xℓ(P )qarea(P ). Note that E(x, q) corre-
sponds to the generating function that counts the total number of non-empty pyramids in
the given decomposition.
From the decomposition given in Figure 4, we obtain the functional equation

B(x, q) = E(x, q)2 + E(x, q)B(x, q) + xqB(q2x, q)B(x, q) + xqB(q2x, q)E(x, q). (4.2)
Let M(x) be the generating function of the total area of the (−1)-Dyck paths in Q. From
the definition of A(x, q) we have

V (x) = ∂A(x, q)
∂q

∣∣∣∣∣
q=1

.

Substituting x by xq2 in (4.2), and then differentiating with respect to q and taking q = 1,
we obtain

W (x) := ∂B(xq2, q)
∂q

∣∣∣∣∣
q=1

= 2(3 − x)x2

(1 − x)4 + (3 − x)x
(1 − x)3 Q(x) + x

1 − x

(
W (x) + 2x

∂Q(x)
∂x

)

+ 3xQ(x)2 + xQ(x)
(

W (x) + 4x
∂Q(x)

∂x

)
+ xQ(x)

(
W (x) + 2x

∂Q(x)
∂x

)

+ 3x2

1 − x
Q(x) + x2

1 − x

(
W (x) + 4x

∂Q(x)
∂x

)
+ x2(3 − x)

(1 − x)3 Q(x), (4.3)

where Q(x) := Q(x, 1) and Q(x, y) is the generating function given in (3.1) on Page 8.
Now, differentiating (4.1) with respect to q and then taking q = 1 we obtain,

V (x) = x + xL(x) + x

(
V (x) + 2x

∂L(x)
∂x

)
+ x(x + 1)

(1 − x)3 L(x)

+ x

1 − x
V (x) + xQ(x)L(x) + xW (x)L(x) + xQ(x)V (x). (4.4)

Solving (4.3) for W (x) and substituting into (4.4) and then solving the resulting expression
for V (x) we obtain the desired result. □
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The first few values of the series of V (x) are

V (x) =
∑
n≥1

a(n)xn = x + 6x2 + 29x3 + 130x4 + 547x5 + 2198x6 + 8551x7 + · · · .

We now give a recursive relation for a(n). Again for the sake of simplicity, the proof
here is based on a geometric decomposition of the paths. So, we avoid some details.
However, in [13] there are detailed proofs of Proposition 4.2 and Theorem 4.3. We recall
that qn = |Qn| and that for simplicity we use r(n) instead of r−1(n).

The following two results may follow as a direct application of (4.2). However, we
include here a different combinatorial proof.

Proposition 4.2. If An with n ≥ 1 is the total area of all paths in Qn, then

An = 2An−1 + An−2 + 2An−3 + qn − qn−1 + 2nqn−2 + 2(n − 5)qn−3 + 4n2 − 14n + 13+
n−4∑
i=2

2(Ai + iqi + i(i + 1))(qn−i−1 − qn−i−2), with n > 4,

and the initial values A1 = 0, A2 = 2, A3 = 13, and A4 = 58.

Proof. From Figure 4 we know that a path in Qn can be decomposed in one of these four
cases; ∆i∆n−i, ∆iQ, XQY ∆i, XQ′Y Q where Q, Q′ ∈ Q

Case 1. The area of ∆i∆n−i is i2 + (n − i)2. Since for a fixed i ∈ {1, 2, . . . , n − 1}, there
is exactly one path of the form ∆i∆n−i in Qn, we have that the total area of this type of
paths is ∑n−1

i=1 (i2 + (n − i)2) = n(n − 1)(2n − 1)/3.
Case 2. The area of Pi := ∆iQ is i2 + An−i. Since for every i ∈ {1, 2, . . . , n − 2} there

are qn−i paths of the form Pi, we have that the total area of all paths of the form Pi is given
by i2qn−i + Ai. Therefore, the total area of this type of paths is ∑n−2

i=1 i2qn−i +∑n−1
j=2 Aj.

Case 3. For a fixed i, the area of a path of the form XQ′Y Q′′ is given by 2i +
1 + Ai + An−i−1, where Q′ ∈ Qi, Q′′ ∈ Qn−i−1 and i ∈ {2, 3, . . . , n − 3}. Note that
for a fixed i and a fixed Q ∈ Qn−i−1 there qi paths of the form XQ′Y Q with Q ∈ Qi.
This implies that for a fixed i ∈ {2, 3, . . . , n − 3} the total area of this type of paths is
An−i−1qi + (2i + 1)qiqn−i−1 + Aiqn−i−1. We conclude for i varying from 2 to n − 3, we
obtain that the total area of this type of paths is

n−3∑
i=2

An−i−1qi +
n−3∑
i=2

((2i + 1)qiqn−i−1 + Aiqn−i−1).

Case 4. The area of Hi := XQℓY ∆i is given by area of ∆i (which is i2) plus the area
of XQℓY (this is given by Aℓ, the area of Qℓ, plus 2i + 1 which is the area of the trapezoid
generated by X and Y ). Since for every i ∈ {1, 2, . . . , n − 3} there are qn−i−1 paths of the
form Hi with Q ∈ Qn−i, we conclude that the total area of this type of paths is

n−3∑
i=1

i2qn−i−1 +
n−2∑
i=2

((2i + 1)qi + Ai).
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Adding the results from Cases 1-4, we obtain that the recursive relation for the area An is
given by

An =
n−1∑
i=1

(
i2 + (n − i)2

)
+

n−2∑
i=1

i2qn−i +
n−1∑
i=2

Ai +
n−3∑
i=2

(2i + 1)qiqn−(i+1) +
n−3∑
i=2

Aiqn−(i+1)+

n−3∑
i=2

Aiqn−(i+1) +
n−2∑
i=2

Ai +
n−3∑
i=1

i2qn−(i+1) +
n−2∑
i=2

(2i + 1)qi.

Subtracting An from An+1 and simplifying we have

An = 2An−1 + An−2 + 2An−3 + (2n − 5)qn−3 + (2n − 4)qn−2 + qn−1 + 4n2 − 14n + 15+
n−4∑
i=2

(2Ai + (2i + 1)qi)(qn−i−1 − qn−i−2) +
n−3∑
i=2

(
2i2 − 2i + 1

)
(qn−i − qn−i−1).

We now rearrange this expression to obtain qn (see the expression within brackets) given
in Proposition 3.5

An = 2An−1 + An−2 + 2An−3 + (2n − 6)qn−3 + (2n − 4)qn−2 − qn−1 + 4n2 − 14n + 13+
n−4∑
i=2

2(Ai + iqi)(qn−i−1 − qn−i−2) +
n−3∑
i=2

2
(
i2 − i

)
(qn−i − qn−i−1)

+ [2qn−1 + qn−2 + qn−3 +
n−4∑
i=2

qi(q−i+n−1 − q−i+n−2) + 1].

After some simplifications we obtain the desired recursive relation. □

The proof of the following theorem is similar to the proof of Proposition 4.2. We recall
that r(i) = |D−1(i)| and qj = |Qj|.

Theorem 4.3. If a(n) is the total area of all paths in D−1(n), for n ≥ 1, then a(n)
satisfies the recursive relation

a(n) = 3a(n − 1) − a(n − 2) + An−2 + 2(n − 1)qn−2 + 2nr(n − 1) + 2(3 − n)r(n − 2)

− 4r(n − 3) + (n − 1)2 +
n−2∑
i=3

qi−1(a(n − i) − a(n − i − 1))

+
n−2∑
i=3

(
Ai−1 + (2i − 1)qi−1 + i2

)
(r(n − i) − r(n − i − 1)).

Proof. First of all, we note that a path in D−1(n) can be decomposed as XQ1Y , ∆iQn−i,
and XQ′Y D, where Qj, D ∈ D−1, and Q′ ∈ Qj. This decomposition gives these three
cases to consider.

Case 1. The area of XQY is (2n − 1) + a(n − 1), where a(n − 1) is the area of
Q ∈ D−1(n−1) and 2n−1 is the are of the trapezoid generated by X and Y . This gives that
the total area of all paths of the form XQY with Q ∈ D−1(n−1) is (2n−1)r(n−1)+a(n−1).

Case 2. The area of Ki := X iY iQℓ is i2 + a(n − i), where Qℓ ∈ D−1(n − i). Since for a
fixed i ∈ {1, 2, . . . , n − 1} there are r(n − i) paths of form Ki, we conclude that the total
area of all these paths is ∑n−1

i=1 i2r(n − i) + a(n − i).
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Case 3. The area of Mi := XQ′Y D is ((2i + 1) + Ai + a(n − i − 1), where Q′ ∈ Qi and
D ∈ D−1(n−i−1). Note that for a given path D ∈ D−1(n−i−1), there are as many paths
of the form XQ′Y D as paths in Qi. It is easy to see that for a fixed i ∈ {2, 3, . . . , n − 2}
there are r(n − i − 1) subpaths of the form XQ′Y . Note that X and Y give rise to a
trapezoid, where the two parallel sides have lengths 2i and 2i + 2, giving rise to an area of
2i + 1. So, the contribution to the area given by the first subpaths of the form XQ′Y is
equal to the area of the trapezoids plus the area of all paths of the form Q′ (these are on
top of the trapezoids). Thus, the area of a trapezoid multiplied by the total number of
the paths of the form Q′ plus the area of all paths of the form Q′ and then all of these
multiplied by the total number of paths of the form D. Thus, the contribution to the area
given by the first subpaths of the form XQ′Y (overall paths of the form Mi for a fixed i),
is ((2i + 1)qir(n − i − 1) + Air(n − i − 1)).
We conclude that the total area of this type of paths is

n−2∑
i=2

Air(n − i − 1) +
n−2∑
i=2

(2i + 1)qir(n − i − 1).

Adding the results from Cases 1-3, we obtain that the recursive relation for the area a(n)
is given by

a(n) = a(n − 1) + (2n − 1)r(n − 1) +
n−1∑
i=1

i2r(n − i) +
n−1∑
i=1

a(n − i)

+
n−2∑
i=2

qia(n − i − 1) +
n−2∑
i=2

Air(n − i − 1) +
n−2∑
i=2

(2i + 1)qir(n − i − 1).

Subtracting a(n) from a(n + 1) and simplifying we have

a(n) = 3a(n−1)−a(n−2)+An−2+2(n−1)qn−2+(2n−1)r(n−1)+(3−2n)r(n−2)+(n−1)2

+
n−2∑
i=3

qi−1(a(n − i) − a(n − i − 1)) +
n−2∑
i=3

Ai−1(r(n − i) − r(n − i − 1))

+
n−2∑
i=3

(2i − 1)qi−1(r(n − i) − r(n − i − 1)) +
n−2∑
i=1

i2(r(n − i) − r(n − i − 1)).

After some other simplifications we have that

a(n) = 3a(n − 1) − a(n − 2) + An−2 + 2(n − 1)qn−2 + 2nr(n − 1)

+ 2(3 − n)r(n − 2) − 4r(n − 3) + (n − 1)2 +
n−2∑
i=3

qi−1(a(n − i) − a(n − i − 1))

+
n−2∑
i=3

(
Ai−1 + (2i − 1)qi−1 + i2

)
(r(n − i) − r(n − i − 1)).

This completes the proof. □

Notice that the total area of the Dyck paths (cf. [21]) is given by 4n −
(

2n+1
n

)
.
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5. Appendix. Notation table

Concept Notation
Set restricted d-Dyck paths Dd

Set restricted d-Dyck paths of length n Dn

Cardinality of Dd(n) rd(n)
Cardinality of D−1(n) r−1(n) or r(n)
Area of a path P area(P)
Semi-length of P ℓ(P )
Number of peaks of P ρ(P )
Number of paths in Dd(n) having exactly k peaks. pd(n, k)
Paths with the last valley at level i Qd,i

General pyramid ∆
Pyramid (XY )k ∆k

Table 1. Summary of notation.
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