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Charge formulas for Macdonald polynomials at
t = 0 from multiline queues and diagrams
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Abstract. Multiline queues are combinatorial objects coming from probability theory
that give formulas for the q-Whittaker specialization Pλ(X; q, 0) of the Macdonald poly-
nomials. We define a charge statistic and an RSK-esque procedure on multiline queues
that naturally recovers the Schur expansion of Pλ(X; q, 0). We extend these results to
generalized multiline queues, which are in bijection with binary matrices, and obtain a
new family of formulas for Pλ(X; q, 0) in terms of these objects. Multiline diagrams are
the plethystic analogs of multiline queues that were recently found to give a formula
for the modified Hall–Littlewood polynomials H̃λ(X; q, 0). We obtain formulas for the
latter through a cocharge statistic and an RSK-esque procedure on multiline diagrams.
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1 Introduction

Macdonald polynomials Pλ(X; q, t) [10] are symmetric functions in the variables X =
x1, x2, . . . with coefficients in Q(q, t). They are indexed by partitions, and character-
ized as the unique basis satisfying certain triangularity and orthogonality axioms. They
contain as specializations the q-Whittaker polynomials Pλ(X; q, 0), the Hall–Littlewood
polynomials Pλ(X; 0, t), the Schur functions sλ = Pλ(X; 0, 0), and are connected to
many other important families of symmetric functions. The modified Macdonald poly-
nomials H̃λ(X; q, t) were introduced by Garsia and Haiman [6] as a combinatorial ver-
sion of Pλ(X; q, t). They are obtained through plethysm from a scaled form Jλ of Pλ as
H̃λ(X; q, t) = tn(λ) Jλ[X/(1− t−1); q, t−1] (see [7] for details). The modified Hall–Littlewood
polynomial is the specialization H̃λ(X; q, 0) (which is equal to H̃λ′(X; 0, q)).

Expanding the q-Whittaker and the modified Hall–Littlewood polynomials in the
Schur basis yields Kotska–Foulkes and modified Kotska–Foulkes coefficients:

Pλ(X; q, 0) = ∑
µ≤λ

Kλµ(q, 0)sµ(X) and H̃λ(X; q, 0) = ∑
µ≤λ

K̃λµ(q, 0)sµ(X). (1.1)
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At q = 0, Lascoux and Schützenberger [8] gave a charge formula for Kλµ(0, t) as a
sum over semistandard tableaux of shape λ and content µ. The relation to the Kotska–
Foulkes coefficients is given by the following set of formulas (see Definition 2.3):

Kλµ(0, t) = ∑
T∈SSYT(λ,µ)

tcharge(T), Kλµ(q, 0) = Kλ′µ′(0, q),

K̃λµ(0, t) = K̃λµ′(t, 0) = tn(µ)Kλµ(0, 1/t) = ∑
T∈SSYT(λ,µ)

tcocharge(T).

In this abstract, we study Pλ(X; q, 0) and H̃λ(X; q, 0) through multiline queues and
multiline diagrams. Our constructions recover classical results, and provide variations
and simplifications of formulas for these polynomials. This abstract is based on [11].

In Section 3, we introduce a weight-preserving RSK-esque procedure on multiline
queues from which several classical results immediately follow, including (1.1) and
the Cauchy identities. In Section 4, we obtain a new formula for the modified Hall–
Littlewood polynomials via a cocharge statistic on multiline diagrams.

Theorem 1.1. Let λ be a partition. The modified Hall–Littlewood polynomial is given by

H̃λ(x1, . . . , xn; q, 0) = ∑
D∈MLD(λ,n)

qm̃aj(D)xD = ∑
D∈MLD(λ,n)

qcocharge(c̃w(D))xD. (1.2)

We also get new formulas for Kλµ(q, 0) and K̃λµ(q, 0), bypassing the charge statistic.

Theorem 1.2. For a partition ν, let Bν ∈ MLQ0(ν, `(ν)) be the multiline queue with all balls
left-justified and let B̃ν ∈ MLD0(ν, `(ν)) be the diagonal multiline diagram of type ν. Then

Kλµ(q, 0) = ∑
M∈MLQ(µ′,λ′)

ρN(M)=Bλ′

qmaj(M) and K̃λµ(q, 0) = ∑
D∈MLD(µ′,λ)

ρ̃N(D)=B̃λ

qm̃aj(D).

Finally, in Section 5 we extend our results to generalized multiline queues, obtaining
a new family of formulas, indexed by compositions, for the q-Whittaker polynomials.

Theorem 1.3. Let λ be a partition, n an integer, and let α be a composition with α+ = λ′. Then

Pλ(x1, . . . , xn; q, 0) = ∑
M∈GMLQ(α,n)

qmajG(M)xM.

2 Preliminaries

Definition 2.1. The charge of a permutation σ ∈ Sn is charge(σ) = ∑i/∈Des(σ)(n− i), where
Des(σ) = {i : σ−1(i) > σ−1(i− 1)}. The cocharge is cocharge(σ) = (n

2)− charge(σ).
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This definition generalizes to words with partition content by splitting the word
into charge subwords. Let w be a word with content µ = (µ1, µ2, . . . , µk). Extract the
first subword w(1) by scanning w from left to right and finding the first occurrence
of its largest letter k := µ′1, then k − 1, . . . , 2, 1, looping back around the word when-
ever needed. This subword w(1) is then extracted from w, and the remaining charge
subwords are obtained recursively from the remaining letters, which now have content
(µ1 − 1, µ2 − 1, . . . , µk − 1). For each i, w(i) can be thought of as permutations in Sµ′i

.

Definition 2.2. For a word w with partition content µ = (µ1, µ2, . . . , µk), its charge is given
by charge(w) = charge(w(1)) + charge(w(2)) + . . . + charge(w(k)).

Definition 2.3. For a semistandard Young tableau T (in French notation), define its row read-
ing word, denoted by rrw(T), to be the word obtained by recording the entries of the rows of T
from top to bottom and from left to right within each row. If T has partition content, the charge
of T is given by charge(T) = charge(rrw(T)).

We will make use of two types of related operations acting on words, described below.
See [11] for details on how charge(w) can be restated in terms of these operations.

Definition 2.4 (Classical and cylindrical matching operators). Let n be a positive integer
and let w be a word in the alphabet {1, . . . , n}. For 1 ≤ i < n, define πi(w) to be a word in open
and closed parentheses {(, )} that is obtained by reading w from left to right and recording a “(”
for each i + 1 and a “)” for each i. The signature rule (see, e.g. [3]) is the procedure of iteratively
matching pairs of open and closed parentheses whenever they are adjacent or whenever there are
only matched parentheses in between. Then πi(w) contains the data of which instances of i and
i + 1 in w are matched or unmatched following the signature rule applied to πi(w).

Let πc
i (w) represent the word πi(w) on a circle, so that open and closed parentheses may

match by wrapping around the word. Then the cylindrically unmatched i + 1’s and i’s in w
correspond respectively to the (cylindrically) unmatched open and closed parentheses in πc

i (w),
according to the signature rule executed on a circle. The wrapping i + 1’s and i’s in w corre-
spond respectively to the cylindrically matched open and closed parentheses in πc

i (w) that are
unmatched in πi(w).

Example 2.5. For w = 312214342131232, the unmatched parentheses are show in red in
π1(w) = ) ( ( ) ( ) ) ( ( and πc

1(w) =) ( ( ) ( ) ) ( (. This corresponds to the unmatched 1’s
and 2’s indicated by ˆ and the cylindrically unmatched 2 underlined: w = 31̂22143421312̂32̂.

3 Multiline queues and charge

The multiline queues we study are the t = 0 specialization of the multiline queues
and their statistics defined by Corteel, Williams, and the first author in [4], and are in
correspondence with the classical multiline queues introduced by Ferrari and Martin [5].
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Definition 3.1. Fix a partition λ, an integer n ≥ `(λ), and set L := λ1. A multiline queue
of shape (λ, n) is an arrangement of balls on an array with L rows numbered 1 through L from
bottom to top and n columns numbered 1 through n from left to right, such that row j contains
λ′j balls. Denote the set of multiline queues of shape (λ, n) by MLQ(λ, n).

A multiline queue can be viewed as a binary matrix by corresponding balls to 1’s and
vacancies to 0’s. We represent a multiline queue as a tuple M = (B1, . . . , BL) of L subsets
of {1, . . . , n} where Bj = (b1, . . . , bλ′j

) is the set of labels of columns containing balls in

row j of M. A site (r, j) of M refers to the cell in column j of row r of M; we say the site
is empty if j /∈ Br, and contains a ball otherwise.

Definition 3.2. The column word of a multiline queue M, denoted cw(M), is obtained by
recording the row number of each ball by scanning the columns of M from left to right and from
top to bottom within each column. For M in Example 3.14, cw(M) = 421|3|41|521|32.

Definition 3.3. Let n > 0 and S, T ⊆ [n], where we shall consider (S, T) as rows 1 and 2 of a
multiline queue. Then π(S, T) = π1(cw(S, T)). Unmatched open parenthesis are referred to as
unmatched above elements, and unmatched closed parenthesis are unmatched below.

Example 3.4. Let S = {2, 3, 5} and T = {1, 4, 5, 6} corresponding to rows 1 and 2 from
B in Example 3.18. Then π(S, T) = ( ) ) ( ( ) ( where the unmatched parentheses are in red,
corresponding to 4, 6 ∈ T unmatched above and 3 ∈ S unmatched below.

The Ferrari–Martin pairing process is an algorithm that deterministically assigns a
label to each ball in a multiline queue M to obtain a labelled multiline queue L(M).

Definition 3.5 (Ferrari–Martin algorithm). Let M = (B1, . . . , BL) be a multiline queue of
shape (λ, n). Define the labelled multiline queue L(M) by replicating M and sequentially
labelling the balls, as follows. For each row r for r = L, L− 1, . . . , 2, each unlabelled ball in Br is
labelled r. Next, for ` = L, L− 1, . . . , r, let cw(M)(r,`) be the restriction of cw(M) to the balls
labelled ` in Br and the unlabelled balls in Br−1. The balls in row i − 1 that are cylindrically
matched in πc

r−1(cw(M)(r,`)) acquire the label `. To complete the process, all unpaired balls in
row 1 are labelled "1". Such a labelling is shown in Example 3.14.

Definition 3.6. Let M ∈ MLQ(λ, n) with labelling L(M), and let mr,` be the number of
wrapping balls labelled ` when cylindrically matched from row r to row r− 1 in L(M). Then

maj(M) = ∑
2≤r≤L

∑
r≤`≤L

mr,` (`− r + 1).

When we restrict to multiline queues with major index equal to zero we obtain a set
of objects that is in bijection with semistandard tableaux [11].

Definition 3.7. If M satisfies maj(M) = 0, we call it non-wrapping. We will denote the set of
non-wrapping multiline queues of shape (λ, n) by MLQ0(λ, n).
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We have an expression for Schur functions in terms of multiline queues [4].

sλ(x1, . . . , xn) = ∑
M∈MLQ0(λ,n)

xM. (3.1)

Theorem 3.8. Let M be a multiline queue. Then maj(M) = charge(cw(M)).

Notably, the theorem above eliminates the need for the Ferrari–Martin algorithm to
determine maj(M). Thus we obtain the following formula for Pλ(X; q, 0).

Theorem 3.9. Let λ be a partition. The q-Whittaker polynomial is given by

Pλ(x1, . . . , xn; q, 0) = ∑
M∈MLQ(λ,n)

qmaj(M)xM = ∑
M∈MLQ(λ,n)

qcharge(cw(M))xM (3.2)

where the first equality is due to [4].

3.1 Collapsing on multiline queues via row operators

LetM(2) be the set of binary matrices with finite support, and letM(2)(L, n) be the set
of such matrices with size L× n. For B ∈ M(2)(L, n) and every 1 ≤ j ≤ L, let Bj ⊆ [n]
be the set of column labels of the balls (1’s) of row j of B.

Definition 3.10. Let B ∈ M(2). The dropping operator ei acts on B by dropping the ball
corresponding to the leftmost unmatched above element in π(Bi, Bi+1) from Bi+1 to Bi. Define
e?i (B) to drop all balls that are unmatched above from Bi+1 to Bi. By definition, ei(e?i ) = e?i .

For M ∈ MLQ(λ, n), the operators ei act on M as the classical crystal operators Ei
(the standard lowering crystal operators in type A on words; see [3]) act on cw(M),
so that cw(ei(M)) = Ei(cw(M)). Moreover, the operators e?i , which maximally apply
ei, satisfy the braid relations (i) e?i e?i+1e?i = e?i+1e?i e?i+1, and (ii) e?i e?j = e?j e?i whenever
|i − j| ≥ 2. Applying the operators e?i from bottom to top defines a procedure that we
call collapsing.

Definition 3.11. For a pair of integers a and b with a ≤ b, let [a, b] be the interval of integers.
Define e?[a,b] := e?a e?a+1 · · · e?b , where we use multiplicative notation for composition.

Definition 3.12 (Collapsing). Let L, n > 0. Define the collapsing map onM(2)(L, n) as

ρ : M(2)(L, n) −→
⋃
µ

MLQ0(µ, n)× SSYT(µ′) (3.3)

B 7−→ (ρN(B), ρQ(B)) (3.4)
where ρN(B) is given by ρN(B) = e?[1,L−1]e

?
[1,L−2] · · · e

?
[1,2]e

?
[1,1](B), and ρQ(B) is the semistan-

dard tableaux whose entries i record the difference in row content between e?[1,i]e
?
[1,i−1] · · · e

?
[1,1](B)

and e?[1,i−1]e
?
[1,i−2] · · · e

?
[1,1](B) for 2 ≤ i ≤ L− 1, and between e?[1,1](B) and B for i = 1.
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Restricting the previous map to the set of multiline queues MLQ(λ, n) yields a bi-
jection to pairs of a non-wrapping multiline queue on n columns and a semistandard
tableau of the conjugate shape with content λ′. By taking the preimage of {Bλ′} ×
SSYT(λ, µ) under this map we obtain Theorem 1.2 using the following result.

Theorem 3.13. Let M ∈ MLQ(λ, n) be a multiline queue. Then maj(M) = charge(ρQ(M)).

Example 3.14. We show the collapsing ρ(M) = (N, Q) of a multiline queue M ∈ MLQ(λ, 5)
with λ = (5, 4, 2).

λ = (5,4,2)

maj(M)=4

−→

µ= (4,3,2,2)

maj(N)=0

,
4
3 4
2 2 3 5
1 1 1 2

charge(Q)=4

The step-by-step collapsing of the rows from bottom to top is shown, where the black balls
are collapsed particles and the red/shaded balls are the remaining rows of the starting multiline
queue, along with the recording tableaux corresponding to each step.

∅ 1 1 1 2 2
1 1 1 2

3
2 2 3
1 1 1 2

4
3 4
2 2 3
1 1 1 2

4
3 4
2 2 3 5
1 1 1 2

3.2 Multiline queue RSK

In [9], commuting crystal operators on rows and columns of integer matrices are intro-
duced to recover some classical tableaux operations such as the RSK correspondence and
jeu de taquin. These operators correspond to bi-directional collapsing in the setting of
multiline queues (and in Section 4.2, multiline diagrams).

Definition 3.15. For a matrix B ∈ M(2), define rot(B) to be the rotation of B by 90◦ coun-
terclockwise. We use the same notation to describe the rotation of a multiline queue M by
identifying it with its associated binary matrix. We define e↓i = ei from Definition 3.10 and
e←i = rot−1 ◦ ei ◦ rot as the operator that drops unmatched balls to the left. We also define
ρ↓(B) := ρN(B), and ρ←(B) := rot−1(ρN(rot(B))). See Example 3.18.
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Theorem 3.16. Let P(L, n) be the set of partitions λ with `(λ) ≤ n and `(λ′) ≤ L. The map

mRSK : M(2)(L, n) −→
⋃

λ∈P(L,n)

MLQ0(λ, n)×MLQ0(λ
′, L)

given by mRSK(B) = (ρ↓(B), ρ←(B)) is a bijection.

The following fact can be obtained from [9, Lemma 1.3.7].

Lemma 3.17. Let B ∈ M(2). Then e↓i (e
←
j (B)) = e←j (e↓i (B)) for all i and j. Moreover, if B is a

multiline queue, maj(e←i (B)) = maj(B).

The previous lemma implies that ρ↓(ρ←(B)) = ρ←(ρ↓(B)). Since the major index is
preserved while collapsing to the left when M ∈ MLQ(λ), examining the construction of
the recording tableau ρQ(ρ

←(M)) leads to a simple proof of Theorem 3.13. Furthermore,
Theorem 3.16 gives a bijective proof of the dual Cauchy identity in view of Equation (3.1):
∑λ sλ(X)sλ′(Y) = ∏i,j(1 + xiyj).

Example 3.18. For the matrix B ∈ M(2)(5, 6) in the upper left, we show ρ←(B) in the upper
right, ρ↓(B) in the bottom left, and the double collapsing in the bottom right.

B = = ρ←(B)

ρ↓(B) = = ρ↓(ρ←(B))

ρ←

ρ↓

ρ←

ρ↓

4 Multiline diagrams and cocharge

A multiline diagram is a configuration of balls on a rectangular grid with no restriction on
the number of balls occupying each cell, and such that the number of balls in each row is
weakly decreasing from bottom to top. Multiline diagrams have appeared in the context
of a family of statistical mechanics processes called the totally asymmetric zero range process
(see [2]). They are also in bijection with inversion-free Haglund–Haiman–Loehr tableaux
[7] and in (weight preserving) bijection with queue-inversion-free tableaux [2], which



8 Olya Mandelshtam and Jerónimo Valencia–Porras

give formulas for the modified Hall–Littlewood polynomials. Thus, as a reference to
the plethystic correspondence between the q-Whittaker polynomials Pλ(X; q, 0) and the
modified Hall–Littlewood polynomials H̃λ(X; q, 0), we think of multiline diagrams as
the plethystic analog of multiline queues.

Definition 4.1. Let λ be a partition and n > 0. A multiline diagram of shape (λ, n) is
a configuration of particles on a λ1 × n grid, such that each site can contain any number of
particles, and row j contains λ′j particles (labelled from bottom to top). Denote the set of multiline
diagrams of type (λ, n) by MLD(λ, n).

We represent a multiline diagram by the tuple D = (D1, . . . , Dλ1), where each Di is a
multiset of [n] of size λ′i

Definition 4.2. For a word w = w1 . . . wn, define rev(w) = wn . . . w1. Define the multiline
diagram column reading word as c̃w(D) := rev(cw(D)), where cw(D) is given by the multiline
queue reading order. See Example 4.11 for reference.

Definition 4.3. Let n > 0 and let S, T be multisets in [n]; we shall consider (S, T) as rows 1
and 2 of a multiline diagram. Then π̃(S, T) = π(c̃w(S, T)).

Example 4.4. Let S = {2, 3, 3, 3} and T = {1, 3, 4, 4}, corresponding to the second and third
rows of Example 4.11. Then π̃(S, T) = ( ( ) ) ) ( ) ( where the unmatched parentheses are in red,
corresponding to 1 ∈ T unmatched above and 3 ∈ S unmatched below.

There is a pairing process on multiline diagrams, where particles are paired strictly
to the left, that is analogous to the Ferrari–Martin algorithm and produces a major index
statistic. See Example 4.11.

Definition 4.5 (Major index for multiline diagrams). The major index of a multiline dia-
gram D, denoted by m̃aj(D), is determined by the non-wrapping pairings. Let mr,`(D) be the
number of balls labelled ` that wrap when matched from row r to row r− 1. Then

m̃aj(D) = ∑
r,`
(λ′r −mr,`)(r− `+ 1).

The following lemma implies one of our main results, Theorem 1.1.

Lemma 4.6. Let D = (D1, . . . , DL) be a multiline diagram. Then m̃aj(D) = cocharge(c̃w(D)).

The lemma follows from the same argument as the proof of Theorem 3.8 with an
appropriate modification to the parentheses matching algorithm.



Charge formulas for Macdonald polynomials at t = 0 from multiline queues and diagrams 9

4.1 Collapsing on multiline diagrams via row operators

Definition 4.7. A multiline diagram D ∈ MLD(λ, n) is called non-wrapping if there are no
wrapping pairings between any pair of rows. Denote the set of non-wrapping multiline diagrams
by MLD0(λ, n). Note that these multiline diagrams satisfy m̃aj(D) = n(λ′).

For each non-wrapping multiline diagram D ∈ MLD0(λ, n), there is a unique semis-
tandard tableau in SSYT(λ′, n) whose row contents match those of D, implying that

sλ(x1, . . . , xn) = ∑
D∈MLD0(λ′,n)

xD. (4.1)

Definition 4.8. Let D = (D1, . . . , DL) be a multiline diagram. The dropping operator ẽi acts
on D by moving the rightmost element unmatched above in π̃(Di, Di+1) from Di+1 to Di. The
operator ẽ ?

i is defined as the operator that maximally applies ẽi, as an analog to Definition 3.10.

Let M denote the set of nonnegative matrices with finite support, and let M(L, n)
be the subset of such matrices of on L rows and n columns.

Definition 4.9 (Collapsing). Let L, n be positive integers. In analogy to Definition 3.12, define
collapsing for nonnegative integer matricesM(L, n) by ρ̃(D) = (ρ̃N(D), ρ̃Q(D)):

ρ̃ : M(L, n) −→
⋃
µ

MLD0(µ, n)× SSYT(µ′). (4.2)

Restricting the collapsing map to the set of multiline diagrams MLD(λ, n), ρ̃ yields a
bijection to pairs of non-wrapping multiline diagrams and semistandard tableau of the
conjugate shape with content λ. By taking the preimage of {B̃λ}× SSYT(λ, µ), we obtain
the formula for K̃λµ(q, 0) from Theorem 1.2 using the following theorem.

Theorem 4.10. Let D ∈ MLD(λ, n) be a multiline diagram. Then m̃aj(D) = cocharge(ρ̃Q(D)).

Example 4.11. The collapsing of D = ({1, 1, 4, 4}, {2, 3, 3, 3}, {1, 3, 4, 4}, {2}) ∈ MLD(λ, 4)
with λ = (4, 3, 3, 3) is shown, with integers representing the number of particles at each site.

m̃aj(D)=9
c̃w(D)=1133.2223.24.113

−→

µ = (3, 3, 2, 2, 1, 1, 1)

,
3 3
2 2 3 4
1 1 1 1 2 2 3

cocharge(ρ̃Q(D)) = 9
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4.2 Multiline diagram RSK

Recall that multiline diagram pairing is done strictly to the left. With the appropriate
modification on the construction of the parenthesis word π̃(S, T) we can set the pairing
direction to be strictly to the right to get an equivalent set of objects.

Definition 4.12. Let P ∈ {L, R} (left or right) be a direction of pairing. The set of multiline
diagrams of shape (λ, n) with pairing direction P is denoted by MLDP(λ, n). Similarly, the set
of non-wrapping multiline diagrams with pairing in direction P is denoted by MLD0,P(λ, n).

Definition 4.13. For a pairing direction P ∈ {L, R}, let ẽ↓P,i be the operator acting on matrices
D ∈ M that drops the ball that is furthest in the opposite direction of P among balls in row i + 1
that are unmatched above. Extending the definition of the rotation operators rot on matrices, we
similarly define leftward operators ẽ←P,i = rot−1 ◦ ẽ↓P,i ◦ rot.

The interplay between the pairing and collapsing directions plays an important role
when defining the RSK analog for multiline diagrams. In particular, opposite pairing
directions are required for the following crucial lemma to hold.

Lemma 4.14. Let D ∈ M. Then ẽ↓L,i(ẽ
←
R,j(D)) = ẽ←R,j(ẽ

↓
L,i(D)) for all i and j.

From the definition of ẽ↓P,i and in analogy to the presented collapsing procedures,
collapsing downwards and leftwards with pairing direction left and right can be defined
from these operators and from the rotation operator.

Theorem 4.15. Let L, n be positive integers, and letM(L, n) represent the set of L× n nonneg-
ative integer matrices. The following map, given by dRSK(B) = (ρ̃ ↓L (B), ρ̃←R (B)), is a bijection:

dRSK : M(L, n) −→
⋃

λ : λ1≤min{L,n}
MLD0,L(λ, n)×MLD0,R(λ, L).

This theorem, together with Equation (4.1), gives a bijective proof, using multiline
diagrams, of the Cauchy identity ∑λ sλ(X)sλ(Y) = ∏i,j(1− xiyj)

−1. Moreover, by Theo-
rem 4.15 and the fact that multiline queues and diagrams are in bijection [11], we have
the following formulations of the (q, t)-Kostka polynomials at t = 0 in terms of multiline
queues and multiline diagrams.

Corollary 4.16. The (modified) Kostka polynomial at t = 0 is given by

Kλµ(q, 0) = ∑
M∈MLQ0(λ,µ)

qmaj(rot(M)) and K̃λµ(q, 0) = ∑
D∈MLD0(λ′,µ)

qm̃aj(rot(D)).
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5 Generalized multiline queues

A generalized multiline queue is a multiline queue in which we relax the condition that
the number of balls in each row must be weakly decreasing from bottom to top.

Denote by α+ the partition obtained by rearranging the parts of the composition α.

Definition 5.1. Let λ be a partition, α a composition such that α+ = λ′, and n > `(λ) a positive
integer. A generalized multiline queue of type (α, n) is a tuple of subsets (B1, . . . , BL) such
that Bj ⊆ [n] and |Bj| = αj for 1 ≤ j ≤ L. Denote the set of generalized multiline queues
corresponding to a composition α by GMLQ(α, n). Then MLQ(λ, n) = GMLQ(λ′, n).

In generalized multiline queues we consider the vacancies to be “anti-particles”.
There is a pairing algorithm that generalizes the Ferrari–Martin procedure by sequen-
tially assigning labels to both the particles and the anti-particles in M, by pairing sites
between adjacent rows from top to bottom such that particles are paired weakly to the right,
while anti-particles are paired weakly to the left, and propagating the labels upon pairing.
This is done in a certain priority order: see [1, Section 2] for the details of the procedure.
When applied to a (regular) multiline queue, the labelling of the particles coincides with
that in Definition 3.5.

Definition 5.2. Let M ∈ GMLQ(α, n) with an associated labelling. For 1 ≤ r, ` ≤ L, let mr,`
(resp. ar,`) be the number of particles (resp. anti-particles) of type ` that wrap when pairing to
the right (resp. left) from row r to row r− 1, as shown in Example 5.5. Define

majG(M) = ∑
1≤r,`≤L

mr,`(`− r + 1)− ar,`(`− r + 1).

When M ∈ MLQ(λ, n), every anti-particle at row r is labelled r− 1, so majG(M) = maj(M).

In [1], a row-swapping involution acting on GMLQ is defined to show that certain
statistics and distributions are preserved between the set GMLQ(α) and the set MLQ(λ),
where α+ = λ. We generalize the result of [1] by showing that the distribution of the
majG statistic is also preserved, thus recovering Theorem 1.3, which is a formula for
Pλ(x1, . . . , xn; q, 0) as a sum over GMLQ(α, n) where α+ = λ′.

Definition 5.3. For (B1, . . . , BL) ∈ GMLQ(α, n) and 1 ≤ i ≤ L− 1, define the involution σi
by exchanging cylindrically unmatched particles in πc

i (cw(Bi, Bi+1)) between Bi and Bi+1.

Proposition 5.4. Let α be a composition with α+ = λ′, L := `(α), M ∈ GMLQ(α), and let
1 ≤ i ≤ L− 1. Then ρ↓(M) = ρ↓(σi(M)) and majG(M) = majG(σi(M)).

Since the σi’s satisfy the Moore–Coxeter relations and majG(M) = maj(M) when
M ∈ MLQ(λ), we obtain Theorem 1.3.
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Example 5.5. We show the labelled anti-particles (squares) and particles (circles) corresponding
to M = ({2, 3}, {1, 4}, {2, 3, 4}) ∈ GMLQ((2, 2, 3), 4), σ2(M) = ({2, 3}, {1, 2, 4}, {3, 4})
∈ GMLQ((2, 3, 2), 4) and σ1(σ2(M)) = ({2, 3, 4}, {1, 2}, {3, 4}) ∈ GMLQ((3, 2, 2), 4). We
show the positive and negative contributions to majG for each, totalling majG = 2 in each case.

2-3+1

2-2+1

3-3+1

3-2+1
0 3 3 1

3 2 1 3

2 3 3 3
σ2

0 3 3 1

3 2 1 3

2 2 3 3
2-3+1

2-2+1

3-3+1

3-2+1

σ1

0 3 3 1

3 3 1 1

2 2 3 32-3+1
2-3+1

3-3+1
3-3+1

If M is a multiline queue, maj(M) can be computed directly from charge(cw(M)),
bypassing the Ferrari–Martin procedure. There is a natural question of whether one
could compute charge directly from a GMLQ without the anti-particles, and without
the operators σi. This would allow us to define charge on generalized MLDs to get
analogous results for H̃λ(X; q, 0).
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