Séminaire Lotharingien de Combinatoire **91B** (2024) *Proceedings of the 36th Conference on Formal Power*

An extended generalization of RSK via the combinatorics of type *A* quiver representations

Benjamin Dequêne*

Laboratoire d'Algèbre de Combinatoire et d'Informatique Mathématique (UQAM, Montréal) Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées (UPJV, Amiens)

Abstract. The classical Robinson–Schensted–Knuth correspondence is a bijection from nonnegative integer matrices to pairs of semi-standard Young tableaux. Based on the work of, among others, Burge, Hillman, Grassl, Knuth and Gansner, it is known that a version of this correspondence gives, for any nonzero integer partition *λ*, a bijection from arbitrary fillings of *λ* to reverse plane partitions of shape *λ*, via Greene–Kleitman invariants. By bringing out the combinatorial aspects of our recent results on quiver representations, we construct a family of bijections from fillings of λ to reverse plane partitions of shape *λ* parametrized by a choice of Coxeter element in a suitable symmetric group. We recover the above version of the Robinson–Schensted–Knuth correspondence for a particular choice of Coxeter element depending on *λ*.

Résumé. La correspondance Robinson–Schensted–Knuth classique est une bijection partant des matrices à coefficients des entiers naturels vers les paires de tableaux de Young semi-standards. Basé sur les travaux, entre autres, de Burge, Hillman, Grassl, Knuth et Gansner, on sait qu'une version de cette correspondance donne, pour toute partage d'un entier non nulle *λ*, une bijection allant des remplissages arbitraires de *λ* vers les partitions planes renversées de forme *λ*, via les invariants de Greene–Kleitman. En faisant ressortir les aspects combinatoires de nos récents résultats sur les représentations de carquois, nous construisons une famille de bijections partant des remplissages de *λ* vers les partitions planes renversées de forme *λ*, paramétrées par un choix d'élément de Coxeter dans un groupe symétrique approprié. Nous récupérons la version de la correspondance Robinson–Schensted–Knuth ci-dessus pour un choix particulier d'élément de Coxeter dépendant de *λ*.

Keywords: Quiver representations, Robinson–Schensted–Knuth, Reverse plane partitions.

1 Introduction

The Robinson–Schensted–Knuth (RSK) correspondence is a fundamental bijection from nonnegative integer matrices to pairs of semi-standard Young tableaux of the same shape. For further details, the reader may consult the following references: [\[16\]](#page-11-0), [\[6\]](#page-10-0).

^{*}dequene.benjamin@courrier.uqam.ca

Based on observations of various works of Burge [\[3\]](#page-10-1), Hillman–Grassl [\[12\]](#page-11-1) and Knuth [\[13\]](#page-11-2), Gansner [\[7,](#page-10-2) [9\]](#page-10-3) constructed a generalized version of this correspondence, via Greene– Kleitman invariants, which gives a bijection from arbitrary fillings to reverse plane partitions of the same shape.

Our paper [\[4\]](#page-10-4) studies a representation-theoretic setting in which a version of RSK exists. In the present paper, we present an explicit, combinatorial form of the results from [\[4\]](#page-10-4). Given a fixed nonzero integer partition λ , we present the construction of a family of maps $(RSK_{\lambda,c})_c$ from fillings of λ to reverse plane partitions of shape λ parametrized by *c* a Coxeter element of the symmetric group S*ⁿ* where *n* − 1 is the hook-length of the box $(1, 1)$ in λ . We can state the following result from [\[4\]](#page-10-4).

Theorem 1. *The map* RSK*λ*,*^c gives a one-to-one correspondence from fillings of shape λ to reverse plane partitions of shape λ. Moreover, for any λ, there exists a unique (up to inverse) choice of c such that* RSK*λ*,*^c coincides with the usual* RSK*.*

No knowledge in quiver representation is required to read this abstract, except for [Section 5](#page-9-0) in which we discuss the connection with quiver representations. For more details on this work, we refer the reader to [\[5\]](#page-10-5).

2 Gansner's Ferrers Diagram RSK

In this section, we describe Gansner's correspondence explicitly.

2.1 Some vocabulary

An *integer partition* is a weakly decreasing nonnegative integer sequence $\lambda = (\lambda_n)_{n \in \mathbb{N}^*}$ with finitely many nonzero terms. The *length* of λ is the minimal $k \in \mathbb{N}$ such that $\lambda_{k+1} = 0$. We endow $(N^*)^2$ with the Cartesian product order \trianglelefteq . The *Ferrers diagram of* λ Fer(λ) is the subset of $(N^*)^2$ given by pairs (i, j) such that $i \leq \lambda_j$. We call any map $f: \text{Fer}(\lambda) \longrightarrow \mathbb{N}$ a *filling of shape* λ . Such a filling *f* is a *reverse plane partition* whenever *f* weakly increases with respect to ⊴. We give an example of a reverse plane partition of shape (5, 3, 3, 2) in [Figure 1.](#page-1-0)

Figure 1: A reverse plane partitions of shape $\lambda = (5, 3, 3, 2)$.

2.2 Greene–Kleitman invariants

Let $G = (G_0, G_1)$ be a finite directed graph, where G_0 is the set of vertices of G , and $G_1 \subset (G_0)^2$ is the set of arrows of *G*. Assume that *G* has no multi-arrows.

We see a path γ in *G* as a finite sequence of vertices (v_0, \ldots, v_k) such that $(v_i, v_{i+1}) \in$ *G*₁. Denote by $s(\gamma) = v_0$ its source and by $t(\gamma) = v_k$ its target. Write Supp $(\gamma) =$ $\{v_0, \ldots, v_k\}$ to denote the support of γ . For $\ell \geq 1$, we extend the notion of support to ℓ -tuples of paths $\gamma = (\gamma_1, ..., \gamma_\ell)$ as $\text{Supp}(\gamma) = \bigcup_{i=1}^\ell \text{Supp}(\gamma_i)$. For $\ell \geq 1$, write $\Pi_\ell(G)$ the set of ℓ-tuples of paths in *G*.

From now on, assume that *G* is acyclic, meaning there is no nontrivial path *γ* in *G* such that $s(\gamma) = t(\gamma)$. An *antichain* of *G* is any subset of vertices $\{w_1, \ldots, w_r\} \subset G_0$ such that there is no path γ in *G* with $s(\gamma) = w_i$ and $t(\gamma) = w_j$ for all $1 \leq i, j \leq r$ with $i \neq j$.

A *filling* of *G* is a map $f: G_0 \longrightarrow \mathbb{N}$. We assign to any ℓ -tuple of paths γ of *G* a *f -weight* defined by

$$
\mathrm{wt}_f(\underline{\gamma}) = \sum_{v \in \mathrm{Supp}(\underline{\gamma})} f(v).
$$

Set $M_0^G(f) = 0$, and for all integers $\ell \geq 1$, $M_{\ell}^G(f) = \max_{\gamma \in \Pi_{\ell}(G)} \text{wt}_f(\gamma)$. We define the *Greene–Kleitman invariant* of *f* in *G* as

$$
GK_G(f) = \left(M_{\ell}^G(f) - M_{\ell-1}^G(f)\right)_{\ell \geq 1}.
$$

See [Figure 2](#page-3-0) for an explicit computation example.

Proposition 2 (Greene–Kleitman [\[11\]](#page-11-3))**.** *Let G be a finite direct acyclic graph and f be a filling of G. The integer sequence* GK*G*(*f*) *is an integer partition of length the maximal cardinality of an antichain in G.*

2.3 Ferrers diagram RSK

Throughout this section, we highlight Gansner's generalized version of the RSK correspondence, which gives, for any nonzero integer partition λ , a bijection from fillings of shape λ to reverse plane partitions of shape λ .

Fix a nonzero integer partition λ . Let G_{λ} be the oriented acyclic graph such that:

- its vertices are the elements of $\text{Fer}(\lambda)$;
- its arrows are given by:
	- $(i, j) \longrightarrow (i + 1, j)$ whenever $(i, j), (i + 1, j) \in \text{Fer}(\lambda);$
	- $(i, j) \longrightarrow (i, j + 1)$ whenever $(i, j), (i, j + 1) \in \text{Fer}(\lambda)$.

4 *Benjamin Dequêne*

Figure 2: An example of the computation of GK*G*.

For all $m \in \mathbb{Z}$, write $D_m(\lambda) = \{(i, j) \in \text{Fer}(\lambda) \mid i - j + \lambda_1 = m\}$ for the *m*th diagonal of *λ*. Note that $D_m(\lambda) \neq \emptyset$ for $1 \leq m \leq h_\lambda(1, 1)$, where $h_\lambda(1, 1) = #\{(i, j) \in \text{Fer}(\lambda) \mid i =$ 1 or $j = 1$ } denotes the *hook length of the box* $(1, 1)$ *in* λ .

For each value $1 \leq m \leq h_\lambda(1,1)$, consider (u_m, v_m) the maximal element of $D_m(\lambda)$. Write $G_{\lambda}(m)$ for the full subgraph of G_{λ} given by the poset ideal generated by (u_m, v_m) . Note that $G_{\lambda}(m)$ admits only one source $(1, 1)$, and only one sink (u_m, v_m) .

We define $g = \text{RSK}_{\lambda}(f)$ to be the filling of shape λ defined by

$$
\forall m \in \{1,\ldots,h_\lambda(1,1)\},\ \forall (i,j) \in D_m(\lambda),\quad g(i,j) = \mathrm{GK}_{G_\lambda(m)}(f)_{u_m-i+1}.
$$

See [Figure 3](#page-4-0) for an explicit calculation of $RSK_\lambda(f)$ for a given filling of $\lambda = (5, 3, 3, 2)$.

Theorem 3 (Gansner [\[9\]](#page-10-3))**.** *Let λ be a nonzero integer partition. The map* RSK*^λ is a bijection from fillings of shape λ to reverse plane partitions of shape λ.*

Remark. If λ is a rectangle, we can recover the classical RSK. See [\[11\]](#page-11-3) and [\[10,](#page-11-4) Section 6] for more details.

Moreover, a parallel can be made with Britz and Fomin's version of the RSK algo-rithm [\[2\]](#page-10-6), where we compute sequences of integer partitions for an $n \times n$ nonnegative integer matrix as growth diagrams. A generalized version of RSK was also exploited by Krattenthaler [\[14\]](#page-11-5) on polyominos. From a given filling f of shape λ , the integer partitions we can read on diagonals $D_m(\lambda)$ of $RSK_\lambda(f)$ correspond precisely to the results

Figure 3: Explicit calculations of $RSK_{\lambda}(f)$ for a given filling *f* of shape $\lambda = (5, 3, 3, 2)$. For $1 \le m \le 8$, each framed subgraph corresponds to the subgraph $G_{\lambda}(m)$, and each filled diagonal colored in red corresponds to $GK_{G_\lambda(m)}(f)$.

obtained at the end of each line by using the Krattenthaler growth diagram algorithm

version.

3 Some tools

In this section, we give the definition of some combinatorial objects that will be useful to present our generalized version of Gansner's RSK correspondence.

3.1 Interval bipartitions

An *interval bipartition* is a pair $(B, E) \in \mathcal{P}(N^*)^2$ such that $\{B, E\}$ is a set partition of $\{i, \ldots, j\}$ for some $1 \leq i \leq j$. Call it *elementary* whenever $1 \in \mathbf{B}$ and max(**B**∪**E**) ∈ **E**.

Fix (**B**, **E**) as an interval bipartition. Write **B** = { $b_1 < b_2 < ... < b_p$ }. We define the integer partition $\lambda(\mathbf{B}, \mathbf{E})$ by $\lambda(\mathbf{B}, \mathbf{E})_i = \#\{e \in \mathbf{E} \mid b_i < e\}$. If we also write $\mathbf{E} =$ ${e_1 < \ldots < e_q}$, we can also describe $\lambda(\mathbf{B}, \mathbf{E})$ by its Ferrers diagram: we have $(i, j) \in$ Fer(λ (**B**, **E**)) whenever $b_i < e_{q-j+1}$. It allows us to label the *i*th row of Fer(λ (**B**, **E**)) by b_i and the *j*th row by *eq*−*j*+¹ . See [Figure 4](#page-5-0) for an example of such an object.

Figure 4: The (labelled) integer partition λ (**B**, **E**) with **B** = {1, 2, 4, 8} and **E** = $\{3, 5, 6, 7, 9\}.$

Proposition 4. *For any integer partition λ, there exists an interval bipartition* (**B**, **E**) *such that* $\lambda(\mathbf{B}, \mathbf{E}) = \lambda$. Moreover, if λ is a nonzero integer partition, there exists a unique elementary *interval bipartition satisfying this property.*

3.2 (Type *A***) Coxeter elements**

For any $n \ge 2$, let \mathfrak{S}_n be the symmetric group on *n* letters. For $1 \le i \le j \le n$, write (i, j) for the transposition exchanging *i* and *j*. For $1 \leq i \leq n$, let s_i be the adjacent transposition $(i, i + 1)$. Let *S* be the set of the adjacent transpositions.

For any $w \in \mathfrak{S}_n$, an expression of w is a way to write w as a product of adjacent transpositions in *S*. The length $\ell(w)$ of w is the minimal number of adjacent transpositions in *S* needed to express *w*. Whenever, for some $1 \leq i \leq n$, $\ell(s_i w) < \ell(w)$, we say that s_i is initial in *w*. Similarly, we call s_i final in *w* whenever $\ell(ws_i) < \ell(w)$.

A *Coxeter element* (of \mathfrak{S}_n) is an element $c \in \mathfrak{S}_n$ which can be written as a product of all the adjacent transpositions, in some order, where each of them appears exactly once. For example, $c = s_2 s_1 s_3 s_6 s_5 s_4 s_8 s_7 = (1, 3, 4, 7, 9, 8, 6, 5, 2)$ is a Coxeter element of \mathfrak{S}_9 .

Lemma 5. An element $c \in \mathfrak{S}_n$ *is a Coxeter element if and only if c is a long cycle which can be written as follows*

 $c = (c_1, c_2, \ldots, c_m, c_{m+1}, \ldots, c_n)$

where $c_1 = 1 < c_2 < \ldots < c_m = n > c_{m+1} > \ldots > c_n > c_1 = 1$.

3.3 Auslander–Reiten quivers

Let $c \in \mathfrak{S}_n$ be a Coxeter element. The *Auslander–Reiten quiver of c*, denoted AR(*c*), is the oriented graph satisfying the following conditions:

- The vertices of $AR(c)$ are the transpositions (i, j) , with $i < j$, in \mathfrak{S}_n ;
- The arrows of $AR(c)$ are given, for all $i < j$, by
	- $(i, j) \longrightarrow (i, c(j))$ whenever $i < c(j)$;
	- $(i, j) \longrightarrow (c(i), j)$ whenever $c(i) < j$.

To construct recursively such a graph, we can first find the initial adjacent transpositions of *c*, which are all the sources, and step by step, using the second rule, construct the arrows and the vertices of $AR(c)$ until we reach all the transpositions of \mathfrak{S}_n . Note that the sinks of AR(*c*) are given by the final adjacent transpositions of *c*. See [Figure 5](#page-7-0) for an explicit example.

Remark. The Auslander–Reiten quiver of a Coxeter element has a representation-theoretic meaning: briefly it corresponds to the oriented graph whose vertices are the indecomposable representations of a certain type *A* quiver, and whose arrows are the irreducible morphisms between them.

To see further details about Auslander-Reiten quivers of type *A* quivers in particular, we refer the reader to [\[15,](#page-11-6) Section 3.1]. To learn more about quiver representation theory, and for more in-depth knowledge on the notion of Auslander–Reiten quivers, we invite the reader to look at [\[1\]](#page-10-7).

4 An extended generalized Ferrers diagram RSK

In the following, we describe a generalized version of RSK using (type *A*) Coxeter elements, and state the main result.

Figure 5: The Auslander–Reiten quiver of $c = (1, 3, 4, 7, 9, 8, 6, 5, 2) = s_2s_1s_3s_6s_5s_4s_8s_7$.

Let λ be a nonzero integer partition and consider (**B**, **E**) the unique elementary interval bipartition such that $\lambda(\mathbf{B}, \mathbf{E}) = \lambda$. Set $n = h_{\lambda}(1, 1) + 1$. Let $c \in \mathfrak{S}_n$ and consider AR(*c*) its Auslander–Reiten quiver.

Recall that if $\mathbf{B} = \{b_1 < \ldots < b_p\}$ and $\mathbf{E} = \{e_1 < \ldots < e_q\}$, then $(i, j) \in \text{Fer}(\lambda)$ if and only if $b_i < e_{q-j+1}$. It allows us to label each box (i, j) by a transposition $(b_i, e_{q-j+1}) ∈ ℂ_n$. Thus it allows us to construct a one-to-one correspondence from fillings of shape *λ* to fillings of the Auslander–Reiten quiver $AR(c)$ which are supported on vertices $(b, e) \in$ **B** \times **E** such that $b < e$. Explicitly, for any filling f of shape λ , we define \overline{f} be the filling of AR(*c*) defined by $f(b_i, e_{q-j+1}) = f(i, j)$ whenever $(i, j) \in \text{Fer}(\lambda)$ and $f(x, y) = 0$ otherwise.

As in [Section 2,](#page-1-1) for *m* ∈ {1, . . . , *n* − 1}, let (*um*, *vm*) be the maximal pair with respect of \leq in $D_m(\lambda)$. The boxes in the ideal generated by (u_m, v_m) correspond to pairs (i, j) such that $b_i \leq m < e_{q-j+1}$, and therefore (u_m, v_m) is the maximal pair satisfying this condition.

For each $m \in \{1, \ldots, n-1\}$, we consider the subgraph $AR_m(c)$ of $AR(c)$ where the vertices are the transpositions (i, j) with $i \leq m < j$. This subgraph has only one source and only one sink.

We define $g = \text{RSK}_{\lambda,c}(f)$ to be the fillings of shape λ defined for $m \in \{1, \dots, n-1\}$ by

$$
\forall (i,j) \in D_m(\lambda), \quad g(i,j) = \mathrm{GK}_{\mathrm{AR}_m(c)}(f)_{u_m - i + 1}.
$$

See [Figure 6](#page-8-0) for an explicit example.

Our main result is the following.

Figure 6: Explicit calculation of $RSK_{\lambda,c}(f)$ for the boxes in $D_5(\lambda)$ from a filling of $\lambda = (5, 3, 3, 2)$, with $c = (1, 3, 4, 7, 9, 8, 6, 5, 2)$

Theorem 6. Let λ be a nonzero integer partition. Consider $n = h_{\lambda}(1, 1) + 1$. Let $c \in \mathfrak{S}_n$ be a *Coxeter element. The map* RSK*λ*,*^c gives a one-to-one correspondence from fillings of shape λ to reverse plane partitions of shape λ.*

The following result shows that we extended the RSK correspondence.

Proposition 7. Let λ be a nonzero integer partition. Consider $n = h_{\lambda}(1, 1) + 1$ and (\mathbf{B}, \mathbf{E}) *be the only elementary interval bipartition such that* $\lambda(\mathbf{B}, \mathbf{E}) = \lambda$ *. Let* $c \in \mathfrak{S}_n$ *be the Coxeter element such that*

- *for* $i \in \{1, \ldots, n-1\}$, $(i, i+1)$ *is final in c if and only if* $i \in \mathbf{B}$ *and* $i+1 \in \mathbf{E}$ *;*
- *for* $i \in \{2, \ldots, n-2\}$, $(i, i+1)$ *is initial in c if and only if* $i \in E$ *and* $i+1 \in B$ *.*

Then RSK*λ*,*^c* = RSK*λ. Moreover, c and c*−¹ *are the unique Coxeter element of* S*ⁿ satisfying this property.*

Remark. Gansner's RSK for a fixed integer partition *λ* admits a local description in terms of toggles on G_λ . Based on the proof given in [\[4\]](#page-10-4), for $c = (1, 2, \ldots, n)$, we can give a local description in terms of toggles on AR(*c*). However, more works need to be done for a general choice of *c*, as this local description does not extend naturally.

5 Some words about quiver representation theory

This section aims to give a dictionary to link the result from [\[4\]](#page-10-4) with [Theorem 6.](#page-7-1)

Fix *Q* = (*Q*0, *Q*1) a type *A* quiver. A *finite dimensional representation E of Q over* **C** is an assignment of a finite dimensional **C**-vector space *E^q* to each vertex *q* of *Q*, and an assignment of a C-linear transformation $E_\alpha : E_i \longrightarrow E_j$ to each arrow $\alpha : i \rightarrow j$ of Q . For two representations *E* and *F*, a morphism ϕ : *E* \longrightarrow *F* is the data of a C-linear map ϕ_q for each vertex *q* of *Q* such that for any arrow $\alpha : i \to j$, $\phi_j E_\alpha = F_\alpha \phi_i$. Denote by $\text{rep}_K(Q)$ the category consisting of the representations of *Q*.

Any representation *E* of *Q* can be uniquely decomposed into a direct sum of copies of indecomposable representations up to isomorphism. Thus, we can consider the invariant which counts the number of indecomposable summands of each isomorphism class in *E*. Write it Mult(*E*).

In [\[10\]](#page-11-4), A. Garver, R. Patrias and H. Thomas introduce a new invariant of quiver representations, called the generic Jordan form data. For any representation *E* of *Q*, write GenJF(*E*) for the generic Jordan form data of *E*. This data encodes the generic behavior of a nilpotent endomorphism $N = (N_q)_{q \in Q_0}$ of the representation via the size of the Jordan blocks of each *Nq*. In some subcategories, the representation can be recovered from this invariant up to isomorphism.

They also show that the map from Mult to GenJF generalizes the RSK correspondence for type A quivers, using Gansner's previous work [\[8\]](#page-10-8).

As this map is bijective, if we restrict it to the representation in some subcategories \mathscr{C} , one can be interested to get an explicit way to invert it. An algebraic method developed in [\[10\]](#page-11-4) asks the subcategory $\mathscr C$ to satisfy the following property. For any $E \in \mathscr C$, there exists a dense open set Ω (in the Zariski topology) in the set of representations admitting a nilpotent endomorphism with Jordan forms encoded by GenJF(*E*) such that any *F* ∈ Ω is isomorphic to *E*. Such a subcategory is said to be *canonically Jordan recoverable (CJR)*.

More recently, in [\[4\]](#page-10-4), we gave a combinatorial characterization of all the CJR subcategories of representations of *Q*, substancially enlarging the family of subcategories for which GenJF is a complete invariant given by [\[10\]](#page-11-4). The maximal such subcategories can be described thanks to the elementary interval partitions (\mathbf{B}, \mathbf{E}) of $\{1, \ldots, n+1\}$.

The following table compares the representation-theoretic tools used in [\[4\]](#page-10-4) and the combinatorial tools used to describe our generalized RSK.

Acknowledgements

I acknowledge the Institut des Sciences Mathématiques of Canada for its partial funding support. I thank my Ph.D. supervisor, Hugh Thomas, for all our discussions on this subject, his helpful advice, and his support throughout my thesis work, and even more.

References

- [1] I. Assem, D. Simson, and A. Skowroński. *Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory*. Vol. 1. London Mathematical Society Student Texts. Cambridge University Press, 2006. DOI.
- [2] T. Britz and S. Fomin. "Finite Posets and Ferrers Shapes". *Advances in Mathematics* **158**.1 (2001), pp. 86-127. DOI.
- [3] W. H. Burge. "Four Correspondences Between Graphs and Generalized Young Tableaux". *Journal of Combinatorial Theory, Series A* **17** (1972), pp. 12–30.
- [4] B. Dequêne. "Canonically Jordan recoverable categories for modules over the path algebra of *Aⁿ* type quivers". 2023. [arXiv:2308.16626.](https://arxiv.org/abs/2308.16626)
- [5] B. Dequêne. "An extended generalization of RSK correspondence via *A* type quiver representations". 2024. [arXiv:2407.13581.](https://arxiv.org/abs/2407.13581)
- [6] W. Fulton. *Young Tableaux: With Applications to Representation Theory and Geometry*. London Mathematical Society Student Texts. Cambridge University Press, 1996. DOI.
- [7] E. Gansner. "Matrix correspondences of plane partitions". *Pacific Journal of Mathematics* **92** (Feb. 1981), pp. 295–315. DOI.
- [8] E. R. Gansner. "Acyclic Digraphs, Young Tableaux and Nilpotent Matrices". *SIAM Journal on Algebraic Discrete Methods* 2.4 (1981), pp. 429–440. DOI.
- [9] E. R. Gansner. "The Hillman-Grassl correspondence and the enumeration of reverse plane partitions". *Journal of Combinatorial Theory, Series A* **30**.1 (1981), pp. 71–89. **DOI**.
- [10] A. Garver, R. Patrias, and H. Thomas. "Minuscule reverse plane partitions via quiver representations". *Selecta Mathematica* 29.3 (2023), p. 37. DOI.
- [11] C. Greene and D. J. Kleitman. "The structure of Sperner *k*-families". *Journal of Combinatorial Theory, Series A* **20.**1 (1976), pp. 41–68. DOI.
- [12] A. P. Hillman and R. M. Grassl. "Reverse plane partitions and tableau hook numbers". *Journal of Combinatorial Theory, Series A* **21** (1976), pp. 216–221.
- [13] D. E. Knuth. "Permutations, matrices, and generalized Young tableaux." *Pacific J. Math* **34**.3 (1970), pp. 709–727.
- [14] C. Krattenthaler. "Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes". *Advances in Applied Mathematics* **37**.3 (2006). Special Issue in honor of Amitai Regev on his 65th Birthday, pp. 404-431. DOI.
- [15] R. Schiffler. *Quiver Representations by Ralf Schiffler.* 1st ed. 2014. CMS Books in Mathematics, Ouvrages de mathématiques de la SMC. Cham: Springer International Publishing, 2014.
- [16] R. P. Stanley. *Enumerative Combinatorics*. Vol. 2. Cambridge University Press, 1999. [Link.](http://math.mit.edu/~rstan/ec/)