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Lascoux polynomials and Gelfand–Zetlin patterns
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Abstract. We give a new combinatorial description for Lascoux polynomials and for
symmetric Grothendieck polynomials in terms of cellular decompositions of Gelfand–
Zetlin polytopes. This generalizes a similar result on key polynomials by Kiritchenko,
Smirnov, and Timorin.
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1 Introduction

In this paper, we provide a new combinatorial description of Lascoux polynomials in
terms of subdivisions of Gelfand–Zetlin polytopes and certain collections of their faces.
Lascoux polynomials, denoted by L

(β)
α , form a basis for Z[β][x1, x2, . . . ], where α runs

over the set of weak compositions (i.e., infinite sequences of nonnegative integers with
finitely many positive entries). They simultaneously generalize key polynomials and
Grassmannian Grothendieck polynomials; the latter family represents classes of struc-
ture sheaves of Schubert varieties in the connective K-theory of a Grassmannian, as
shown by A. Buch [2]. Both of these families are superfamilies of Schur polynomials.

Lascoux polynomials were defined by A. Lascoux [6] in terms of homogeneous di-
vided difference operators; just as many other families of polynomials defined using
these operators, they have nonnegative coefficients. Although Lascoux polynomials do
not have a description in geometric or representation-theoretic terms, they admit sev-
eral combinatorial descriptions: for example, T. Yu [9] provides a description of Lascoux
polynomials in terms of set-valued tableaux, generalizing simultaneously Buch’s de-
scription of symmetric Grothendieck polynomials in terms of set-valued Young tableaux
and A. Lascoux and M.-P. Schützenberger’s tableau formula for key polynomials ([7]).

Lascoux polynomials L
(β)

α specialized at β = 0 are equal to key polynomials. Sup-
pose w ∈ Sn is a permutation such that α = (α1, . . . , αn) = w(λ) for a suitable partition
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λ = (λ1, . . . , λn). The key polynomials κα = κw,λ are defined as the characters of De-
mazure modules Dw,λ, i.e. B-submodules in the irreducible GL(n)-representation Vλ

with the highest weight λ. The module Dw,λ is defined as the smallest B-submodule
containing the extremal vector wvλ ∈ Vλ, where B ⊂ GL(n) is a fixed Borel sub-
group. A character formula for Demazure modules was stated in [3] and proved by
H. H. Andersen in [1] (the original proof by M. Demazure contained a gap). The first
combinatorial description of these characters was given in [7].

In [5], V. Kiritchenko, E. Smirnov, and V. Timorin provide a formula for key polynomi-
als in terms of integer points in Gelfand–Zetlin polytopes. Let λ be a strictly dominant
weight for GL(n); then it defines an integer convex polytope GZ(λ) ⊂ Rn(n−1)/2, called
the Gelfand–Zetlin polytope. This polytope admits a projection π : GZ(λ)→ wt(λ) into
the weight polytope of Vλ. For each permutation w ∈ Sn, one can construct a collection
of faces Fw,λ of GZ(λ), such that κw,λ = ∑ exp(π(z)), where z ranges over the set of
integer points in Fw,λ (see [5, Corollary 5.2]).

The main purpose of this paper is to generalize this result, constructing a combi-
natorial description of symmetric Grothendieck and Lascoux polynomials in terms of
subdivisions of Gelfand–Zetlin polytopes. For this we construct a cellular decomposi-
tion C of GZ(λ) whose 0-cells coincide with the integer points in GZ(λ). Now, to each
i-dimensional cell Ci we assign a monomial m(Ci) in x1, . . . , xn; for a 0-cell z ∈ GZ(λ)
we have m(Ci) = exp(π(z)). Some cells correspond to the zero monomial. Our main
result is as follows:

L
(β)

w,λ = ∑
Ci∈C∩Fw,λ

βim(Ci),

where the sum is taken over all cells situated inside the collection of faces Fw,λ.
Informally, the Lascoux polynomial L

(β)
w,λ can be viewed as a “weighted Euler charac-

teristic” of the subdivision C ∩ Fw,λ for the collection of faces Fw,λ. Namely, i-dimensional
cells of this subdivision correspond to monomials of degree i + `(w) with coefficient βi

in front of them.
It would be very interesting to establish a bijection of our construction of cells index-

ing monomials in Lascoux polynomials with T. Yu’s description in terms of set-valued
tableaux. In particular, we expect the crystal operations on set-valued tableaux (see [9])
to have a nice description in terms of Gelfand–Zetlin polynomials. However, we do not
address these questions in this paper, leaving them as a subject of subsequent work.

An extended exposition of the results presented in this note, with all proofs and
further discussion, can be found in [8].
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2 Preliminaries

2.1 Lascoux polynomials

To define Lascoux polynomials, we need two families of operators: divided difference op-
erators ∂i, with 1 ≤ i ≤ n− 1, acting on the polynomial ring Z[x1, . . . , xn] and Demazure–
Lascoux operators π

(β)
i , again with 1 ≤ i ≤ n − 1, acting on the ring Z[β, x1, . . . , xn]

equipped with a formal parameter β.

Definition 2.1. The i-th divided difference operator ∂i acts on polynomial f = f (x1, x2, . . .)
in the following way:

∂i( f ) =
f − si f

xi − xi+1
,

where si f is obtained from f by permuting variables xi and xi+1.

We consider operators π
(β)
i , that are modifications of divided differences operators.

Definition 2.2. The ith Demazure–Lascoux operator π
(β)
i acts on f ∈ Z[β][x1, x2, . . .] in the

following way:
π
(β)
i ( f ) = ∂i(xi f + βxixi+1 f ).

Let α = (α1, α2, . . .) be an infinite sequence of nonnegative integers with finitely many
positive entries.

Definition 2.3. The Lascoux polynomial L
(β)

α ∈ Z[β][x1, x2, . . .] associated with α is defined
by:

L
(β)

α =

{
xα if α is a partition: α1 ≥ α2 ≥ . . .

π
(β)
i (L

(β)
siα ) otherwise, where αi < αi+1

Since the Demazure–Lascoux operators satisfy the braid relations, we can associate a
Lascoux polynomial to partition λ and permutation w ∈ Sn in the following way:

L
(β)

w,λ = π
(β)
ik

. . . π
(β)
i2

π
(β)
i1

(xλ),

where (sik , . . . , si1) is a reduced word for permutation w = si1 . . . sik .
It is well-known (cf., for instance, [9]) that specializations of Lascoux polynomials

provide other nice families of polynomials. Namely, taking β = 0 gives key polynomials
κw,λ = L

(β)
w,λ |β=0. If we take the Lascoux polynomial of the longest permutation, we get a

symmetric Grothendieck polynomial G(β)
λ = L

(β)
w0,λ = π

(β)
w0 (xλ). Finally, taking these two

specializations simultaneously gives us Schur polynomials: Sλ = κw0,λ = π
(β)
w0 (xλ)|β=0.
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λ1 − λ2

λ1 − λ2

λ2 − λ3

λ2 − λ3

Figure 1: Gelfand–Zetlin polytope

2.2 Gelfand–Zetlin patterns

Let λ be a partition, i.e. a sequence of nonnegative integers λ1 ≥ λ2 ≥ . . . ≥ λn. Consider
the space Rd, where d = n(n−1)

2 , with coordinates yij indexed by pairs (i, j) of positive
integers satisfying i + j ≤ n. The following triangular tableau

λn λn−1 λn−2 . . . λ1
y11 y12 . . . y1,n−1

y21 . . . y2,n−2
. . . ... ...

yn−1,1

(2.1)

is called a Gelfand–Zetlin pattern, if all yij are integers, and every small triangle in this
tableau satisfies inequalities yi−1,j ≤ yi,j ≤ yi−1,j+1. Here we formally set y0j = λn+1−j.

Gelfand–Zetlin patterns parametrize elements of the Gelfand–Zetlin basis in the GL(n)-
module V(λ) with highest weight λ (see [4]). The number of such patterns for a fixed
top row λ can be computed using Weyl’s dimension formula:

dim V(λ) = ∏
i<j

λi − λj − i + j
j− i

.

2.3 Gelfand–Zetlin polytopes

Gelfand–Zetlin patterns can be viewed as integer points in R
n(n−1)

2 . The convex hull of
these points is called a Gelfand–Zetlin polytope and denoted GZ(λ). It is easy to see that
the set of integer points in GZ(λ) gives us exactly the set of Gelfand–Zetlin patterns.
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Example 2.4. For n = 3, the Gelfand–Zetlin polytope GZ(λ) is defined in R3 by the
following inequalities: λ3 ≤ x ≤ λ2, λ2 ≤ y ≤ λ1, x ≤ z ≤ y. If all λi are distinct, it is
three-dimensional, as shown on Fig. 1.

3 Enhanced Gelfand–Zetlin patterns

3.1 Construction of enhanced Gelfand–Zetlin patterns

In this section we define enhanced Gelfand–Zetlin patterns, i.e. Gelfand–Zetlin patterns
with some additional data, which we will call enhancement. These data are of two kinds:
first, some elements in a pattern may be encircled, and second, some pairs of neighbor
elements in consecutive rows can be joined by an edge.

Informally, the pattern without enhancement stands for the “maximal” point of the
closure of the corresponding cell, i.e. the point with the largest sum of coordinates.

Definition 3.1. A Gelfand–Zetlin pattern with the top row (λn, . . . , λ1) with some entries
marked by circles and with edges between certain neighboring entries is said to be an
enhanced Gelfand–Zetlin patterns, if these elements satisfy the following conditions:

1. The numbers in the first row are encircled.

2. The two entries joined by an edge must be equal, and the bottom entry should be
encircled. The converse does not have to be true: two equal neighboring entries are
not necessarily joined by an edge.

3. If two neighboring entries in a row are joined by edges with an entry above them,
they must also be joined with the entry below them, and vice versa. Pictorially:

a

a a

b

or b

a a

a

⇒ a

a a

a

.

(a dotted circle around an entry means that it may be either encircled or not).

4. If two entries in the topmost row are equal, then the entry below them (which is
equal to both of them) is encircled and connected to both of them by edges.

5. If a < b and the pattern contains the following triangle: a b
a , then there is an edge

between the two a’s. Pictorially:

a b

a

⇒ a b

a
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6. If a < b and the pattern contains the following triangle: a b
b with the bottom entry

encircled, then there is an edge between the two b’s:

a b

b

⇒ a b

b

7. For a triangle a a
a : if the two top entries can be connected by a path of edges, the

bottom entry should be encircled and connected with them.

8. If in a triangle a a
a the bottom entry is encircled, then it should be connected with

at least one of them by an edge.

We denote the set of all enhanced patterns with the first row λ by P(λ).

Example 3.2. The pattern
0 1 2

1 2
2

has eight enhancements.

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

0 1 2

1 2

2

Example 3.3. The pattern
0 1 2

1 1
1

has four enhancements.

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

0 1 2

1 1

1

Note that according to Definition 3.1 (4), the last entry in the second row must be encir-
cled and connected to the middle entry in the first row.

An enhanced pattern can be viewed as a graph (with marked vertices). Consider the
connected components of this graph.

Lemma 3.4. The connected components of an enhanced Gelfand–Zetlin pattern satisfy the fol-
lowing:

1. the entries in the topmost row belong to the same connected component if and only if they
are equal;
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2. each connected component either has a unique highest vertex or contains one or more entries
from the topmost row;

3. all vertices in a connected component, possibly except the highest one, are encircled. In
particular, the number of connected components is not less than the number of distinct λi’s
plus the number of entries without circles.

Proof. This follows immediately from Definition 3.1.

Definition 3.5. The rank rk P of an enhanced pattern P is the number of entries without
circles.

Now introduce the notion of a reduced enhanced pattern. Let us index the positions
that may contain a NE-SW edge by simple reflections from Sn as shown on Fig. 2. On
each NE-SW edge joining yi,j with yi−1,j+1 in our pattern we write the corresponding
simple reflection if the entries joined by this edge are equal to y0,i+j = λn+1−i−j (that
is, are maximal possible on this diagonal). Then take the word formed by the letters on
the edges read from bottom to top, from right to left. If this word is reduced, then the
corresponding pattern P is said to be reduced. Then denote the product by w−. Given a
reduced pattern P, define the permutation corresponding to P as w(P) = w0w−.

s3 s2 s1

s3 s2

s3

Figure 2: Assigning permutation to an enhanced pattern

Example 3.6. All enhanced patterns from Example 3.2 except the seventh one are re-
duced. They correspond to the following permutations: w0 = s1s2s1 = s2s1s2, s2s1, s1s2,
s2s1, s1, s2, Id.

Finally, given a permutation w ∈ W, denote by P(w, λ) the set of all reduced en-
hanced patterns P from P(λ) such that w(P) ≤ w in the Bruhat order. We will use this
set of patterns later in Theorem 4.3.

3.2 Efficient enhanced patterns

Definition 3.7. A enhanced pattern P is said to be inefficient if it contains a triangle of
the form a a

a such that its bottom entry is not connected with the right one by an edge,
and efficient otherwise. The set of all efficient reduced enhanced patterns with the first
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row λ is denoted by P+(λ). Like in the previous subsection, for a fixed w ∈ Sn denote
by P+(w, λ) the set of all efficient reduced enhanced patterns P satisfying w(P) ≤ w in
the Bruhat order.

Proposition 3.8. Every enhanced pattern of rank zero is efficient.

Proof. Take an inefficient enhanced pattern P. This means that it contains a triangle of
the form a a

a such that there is no edge between the bottom and the right entries. Defi-
nition 3.1 implies that these two entries are contained in different connected components,
both marked with the same number a. This means that at least one of these components
contains a vertex without circle, so the rank of P cannot be zero.

Moreover, it turns out that for an efficient enhanced pattern, the edges provide re-
dundant data. Namely, we have the following lemma.

Lemma 3.9. The edges in an efficient enhanced pattern are uniquely determined by positions of
encircled vertices.

Proof. The conditions listed in Definition 3.1 imply that positions of edges are defined
by positions of encircled vertices in all cases except for case (8). In the latter case there
are two possibilities of joining the bottom vertex in the triangle a a

a with one of its
neighbors in the upper row, and only one of them defines an efficient pattern.

For a reduced efficient enhanced GZ-pattern P, we assign to it a monomial xP in the
following way. Let Si(P) be the sum of numbers in the i-th row of the pattern P, with
S0(P) = λ1 + · · ·+ λn, and let Di(P) stand for the number of entries without circles in
the i-th row of P. Denote dn+1−i = dn+1−i(P) = Si−1(P)− Si(P) + Di(P). Then

xP = βrk Pxd1
1 . . . xdn

n .

Example 3.10. All enhanced GZ-patterns patterns in Example 3.2 are efficient; the corre-
sponding monomials are

β3x2
1x2

2x2
3, β2x2

1x2
2x3, β2x2

1x2
2x3, β2x2

1x2x2
3, βx2

1x2
2, βx2

1x2x3, βx2
1x2x3, x2

1x2.

In Example 3.3, the first two patterns are inefficient, and the second two correspond to
βx1x2x2

3 and x1x2x3, respectively.

4 Main results

In this section we give the main results of this paper. We start with constructing a
cellular decomposition for GZ(λ). The cells are indexed by enhanced Gelfand–Zetlin
patterns, and the set of 0-dimensional cells is exactly the set of integer points in GZ(λ).
The second main result is as follows: Lascoux polynomial L

(β)
w,λ is equal to the sum of

monomials corresponding to all efficient reduced enhanced patterns P ∈ P+(λ) such
that w(P) ≤ w in the Bruhat order.
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4.1 Cellular decomposition of Gelfand–Zetlin polytopes

Let GZ(λ) ⊂ R
n(n−1)

2 be a Gelfand–Zetlin polytope. In this section we construct its
cellular decomposition, with cells indexed by enhanced Gelfand–Zetlin patterns.

Construction 4.1. Let P be an enhanced pattern with entries aij, and let y ∈ GZ(λ) be
a point with coordinates yij. To each coordinate yij we assign an equality or a double
inequality as follows:

1. if there is an edge going up from aij to ai−1,j or ai−1,j+1 (or both), then yij = yi−1,j
or yij = yi−1,j+1, respectively;

2. if there are no edges going up from aij, and this entry is encircled, then yij = aij;

3. if there are no edges going up from aij and this entry is not encircled, we impose a
double inequality on yij as follows:

(a) If the entry ai−1,j satisfies aij − ai−1,j ≥ 2, then aij − 1 < yij; otherwise, yi−1,j <
yij;

(b) If ai−1,j+1 is equal to aij, we set yij < yi−1,j+1; otherwise, yij < aij.

Denote the set defined by these equalities and inequalities by ĈP. This is “almost”
the required cell corresponding to P; however, it does not necessarily lie in GZ(λ). To
get an actual cell, take the affine span L of ĈP and intersect ĈP with the relative interior
of GZ(λ) ∩ L in L:

CP = ĈP ∩ (GZ(λ) ∩ L)0.

This set is convex and open in L.
Informally, the relation between an enhanced pattern P and the corresponding set

CP is as follows. For each connected component in P containing only encircled entries
with the same numbers, all the corresponding coordinates of points in CP are equal to
this number. On the other hand, if a connected component has a non-encircled vertex,
the corresponding coordinate can take values in an interval determined by the condition
(4) of Definition 3.1; note that the length of this interval does not exceed i − 1, where
i is the row number. All the remaining coordinates in the same connected component
(corresponding to encircled entries) are equal to this coordinate.

The first main result of this paper states that this is indeed a cellular decomposition
of GZ(λ).

Theorem 4.2. For each P ∈ P(λ), the set CP ⊂ GZ(λ) is homeomorphic to an open ball of
dimension rk P. These balls CP form a cellular decomposition of GZ(λ) whose zero-dimensional

cells coincide with GZ(λ) ∩Z
n(n−1)

2 .
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Moreover, this cellular decomposition is compatible with the Bruhat order on Sn.
Namely, in [5] the authors define a collection of special faces (called dual Kogan faces) of
GZ(λ) for each w ∈ Sn. The following result holds.

Theorem 4.3. Let Fw be the set of dual Kogan faces of GZ(λ) corresponding to w in the sense
of [5, Theorem 4.3]. Then we have

Fw =
⋃

P∈P(w,λ)

CP.

4.2 Lascoux polynomials as sums over efficient enhanced patterns

The following is the second main result of this paper.

Theorem 4.4. Let w ∈ Sn be a permutation and λ be a partition. Then the Lascoux polynomial
L

(β)
w,λ is equal to

L
(β)

w,λ = ∑
P∈P+(w,λ)

xP.

The sum is taken over all efficient reduced enhanced patterns P with w(P) ≤ w. In
the case w = w0 we get an expression for the symmetric Grothendieck polynomial:

Corollary 4.5. Let λ be a partition. Then the symmetric Grothendieck polynomial G(β)
λ (x1, . . . , xn)

is equal to
G(β)

λ (x1, . . . , xn) = L
(β)

w0,λ = ∑
P∈P+(λ)

xP.

The specialization of the equality from Theorem 4.4 gives an expression for key poly-
nomials, obtained in [5]:

Theorem 4.6 ([5, Theorem 5.1]). Let w ∈ Sn be a permutation and λ be a partition. Then the
key polynomial κw,λ is equal to

κw,λ = ∑
P∈P+(w,λ)

xP,

where the sum is taken over efficient reduced enhanced patterns P of rank 0.

Another immediate corollary from Theorem 4.4, to the best of our knowledge, did
not appear in the literature before.

Corollary 4.7. Let λ be a partition and u, w ∈ Sn be permutations such that u ≤ w in the
Bruhat order on Sn. Then the polynomial L

(β)
w,λ −L

(β)
u,λ has nonnegative coefficients.
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4.3 Example: GZ(3, 2, 0)

Let λ = (3, 2, 0). The Gelfand–Zetlin polytope GZ(λ) with its cellular decomposition
defined in Theorem 4.2 is shown in Figure 3 below. All cells except the two purple ones
(one one-dimensional and one two-dimensional) are efficient.

Now let us establish the correspondence between permutations from S3 and combi-
nations of faces of this polytope. The identity permutation id corresponds to the vertex
with the highest sum of coordinates (it is marked by a larger black dot in Figure 3).
The simple transpositions s1 and s2 correspond to the vertical and horizontal edges ad-
jacent to this vertex, respectively. The cellular decompositions of these edges are shown
in Figure 4.

The permutation s1s2 corresponds to the back trapezoid face (shown by blue color
in Figure 5), while the permutation s2s1 corresponds to two faces, a triangular and a
rectangular one, highlighted in green. Now, for each of these sets of faces, we need to
take its cellular decomposition and compute the sum of all the monomials corresponding
to the cells occurring in it; this would give us the Lascoux polynomials. The figures are
self-explanatory; the picture for the symmetric Grothendieck polynomial Ls1s2s1,λ is too
bulky, so we do not provide it here.

Figure 3: Cellular
decomposition of
GZ(3, 2, 0)

x3
1x2

2

Lid,λx

x2
1x3

2

x3
1x2

2

βx3
1x3

2

Ls1,λ

x3
1x2

3

βx3
1x2x2

3

x3
1x2x3

βx3
1x2

2x3

x3
1x2

2

Ls2,λ

Figure 4: Lascoux polynomials for id, s1, and s2
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β2x3
1x2

2x2
3 β2x3

1x3
2x3

β2x2
1x3

2x2
3

x3
1x2

3

βx3
1x2x2

3

x2
1x2x2

3

βx2
1x2

2x2
3

x1x2
2x2

3

βx1x3
2x2

3

x3
2x2

3

x3
1x2x3

βx
31 x

22 x
3

x2
1x2

2x3

βx
21 x

32 x
3

x 1x
3

2
x 3

x3
1x2

2

βx3
1x3

2

x2
1x3

2

βx 1x
3

2
x
2

3

βx
2

1
x
3

2
x 3

βx2
1x2

2x2
3

βx3
1x2

2x3βx3
1x2x2

3

β2x3
1x2

2x2
3 β2x3

1x3
2x3

β2x3
1x2x3

3

x2
1x3

2

βx2
1x3

2x3

x2
1x2

2x3

βx2
1x2

2x2
3

x2
1x2x2

3

βx2
1x2x3

3

x2
1x3

3

x3
1x2

2

βx3
1x2

2x3

x3
1x2x3

βx3
1x2x2

3

x3
1x2

3

βx
3

1
x
2

2
x 3

βx
3

1
x 2x

2
3

βx
3

1
x
3

3 βx3
1x3

2

Figure 5: Lascoux polynomials for s1s2 and s2s1
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