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Abstract. Björner and Ekedahl [Ann. of Math. (2), 170.2(2009), pp. 799-817] pioneered
the study of length-counting sequences associated with parabolic lower Bruhat inter-
vals in crystallographic Coxeter groups. In this extended abstract, we study the asymp-
totic behavior of these sequences in affine Weyl groups. Let W be an affine Weyl group
with corresponding Weyl group W f , and f W be the set of minimal representatives for
the right cosets W f \W. Let tλ be the translation by a dominant coroot lattice element
λ and f btλ

i be the number of elements of length i below tλ in the Bruhat order on
f W, which is the 2i-dimensional Betti number of a Schubert variety in a certain affine
Grassmannian. We show that the sequence { f btλ

i }i is “asymptotically log-concave” in
the following sense: the “shape” of the k-fold dilated sequence { f btkλ

i }i, as k tends to
infinity, converges to a continuous function obtained from a certain polytope Pλ; by
the Brunn–Minkowski inequality, this function is log-concave.
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1 Background

Studying classes of Schubert varieties in the cohomology ring of the generalized flag
variety leads to important results in enumerative geometry (the classical “Schubert cal-
culus”), while the study of their intersection cohomology plays a fundamental role in
representation theory (the “Kazhdan–Lusztig theory”). Following Björner and Ekedahl
[1], we are interested in the behavior of the Betti numbers of Schubert varieties.

More precisely, consider a complex Kac–Moody group G with Borel subgroup B and
maximal torus T. The corresponding Weyl group W has the structure of a crystallo-
graphic Coxeter system (W, S), where S is the generating set, and we denote by ` : W →
N the length function. For any J ⊂ S, there is a parabolic subgroup WJ := 〈s ∈ J〉 of W
and a corresponding subgroup PJ := BWJ B of G.

The quotient PJ\G is a projective (ind-)variety called the generalized (partial) flag va-
riety. We have the well-known Bruhat decomposition PJ\G =

⊔
w∈JW PJ\PJwB, where

∗huhongsheng@amss.ac.cn

mailto:huhongsheng@amss.ac.cn


2 Gaston Burrull, Tao Gui, and Hongsheng Hu

JW is the set of minimal representatives for the right cosets WJ\W. The component
Cw := PJ\PJwB is called the Schubert cell associated with w ∈ JW. Topologically, Cw is an
`(w)-dimensional affine space A`(w). Its closure Xw := Cw is called the Schubert variety
associated with w. There is a partial order ≤ on JW called the Bruhat–Chevalley order
defined by v ≤ w if Cv ⊆ Xw. Furthermore, we have the decomposition

Xw =
⊔

v∈JW,v≤w
PJ\PJvB. (1.1)

Question 1. How many complex i-dimensional cells occur in the decomposition (1.1) of Xw?

Let us denote this number by Jbw
i . Equation (1.1) gives the equality

Jbw
i = Card

{
v ∈ JW

∣∣ v ≤ w and `(v) = i
}

, (1.2)

which also equals the 2i-dimensional Betti number of Xw (the odd dimensional Betti
numbers of Xw are 0).

Question 1 is difficult to answer in general. If Xw is smooth, the Poincaré duality
implies that Jbw

i = Jbw
`(w)−i. While the hard Lefschetz theorem implies that the sequence

{Jbw
i }i is unimodal, that is, it goes up and then goes down. But Xw is singular in general,

hence Poincaré duality and hard Lefschetz theorem usually fail. By means of deep re-
sults in Hodge theory, Björner and Ekedahl [1] showed that the sequence {Jbw

i }i satisfies
the following two sets of inequalities

Jbw
i ≤

Jbw
`(w)−i for i ≤ `(w)

2
, and Jbw

0 ≤ Jbw
1 ≤ · · · ≤

Jbw⌈
`(w)

2

⌉
−1
≤ Jbw⌈

`(w)
2

⌉. (1.3)

The first set of inequalities is rephrased as the sequence being top-heavy, while the second
is the fact that the sequence is weakly increasing in the “lower half part”.

Some variants of Question 1 have been studied. By Equation (1.2), one can formulate
an analog of Question 1 for general Coxeter groups. Using Soergel bimodules and the
Hodge theory established by Elias and Williamson in [11], it is proven that the inequali-
ties in (1.3) hold for a general Coxeter group W in the non-parabolic case (that is, J = ∅,
see [15]). For the parabolic case, we believe that a proof of these inequalities should
follow from the Hodge theory of singular Soergel bimodules [18]. On the other hand, in
the context of Schubert varieties of hyperplane arrangements, Huh and Wang [14], and
Braden et al. [3] proved Dowling and Wilson’s “Top-Heavy conjecture” for matroids.

Despite these great achievements, the unimodality of {Jbw
i }i for the “upper half part”

remains an interesting open problem. To the best of our knowledge, there is no partial
result yet. However, conjectures related to this problem have been made. Before we get
into these, let us recall that a sequence a0, a1, . . . , an of positive real numbers is said to be
log-concave if

ai−1ai+1 ≤ a2
i for all 0 < i < n.
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This notion is stronger than unimodality: a log-concave sequence is always unimodal.
Regarding log-concavity of Bruhat intervals, Brenti conjectured the following:

Conjecture 2 ([4, Conjecture 2.11]). Let W be a (finite) Weyl group, and u, v ∈ W. The
sequence {b[u,v]

i }i is log-concave, where b[u,v]
i := Card {w ∈W | u ≤ w ≤ v and `(w) = i}.

It is known that the parabolic analog of Conjecture 2 does not hold. For example, the
Betti numbers of the Schubert variety X(8,8,4,4) inside the Grassmannian Gr(4, 12) gives
a non-unimodal sequence. See [20] for details.

2 Our results

Let W = ZΦ∨oW f be an affine Weyl group with finite Weyl group W f and root system
Φ of rank r. Let (E, (−|−)) be the r-dimensional Euclidean space where Φ lives in. Let
f W be the set of minimal representatives for the right cosets W f \W. Denote by C+ the
dominant Weyl chamber. Let λ ∈ ZΦ∨ ∩ C+ be a dominant coroot lattice element, and
tλ ∈ W be the translation by λ. Let f [e, tλ] := {w ∈ f W | w ≤ tλ} be the dominant lower
Bruhat interval. For 0 ≤ i ≤ `(tλ), we define

f btλ
i := Card

{
w ∈ f [e, tλ]

∣∣ `(w) = i
}

.

This is the 2i-dimensional Betti number of a (spherical) Schubert variety in the affine
Grassmannian Gr := G(F)/G(O), where F = C((t)), O = C[[t]], and G is the semisim-
ple and simply connected complex algebraic group with root system Φ. We prove that
the sequence { f btλ

i }i is asymptotically log-concave in the following sense:

• The “shape” of the length-counting sequences of the dilated intervals f [e, tkλ] con-
verges to a continuous function when k tends to infinity (Theorem 3).

• This continuous function is log-concave (Corollary 7).

2.1 Asymptotic convergence

Let λ ∈ ZΦ∨ ∩ C+ be a fixed dominant lattice element. We define the convex polytope

Pλ := Conv{wλ | w ∈W f } ∩ C+ ⊂ E,

where Conv{−} is the convex hull of a set of points. Let ht : Pλ → R be the height
function ht(x) := (2ρ|x), where ρ is the half sum of positive roots. In particular, ht(λ) =
`(tλ). We denote by Volr the Lebesgue measure on E and by ht∗Volr the corresponding
push-forward measure on R. That is, for any Borel set U ⊆ R,

(ht∗Volr)(U) := Volr(ht−1 U) = Volr
({

x ∈ Pλ
∣∣ (2ρ|x) ∈ U

})
.
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We also denote by Volr−1 the Lebesgue measure on affine hyperplanes of E. Then, the
density function of ht∗Volr is

g(z) = ‖2ρ‖−1 Volr−1(ht−1(z)).

Let δx denote the Dirac measure (that is, point mass) at the point x ∈ R. For any
positive integer k, we define a discrete measure mk supported on [0, `(tλ)] by

mk := k−r ∑0≤i≤k`(tλ)
f btkλ

i δ i
k
. (2.1)

Intuitively, we distribute the sequence { f btkλ
i }i evenly on the interval [0, `(tλ)]. We also

define a step function Sk : [0, `(tλ)] → R as follows. For any x ∈ [0, `(tλ)], there exists a
unique i ∈ {0, 1, . . . , k`(tλ)} such that x ∈ [ i

k , i+1
k ). We define

Sk(x) := k−(r−1) · f btkλ
i .

The function Sk records the numbers { f btkλ
i }i and behaves like the “density function” of

mk. The following is our main theorem.

Theorem 3. Let Volr(A+) be the volume of the fundamental alcove A+.

(1) (Weak convergence of measures) The sequence of measures {mk}k, as k tends to infinity,
converges weakly to 1

Volr(A+)
ht∗Volr.

(2) (Uniform convergence of functions) The sequence of functions {Sk}k, as k tends to
infinity, converges uniformly to the function 1

Volr(A+)
g.

See Section 3 for an explicit example.

Remark 4. If λ is strongly dominant, that is, λ ∈ C+, then Pλ is combinatorially equivalent to
a hypercube (see [5]).

2.2 The dominant lattice formula

We define the Poincaré polynomial πtλ(q) of the sequence { f btλ
i }i by

πtλ(q) := ∑0≤i≤`(tλ)
f btλ

i qi = ∑w∈ f [e,tλ]
q`(w).

Let {α1, . . . , αr} be the set of simple roots of Φ, and {s1, . . . , sr} be the set of correspond-
ing simple reflections. For any µ ∈ ZΦ∨, we denote by Wµ the standard parabolic
subgroup of W f generated by {si | 1 ≤ i ≤ r, (µ|αi) = 0} and by µW f the set of minimal
representatives for the right cosets Wµ\W f . We also define the Poincaré polynomial µπ f (q)
of the set µW f by µπ f (q) := ∑w∈µW f

q`(w).
The following theorem is one of our most important results, and plays an important

role in the proof of Theorem 3.
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Theorem 5 (Dominant lattice formula). Let λ ∈ ZΦ∨ ∩ C+ as before. Then

πtλ(q) = ∑µ∈Pλ∩ZΦ∨ q(2ρ|µ) · µπ f (q−1). (2.2)

This formula serves as a bridge between the discrete nature of { f btλ
i }i and the con-

tinuous nature of the geometry of Pλ. See Figure 1 for an illustration.

Description of two of the summands of the dominant lat-
tice formula when W is of affine type A2 and λ = 2α+ 3β,
where α := α∨1 and β := α∨2 . The yellow points are the lat-
tice points inside Pλ. The alcoves of the interval f [e, tλ]
are colored with dark blue. There are 6 dominant alcoves
arranged around the strongly dominant lattice point µ :=
2α + 2β, and 3 around ν := α + 2β which is on the wall.
The summand corresponding to µ in the formula is given
by q8 · µπ f (q−1) = q5 + 2q6 + 2q7 + q8. The terms of this
polynomial are colored orange and placed inside their
corresponding alcoves in the picture. The summand cor-
responding to ν is given by q6 · νπ f (q−1) = q4 + q5 + q6,
whose terms are colored with brown.

Figure 1: Illustration for the dominant lattice formula.

2.3 Log-concavity and a conjecture on unimodality

The following theorem taken from [17, p. 270] can be deduced from the classical Brunn–
Minkowski inequality.

Theorem 6 (Brunn–Minkowski, see [17, p. 270]). Let L1 be a real vector space and let M ⊂ L1
be a convex body. Let p : L1 → L2 be a linear transformation. Then

x 7→
(
Vol
(

p−1(x) ∩M
))1/(dim M−dim p(M))

is a concave function on p(M).

Applying the above theorem to the map ht : Pλ → R and taking logarithm (which is
a concave function), we have immediately the following corollary.

Corollary 7. The density function g of the measure ht∗Volr is log-concave, that is, log g is a
concave function.

Remark 8. The sequence { f btλ
i }i is not necessarily log-concave. For example, from the step

function in Figure 2a, we observe that the sequence contains the consecutive terms (4, 4, 5).
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We propose the following conjecture:

Conjecture 9. The sequence { f btλ
i }i is unimodal.

This conjecture has been tested for different choices of λ in affine Weyl groups of
rank ≤ 4 (and also type Ã5) with the help of SageMath.

3 An example of Theorem 3

Let W be the affine Weyl group associated with the root system Φ of type C3 and simple
roots ∆ = {α1, α2, α3}. Then, r = 3. Following [2, Plate III], we write α1 = ε1 − ε2,
α2 = ε2 − ε3, and α3 = 2ε3. Let

λ = 3α∨1 + 6α∨2 + 7α∨3 .

We have that ht(λ) = 32. For convenience, we define (a, b, c)Φ := aα∨1 + bα∨2 + cα∨3 . The
polytope Pλ is the convex polyhedron with six vertices given by

{(0, 0, 0)Φ, (3, 3, 3)Φ, (3, 5, 7)Φ, (3, 6, 6)Φ, (7/3, 14/3, 7)Φ, (3, 6, 7)Φ},

which is an example of a non-lattice polytope. Since ρ = (3, 5, 3)Φ, we get ||ρ|| =√
14. From [8, Equation 2.4], or by direct computations, we have that Vol3(A+) = 1/48.

In view of Theorem 3, the only missing ingredient to compute the limit function is
to determine the area function Vol2(ht−1(x)). From the theory of convex polytopes,
this function is a piece-wise quadratic polynomial and its exact form can be obtained
by Lagrange interpolation. We omit the details and just give a graph of the function
g/ Vol3(A+) in Figure 2d.

We can use Theorem 3 to give quick estimates of the terms in the sequence { f btkλ
i }i

when k is big enough. For instance, when k = 8, the value of f bt8λ
196 is virtually impossible

to obtain in a computer directly from definitions. Let us pick x = 24.5(= 196/8). From
our theorem we have

S8(24.5) = f bt8λ
196/82 ∼ 48g(24.5) = 389/30

giving f bt8λ
196 ∼ 829.86.

On the other hand, Theorem 5 gives the exact values of the terms in the sequence
{ f btkλ

i }i. We can compute the value of the function S8 (which takes a considerable time
to get in a computer.) In particular, we have f bt8λ

196 = 863. Our quick estimate of 829.86
from before was off by 3.84%. In various examples, we observed that the error of the
estimation decreases roughly linearly with the growth of k. See Figure 2 for the graphs
of the step functions S1, S2, and S8.
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(a) Graph of S1. (b) Graph of S2.

(c) Graph of S8. (d) Graph of g/ Volr(A+).

Figure 2: In the affine Weyl group W of affine type C3, we consider λ = 3α∨1 + 6α∨2 +

7α∨3 . These pictures illustrate how the sequence of step functions Sk : [0, `(tλ)] → R

converges uniformly to the continuous function g/ Volr(A+).

4 Connections with asymptotic representation theory

The formulation of Theorem 3(1) borrows ideas from the construction of the now-called
Duistermaat–Heckman measure [13] and Okounkov’s work [16] on the asymptotic log-
concavity for multiplicities of representations. Let G be a compact connected Lie group
and λ be a dominant weight. In [13], Heckman constructed a discrete measure

∑µ dim V(kλ)µδµ
k

∑µ dim V(kλ)µ

supported on the weight polytope Conv{wλ | w ∈W f }, where dim V(kλ)µ is the weight
multiplicity of the irreducible representation of G with highest weight kλ. He proved that
this sequence of discrete measures, as k tends to infinity, converges weakly to the push-
forward of the Liouville measure of the coadjoint orbit of λ under the moment map. The
density function of the limit measure is a piecewise polynomial function [9] and Graham
proved that it is log-concave via Hodge–Riemann inequalities [12]. Later, Okounkov [16]
introduced the now-called Newton–Okounkov bodies to prove, in a similar weak limit
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sense, that for any reductive group G and any representation V of G, the multiplicities
of irreducible G-modules in the homogeneous coordinate ring of a G-stable irreducible
subvariety of P(V) are log-concave.

It is not hard to see the similarity between our construction (2.1) and the one of
Heckman, and it is indeed similar to the one of Okounkov. However, our proof technique
is quite different from theirs. Moreover, it is not obvious that our original cell-counting
problem has such a critical relation to the geometry of a convex polytope. Theorem 3(1)
is the analog of theirs, while a result like Theorem 3(2) is novel in this kind of setting.

5 Relation with Ehrhart’s theory

For an r-dimensional lattice polytope P (that is, all vertices of P are points of a given
lattice L), the Ehrhart polynomial [10] is a polynomial in k that counts the number of lattice
points in the k-fold dilation kP of P. The leading coefficient is equal to the r-dimensional
volume Volr(P) of P, divided by the volume d(L) of the fundamental region of the lattice
L. This implies that

Volr(P) = lim
k→∞

d(L) ·Card{lattice points in kP}
kr . (5.1)

If X is the toric variety corresponding to the normal fan of P, then P defines an ample
line bundle on X. The Ehrhart polynomial of P coincides with the Hilbert polynomial
of this line bundle, and the asymptotic result (5.1) is a consequence of the asymptotic
Riemann-Roch theorem [19, Tag 0BJ8].

The problem in our work is analogous to the one in Ehrhart’s theory, while we count
alcoves in each length rather than all lattice points in the polytope Pλ. When the polytope
Pλ is not a lattice polytope, it has no Ehrhart polynomial. We want to raise the following
question related to Theorem 3(2):

Question 10. Is f btkλ
ki a quasi-polynomial in k of degree (r− 1) for k sufficiently large, with

Volr−1(ht−1(i))
Volr(A+) · ‖2ρ‖

as the leading coefficient?

6 Main ideas in the proofs of Theorem 3 and Theorem 5

For complete proofs, see [6].

https://stacks.math.columbia.edu/tag/0BJ8
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6.1 Theorem 5

Our cell-counting problem can be translated into “counting alcoves” thanks to the nat-
ural bijection between the affine Weyl group W and the set of alcoves. In particular,
w ∈ f W if and only if the corresponding alcove Aw is dominant, that is, it is contained
in C+. On the other hand, we have the following well-known result.

Lemma 11. Suppose λ, µ ∈ ZΦ∨ ∩ C+. The following are equivalent:

(1) tµ ≤ tλ in the Bruhat–Chevalley order.

(2) µ ∈ Conv{wλ | w ∈W f }.

These facts motivate the definition of the polytope Pλ = Conv{wλ | w ∈ W f } ∩ C+.
They also lead to a description of the interval f [e, tλ] in terms of the lattice points in Pλ:

f [e, tλ] = {tµw ∈W | µ ∈ Pλ ∩ZΦ∨, w ∈ µW f }.

Then, the dominant lattice formula (Theorem 5) follows from comparing the lengths of
the elements on both sides of this equality.

6.2 Theorem 3

The following is the main geometric intuition in our proof of Theorem 3: a dominant
Bruhat interval can be realized as a bounded region—a union of finitely many alcoves—
inside C+; after dilating the lattice element λ of the interval f [e, tλ] and re-scaling the
region back, the alcoves in the region get smaller and smaller, and the region approaches
Pλ. This is illustrated in Figure 3. Other works relating Euclidean geometry and Bruhat
intervals in affine Weyl groups can be found in [8, 7].

The following corollary of Theorem 5 is crucial in the proof of Theorem 3:

Corollary 12. We define

π f (q) := ∑w∈W f
q`(w), πλ(q) = ∑µ∈Pλ∩ZΦ∨ q(2ρ|µ), πλ

+(q) = ∑µ∈Pλ∩ZΦ∨∩C+
q(2ρ|µ).

Then we have
πλ
+(q) · π f (q−1) ≤ πtλ(q) ≤ πλ(q) · π f (q−1), (6.1)

where the inequalities between these Laurent polynomials mean to be coefficient-wise.

Considering the coefficients in the inequality (6.1), we are able to approximate f btkλ
i

using the numbers

Card
(

Pλ ∩ 1
k

ZΦ∨ ∩ ht−1(y)
)

, (6.2)
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(a) The interval f [e, t2λ]. (b) The interval f [e, t6λ]. (c) The polytope Pλ.

Figure 3: Behavior of the intervals f [e, tkλ] when W is of affine type A2 and λ = 3α+ 4β,
where α := α∨1 and β := α∨2 . In each picture, the set of small triangles corresponds to
the set of alcoves. The coroot lattice is indicated by black bullets and the dominant
Weyl chamber is colored blue. In the first two pictures, the alcoves corresponding to
the elements in the intervals are filled with darker blue. So is the polytope Pλ in the
third picture.

where y runs over a particular set of numbers near i/k. For these y, it turns out that
(1

k ZΦ∨) ∩ ht−1(y) is a lattice of rank r− 1 in the affine hyperplane ht−1(y).
We construct a Riemann sum using the numbers from (6.2). As k tends to infinity,

this sum converges to a quantity related to the volume of a part of Pλ. From basic results
about weak convergence, this leads to a proof of Theorem 3(1).

The proof of Theorem 3(2) is more technical than the proof of Theorem 3(1). First of
all, it suffices to prove that Sk(x) converges uniformly for x ∈ [0, `(tλ)] of the form i/k,
because of the definition of Sk and the continuity of g. For this, we need to estimate the
value of the step function Sk at those x = i/k, which is k1−r · f btkλ

i . As before, we switch
this estimation to the estimation of the numbers in (6.2). Let y be as before.

We choose a fundamental domain Bk of the lattice (1
k ZΦ∨) ∩ ht−1(0) containing the

origin point of 1
k ZΦ∨. If we join all the translations of Bk by points in Pλ ∩ (1

k ZΦ∨) ∩
ht−1(y), we obtain the region

R :=
⊔{

l + Bk

∣∣∣∣ l ∈ Pλ ∩ 1
k

ZΦ∨ ∩ ht−1(y)
}

in the hyperplane ht−1(y).
Because we can compute the volume of Bk directly from Φ, estimating the value of

(6.2) is equivalent to estimating the value of Volr−1(R). The proof of the convergence
is then achieved by comparing Volr−1(R) with Volr−1(Pλ ∩ ht−1(x)). This, as well as
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the uniformity, requires the use of some “Euclidean geometries” to carefully estimate
the volume of some open neighborhood of the boundary of Pλ ∩ ht−1(x) (see Figure
4 for an example of such a neighborhood). When k is large enough, for any x and y,
the boundary of R is contained in such a neighborhood. Because the volume of such a
neighborhood can be sufficiently small, this implies that Volr−1(R) is sufficiently close
to Volr−1(Pλ ∩ ht−1(x)). This leads to the proof of the uniform convergence.

δ
δ

Figure 4: A triangle T and the neighbourhood N (∂T, δ).
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