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Abstract. We enumerate several classes of pattern-avoiding rectangulations. We estab-
lish new bijective links with pattern-avoiding permutations, prove that their generating
functions are algebraic, and confirm several conjectures by Merino and Mütze. We also
analyse a new class of rectangulations, called whirls, using a generating tree.
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1 Introduction

A rectangulation of size n is a tiling of a rectangle by n rectangles such that no four
rectangles meet in a point. In the literature, rectangulations are also called floorplans or
rectangular dissections. See Section 2 and [3, 9, 15] for basic definitions and results.

Such structures appear naturally for architectural building plans, integrated circuits
(see Figure 1), and were investigated since the 70s with some graph theory, computational
geometry, and combinatorial optimization point of views [16, 18]. Then, in the 2000s,
rectangulations began to be investigated with more combinatorial approaches [1, 2, 4,
13, 17]: it was shown that some important families of rectangulations are enumerated by
famous integer sequences (e.g., Baxter, Schröder, Catalan numbers) and that they have
strong links with pattern-avoiding permutations (as studied in the seminal article [11]).

Figure 1: (a) VLSI are rectangulations playing an important role for integrated circuits.
(b) The artwork Composition décentralisée, 1924, by Theo van Doesburg (1883–1931).
(c) A book on the geometry of building plans [18]. Its cover is not a rectangulation,
since it contains instances of 4 rectangles meeting in a point.
(d) The minimal solution of Tutte’s "Squaring the square" is a rectangulation [12].
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2 Patterns in rectangulations and summary of our results

Two rectangulations are equivalent (“strongly equivalent” in [3]) if one
can translate (horizontally or vertically) some of their segments (without
meeting an endpoint of any other segment) so that they coincide. In the
drawings on the right, only the first two rectangulations are equivalent.

In this article we deal with patterns in rectangulations. In each drawing,
we highlight an occurrence of the pattern (in green), (in blue),

(in red). A rectangulation contains if there is a (possibly further
partitioned) rectangle (here in gray) such that the segment containing its
left side has an adjacent horizontal segment on the left, and the segment
containing its right side has an adjacent horizontal segment on its right.

We are interested in the enumeration of different natural classes of rectangulations,
where the goal is to count the number of non-equivalent rectangulations of size n. E.g.,

-avoiding rectangulations are enumerated by Baxter numbers [1, 11].
Recently, Arturo Merino and Torsten Mütze tackled the question of the exhaustive

generation of rectangulations avoiding any subset of t , , , , , , , u.
In [15], they present an efficient algorithm to generate such rectangulations1. This led to
a surprising observation: many sequences coincide (at least up to size 12) with integer
sequences which already appeared in the literature, for apparently unrelated problems.

In Theorem 1, we solve all the cases related to rectangulations avoiding .
These are guillotine diagonal rectangulations, that correspond to separable permutations. When
they avoid further patterns among , we obtain the following table2, and
provide generating functions for these cases. (See [6] for the notion of vincular patterns.)

Entry in
[15, Table 3]

Guillotine diagonal
rectangulations avoiding. . .

Separable permu-
tations avoiding. . .

G.f. OEIS

1234 H H alg. A006318
12345 2143 alg. A106228
12347 21354 alg. A363809

123456 2143, 3412 alg. A078482
123457 2143 alg. A033321
123458 2143, 45312 alg. A363810
123478 21354, 45312 rat. A363811

1234567 2143, 3412 alg. A363812
1234578 2143, 45312 rat. A363813
12345678 2143, 3412 rat. A006012

In Section 4, we additionally prove algebraicity of some non-guillotine models, such
as vortex rectangulations (A026029, case 1345678 in [15]) and whirls (A002057).

1Let us here advertise the section dedicated to rectangulations in the nice Combinatorial Object Server,
created by Frank Ruskey, and now handled by Torsten Mütze, Joe Sawada, and Aaron Williams.

2All other cases are equivalent to those presented here via straightforward symmetries.

https://oeis.org/A006318
https://oeis.org/A106228
https://oeis.org/A363809
https://oeis.org/A078482
https://oeis.org/A033321
https://oeis.org/A363810
https://oeis.org/A363811
https://oeis.org/A363812
https://oeis.org/A363813
https://oeis.org/A006012
https://oeis.org/A026029
https://oeis.org/A002057
http://www.combos.org/rect
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3 Guillotine diagonal rectangulations

The patterns P1 “ , P2 “ , P3 “ , P4 “ were considered in some earlier
work (for example [1, 9]) since they characterize some special kinds of rectangulations.

A rectangulation R is guillotine if it is of size 1, or if it has a cut
(a segment whose endpoints lie on opposite sides of R) that splits
it into two guillotine rectangulations. It is well known [1] that a
rectangulation is guillotine if and only if it avoids P1 “ and
P2 “ (these two patterns are called windmills).

A rectangulation R is called diagonal if it avoids P3 “ and P4 “ .
This notion is due to the fact that such a rectangulation can be drawn
so that the NW–SE diagonal of R intersects all the rectangles. At the
same time, diagonal rectangulations are frequently seen as canonical
representatives of rectangulations up to the “weak equivalence” [3, 9].

These two classes have — in different ways — stronger structural properties than the
general case. Therefore we expected that families that avoid these four patterns and any
other subset of patterns of t , , , u will yield noteworthy results. There are
essentially ten different such models, all listed in [15, Table 3]. Amongst these 10 cases,
3 of them can be solved by ad-hoc bijections with trees (see [2, 4]), 2 are conjectured by
Merino and Mütze to lead to algebraic generating functions, and for the remaining 5 no
conjectures were provided. Below we present a unified framework which allows us to
solve these 10 cases (confirming en passant the conjectures of Merino and Mütze). The
main result of this section is Theorem 1, which, in particular, states that all these cases
are in fact algebraic!

Theorem 1. The generating functions for the ten guillotine cases are algebraic.

1. The generating function of rectangulations avoiding is

Fptq “
1 ´ t ´

?
1 ´ 6t ` t2

2
.

2. The generating function of rectangulations avoiding satisfies

tF3
` 2tF2

` p2t ´ 1qF ` t “ 0.

3. The generating function of rectangulations avoiding ) satisfies
t4pt´2q2F4`tpt´2qp4t3´7t2`6t´1qF3`p2t4´t3´2t2`5t´1qF2´p4t3´7t2`6t´1qF`t2“0.

4. The generating function of rectangulations avoiding is

Fptq “
1 ´ 3t ` t2 ´

?
1 ´ 6t ` 7t2 ´ 2t3 ` t4

2t
.
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5. The generating function of rectangulations avoiding is

Fptq “
p1 ´ tqp1 ´ 2tq ´

a

p1 ´ tqp1 ´ 5tq
2tp2 ´ tq

.

6. The generating function of rectangulations avoiding satisfies

t8pt´2q2F4´t3pt2´3t`2qpt5´7t4`4t3´6t2`5t´1qF3´tpt´1qp4t7´22t6`37t5´42t4`53t3´35t2`

10t´1qF2 ´p5t6´16t5`15t4´28t3`23t2´8t`1qpt´1q2F´p2t5´5t4`4t3´10t2`6t´1qpt´1q2“0.

7. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ 16t ` 11t2 ´ 434t3 ` 1045t4 ´ 1590t5 ` 1508t6 ´ 846t7 ` 252t8 ´ 30t9q

p1 ´ 2tq4p1 ´ 3t ` t2q2p1 ´ 4t ` 2t2q
.

8. The generating function of rectangulations avoiding is

Fptq “
1 ´ 3t ´ t2 ` 2t3 ´

?
1 ´ 6t ` 7t2 ` 2t3 ` t4

2t2p2 ´ tq
.

9. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ tqp1 ´ 7t ` 16t2 ´ 11t3 ` 2t4q

p1 ´ 4t ` 2t2qp1 ´ 3t ` t2q2 .

10. The generating function of rectangulations avoiding is

Fptq “
tp1 ´ 2tq

1 ´ 4t ` 2t2 .

We now present separable permutations — a fundamental class which will be used in
the proof of this theorem. This notion was coined in [7].

3.1 Separable permutations and rectangulations avoiding

A permutation π is separable if it is either of size 1 (a singleton), or if it is (recursively) a
direct sum of separable permutations (in this case π is called ascending separable) or a skew
sum of separable permutations (in this case π is called descending separable). We refer
to [6] for these notions. Accordingly, separable permutations are precisely the non-empty
p2413, 3142q-avoiding permutations [7].

The first key step in the proof of Theorem 1 is “translating” (sets of) geometric patterns
into (sets of) permutation patterns. In all 10 cases we obtain a bijection between a subclass
of guillotine rectangulations and a subclass of separable permutations. We provide details
for the first three cases, and just give the key decompositions for the other cases.
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Case 1: Guillotine diagonal rectangulations. They are in bijection with separable
permutations (see, e.g., [1, 4]). Here is a natural recursive bijection: the rectangulation of
size 1 is mapped to the permutation of size 1, and the recursive steps are illustrated in
the following drawing. The left and the middle illustrations describe the transformation
for horizontal and vertical cuts, and the right illustration is an example of size 11.

G1

δ(G1)

G2 Gk
δ(G2)

δ(Gk) G1

G2

Gk

δ(G1)

δ(G2)

δ(Gk)

δ δ δ

The recursive definition of separable permutations translates directly to a system
of equations that binds Aptq, Dptq, and Fptq “ t ` Aptq ` Dptq, the generating func-
tions for ascending, descending, and all separable permutations. Since an ascending
(resp. descending) separable permutation can be seen as a sequence of singletons and
descending (resp. ascending) separable permutations (“blocks”), we obtain the system
!

A “
pt`Dq2

1´pt`Dq
, D “

pt`Aq2

1´pt`Aq

)

. Due to the symmetry Aptq “ Dptq, we have A “
pt`Aq2

1´pt`Aq
.

This yields Fptq “
1´t´

?
1´6t`t2

2 , the generating function of Schröder numbers (A006318).

Case 2: -avoiding guillotine diagonal rectangulations.

Lemma 2. A guillotine diagonal rectangulation R avoids if and only if δpRq avoids 2143.

Proof (sketch). This result follows from the bijec-
tion δ described above. An occurrence of in
R means that there are four rectangles a, b, c, d as
in the drawing, where the segment that separates
a and b from c and d is a cut at some step of the
recursive decomposition of R. It follows that in

a

b

c

d
a b c d

δ

δpRq we have four indices a ă b ă c ă d such that a and b belong to a descending block,
and c and d belong to the next descending block. This yields an occurrence of 2143 in
δpRq. The converse direction is based on similar considerations.

Now we enumerate 2143-avoiding separable permutations. Let π

be such a permutation. If π is ascending, then it either consists of
at least two singletons, or it has one or several descending blocks,
which are separated by at least one singleton (see the drawing).
For descending permutations, the decomposition is identical to
Case 1, since the skew sum of 2143-avoiding ascending blocks
cannot create a new occurrence of 2143. This leads to the system
"

A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tD

1´t
´ 1

˙

D, D “
pt`Aq2

1´pt`Aq

*

. Solving this system (for example by

computer algebra) yields Theorem 1(2).

https://oeis.org/A006318
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Case 3: -avoiding guillotine diagonal rectangulations.
First we show that a guillotine diagonal rectangulation R avoids if and only if

δpRq avoids 21354. As in Lemma 2, the result directly follows from the definition of δ.
Thus, we need to enumerate 21354-avoiding separable permutations. Let π be an

ascending separable permutation. If π has just one descending block, then π avoids
21354 if and only if this block avoids 21354. If π has at least three descending blocks,
then it contains 21354. If π has precisely two descending blocks, then π is 21354-avoiding
if and only if they are adjacent, the first one is 213-avoiding, and the second is 132-
avoiding. An ascending 213-avoiding permutation is either the identity permutation
of size ě 2, or has at least one singleton and precisely one 213-avoiding descending
block (the last one). For descending permutations, an occurrence of 21354 implies its
occurrence in one of its ascending blocks: hence, the decomposition is again identical
to Case 1. Let SA and SD be generating functions for ascending and, respectively,
descending 213-avoiding (and, equivalently, 132-avoiding) permutations. Then, we
have

!

SA “ t2

1´t `
tSD
1´t , SD “

pt`SAq2

1´pt`SAq

)

, and for 21354-avoiding separable permutations
!

A “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

D `
S2

D
p1´tq2 , D “

pt`Aq2

1´pt`Aq

)

. These systems yield Theorem 1(3).

The treatment of other cases in Theorem 1 is similar. We first translate geometric
patterns into permutation patterns, obtaining some subclass of separable permutations.
Then its combinatorial specification yields a system of equations that binds Aptq, the
generating functions for ascending permutations in this class, and Dptq for descending
permutations. In some cases we use an auxiliary family (as in Case 3 above). Here we
omit the details and only list permutation patterns, systems that bind Aptq and Dptq, and,
when relevant, auxiliary families and systems for their generating functions SA and SD.

Case 4: t , u-avoiding guillotine diagonal rectangulations. Such rectangulations
are called one-sided guillotine rectangulations [14]. This family corresponds to p2143, 3412q-
avoiding separable permutations. Due to the symmetry of the model, we have Aptq “ Dptq,

and, therefore, just one equation: A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tA

1´t
´ 1

˙

A.

Case 5: t , u-avoiding guillotine diagonal rectangulations. They correspond to 2143-

avoiding separable permutations, the system is
!

A “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

D, D “
pt`Aq2

1´pt`Aq

)

.

Case 6: t , u-avoiding guillotine diagonal rectangulations. They correspond to
p2143, 45312q-avoiding separable permutations. The auxiliary class is p2143, 231q-avoiding

permutations. The system for the auxiliary class is
"

SA “ t2

1´t `

ˆ

1
1´

tSD
1´t

1
p1´tq2 ´ 1

˙

SD,

SD “ t2

1´t `
tSA
1´t

)

. The system for p2143, 45312q-avoiding separable permutations is
"

A “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tD

1´t
´ 1

˙

D, D “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

A `
S2

A
p1´tq2

*

.
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Case 7: t , , u-avoiding guillotine diagonal rectangulations. They correspond
to p21354, 45312q-avoiding separable permutations. The auxiliary class is p45312, 213q-
avoiding permutations. The system for the auxiliary class is

!

SA “ t2

1´t `
SD
1´t , SD “ t2

1´t`
´

1
p1´tq2 ´ 1

¯

SA `

´

1
1´t

t2

1´2t

¯2
*

. The equation for p21354, 45312q-avoiding separable per-

mutations is A “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

A `
S2

D
p1´tq2 .

Case 8: t , , u-avoiding guillotine diagonal rectangulations. They correspond
to p2143, 3412q-avoiding separable permutations. This leads to the following system
!

A “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

D, D “ t2

1´t `

ˆ

1
p1´tq2

1
1´ tA

1´t
´ 1

˙

A
*

.

Case 9: t , , u-avoiding guillotine diagonal rectangulations. They correspond to
p2143, 45312q-avoiding separable permutations. The auxiliary class is p2143, 231q-avoiding
permutations. The system for the auxiliary class is

!

SA “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

SD, SD “

t2

1´t `
tSA
1´t

)

. The system for p2143, 45312q-avoiding separable permutations is
!

A “ t2

1´t`
´

1
p1´tq2 ´ 1

¯

D, D “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

A `
S2

A
p1´tq2

)

.

Case 10: t , , , u-avoiding guillotine diagonal rectangulations. They corre-
spond to p2143, 3412q-avoiding separable permutations. The equation for this symmetric
model is A “ t2

1´t `

´

1
p1´tq2 ´ 1

¯

A.

4 Vortex rectangulations and whirls

In this section we consider a class harder to enumerate, as it is not a guillotine case:
rectangulations that avoid t u (that is, we forbid all our
patterns except P2 “ ). We denote this class of rectangulations by V , and call them
vortex rectangulations. Our goal is to prove the conjecture of Merino and Mütze [15].

Theorem 3. The generating function of V is Vptq “ tC2ptq
`

1 ` t2C4ptq
˘

, where Cptq “
1´

?
1´4t

2t
is the generating function of Catalan numbers. The enumerating sequence of V is A026029.

A vortex either avoids or contains the pattern P2 “ . Vortices that avoid
constitute Case 10 from Theorem 1. It remains to enumerate vortices with at least one

: such rectangulations will be called whirls. The interior of a windmill is the (possibly
further partitioned) rectangular area bounded by its segments. The entire rectangle being
partitioned by a given rectangulation will be denoted by R.

Lemma 4. If a whirl contains several windmills, then they are all nested. In other words: for any
two windmills, one of them entirely lies in the interior of the other.

https://oeis.org/A026029
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(a) (b) (c)

Figure 2: Three whirls: (a) is peelable, (b) is non-peelable, (c) is simple.

Proof (sketch). Let W be a whirl, and consider some specific occurrence of . Starting
from the right vertical segment of this windmill, we alternately go along the segments
downwards to their lower endpoint and rightwards to their right endpoint, until we reach
the SE corner of R. Similarly we define four alternating paths: see Figure 2 where they are
shown by red.

These alternating paths partition R into five regions: R1, R2, R3, R4, and the interior
of the windmill. In our drawings we colour these regions by blue, red, yellow, green, and
grey. Then every rectangle in R1 and in R3 has its top and bottom sides on the alternating
paths, and every rectangle in R2 and in R4 has its left and right sides on the alternating
paths (see Figure 2). To prove this, for example for R1, one scans this region from the left
to the right: then the assumption that some rectangle in R1 violates this condition leads to
an occurrence of , or . Moreover, for every rectangle in R1 its NW corner has the
shape and its SW corner has the shape . It follows that if another windmill — not in
the interior of the given one — exists, then its segments belong to four different regions
R1, R2, R3, R4. Hence, the given windmill is entirely included in this another one.

A whirl with an empty interior can be drawn so that all the rectangles in R1 and R3
have width 1, and all the rectangles in R2 and R4 have height 1, and such a representation
is unique. To see that, we modify the whirl so that its segments belong to consecutive
vertical and horizontal grid lines. See Figure 2(a) for an example of a whirl which has
two nested windmills (the corners of their interiors are shown by small dots).

A whirl is peelable if it has a rectangle that extends from the top to the bottom or from
the left to the right side of R. From every peelable whirl it is possible to obtain a unique
non-peelable whirl by peeling (i.e., successively deleting such rectangles). Figure 2(b)
shows a non-peelable whirl which is obtained from 2(a) by peeling.

Finally, a simple whirl is a non-peelable whirl with precisely one windmill whose
interior is not further partitioned. See Figure 2(c) for an example of a simple whirl.

4.1 Enumeration of simple whirls

In this section we prove the following remarkable result: simple whirls are enumerated
by t5C4ptq. Our proof combines geometric-structural considerations, the generating tree
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method [5], and solving a functional equation with catalytic variables. It would be
interesting to find an independent bijective proof.

4.1.1 Generating tree for simple whirls

Denote by S1, S2, S3, S4 the eastern, southern, western, northern sides of R. A signature of a
simple whirl is the quadruple ps1, s2, s3, s4q, where si is the number of rectangles from Ri´1
that touch Si. (The addition of indices of Ri’s and Si’s is mod 4.) For example, the
signature of the simple whirl from Figure 2(c) is p3, 2, 1, 2q.

Given a simple whirl W, it has exactly four corner rectangles touching one corner of W.
Since W avoids and is not peelable, the corner rectangle touching the sides Si and Si`1
has the same colour as the region Ri. Then, as illustrated in the figure at the bottom of this
page, from a simple whirl W of size n, we can construct a simple whirl W1 of size n ` 1, by
adding a new corner rectangle to Ri of length larger or equal to the length of the former
corner rectangle (and not touching the side Si´1, to avoid creating a peelable whirl). Some
rectangles of Ri´1 are then extended to reach the modified Si. In W1, si`1 thus increases
by 1, and si can assume all the values from 1 to the (original) si. This generation algorithm
has the drawback that some simple whirls are generated several times.

To generate every simple whirl precisely once, we consider only those possibilities in
which the added corner rectangle of W1 belongs to Ri with the largest possible i (that is,
the largest i such that in W1 we have si`1 ą 1). The new generation algorithm thus starts
from the initial configuration p1, 1, 1, 1q (only the unique simple whirl of size 5 has this
signature), and applies the following rewriting rules

1. pa, b, 1, 1q ÝÑ p1, b ` 1, 1, 1q, 3. p1, b, c, dq ÝÑ p1, b, r1..cs, d ` 1q,
2. p1, b, c, 1q ÝÑ p1, r1..bs, c ` 1, 1q, 4. pa, b, c, dq ÝÑ pa ` 1, b, c, r1..dsq.

The notation r1..bs means that we generate b signatures where this component takes the
values 1, 2, . . . , b. The rules are not mutually exclusive: for example, all four rules can be
applied on quadruples of the form p1, b, 1, 1q. The figure below shows all the descendants
of a simple whirl W with signature p1, 2, 3, 1q on which the second, the third, and the fourth
rules can be applied. The first rule does not apply since the resulting whirl W1 is obtained
from a whirl different from W. New corner rectangles are shown by bold boundary.

(1, 2, 3, 1) (1, 1, 4, 1) (1, 2, 4, 1) (1, 2, 1, 2) (1, 2, 2, 2) (1, 2, 3, 2) (2, 2, 3, 1)

1

2

1

3

Rule 2 Rule 3 Rule 4
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4.1.2 An intriguing functional equation

Theorem 5 (Algebraicity of simple whirls). Let Fpt, x1, x2, x3, x4q be the multivariate gen-
erating function of simple whirls, where z counts their size, and each xi counts the number of
rectangles of colour i touching their border. This generating function is algebraic and given by

Fpt, x1, x2, x3, x4q “ t5 1
2α

ˆ

β ´

b

β2 ´ 4αe2
4

˙

(4.1)

with α :“
ś4

i“1p1 ´ xi ` tx2
i q and β :“ p2e4t2 ´ tp4e4 ´ 3e3 ` 2e2q ` e4 ´ e3 ` e2 ´ e1 ` 2qe4,

where em :“ rtms
ś4

i“1p1 ` txiq is the elementary symmetric polynomial of total degree m.
In particular, the generating function of simple whirls is Fptq “ Fpt, 1, 1, 1, 1q “ t5Cptq4,

where Cptq is the generating function of Catalan numbers.

Proof. The generating tree from Section 4.1.1 translates to the functional equation

Fpt, x1, x2, x3, x4q “ t5x1x2x3x4 ` tx1x2x3x4rx3x4sFpt, 1, x2, x3, x4q

` tx1x2x3x4
rx1x4sFpt, x1, x2, x3, x4q ´ rx1x4sFpt, x1, 1, x3, x4q

x2 ´ 1

` tx1x3x4
rx1sFpt, x1, x2, x3, x4q ´ rx1sFpt, x1, x2, 1, x4q

x3 ´ 1

` tx1x4
Fpt, x1, x2, x3, x4q ´ Fpt, x1, x2, x3, 1q

x4 ´ 1
.

(4.2)

Unfortunately, there are currently no generic methods to solve this type of catalytic
functional equation. Luckily, in our case, we were able to solve this equation. First,
recall that the valuation of a series f ptq “

ř

ně0 fntn is the smallest integer n such that
fn ‰ 0 (and valp f ptqq “ `8 if f ptq “ 0). Thus, Equation (4.2) is a contraction in the metric
space of formal power series (equipped with the distance dp f ptq, gptqq “ 2´ valp f ptq´gptqq).
Therefore, the Brouwer fixed-point theorem ensures that there is a unique series F
satisfying Equation (4.2). Now, it can be checked (by substitution) that the closed
form (4.1) satisfies the functional equation (4.2); this proves the theorem.

Let us also explain how we guessed this closed form, as it offers a useful heuristic for
dealing with similar equations. The classical guessing technique using Padé approximants
is too costly, so, instead, we used linear algebra to identify an algebraic equation of degree
2 (in F) and degree 2 (in x1) for Fpt, x1, 11, 31, 71q. It is not obvious from the functional
equation that Fpt, x1, x2, x3, x4q is a symmetric function in the xi’s — yet, this follows from
the fact that any rotation of a whirl is still a whirl. Therefore, its minimal polynomial
should also have symmetric coefficients in the xi’s. Then, when one obtains a monomial
like 532642x1 “ 2x1 ˆ 112 ˆ 31 ˆ 71, it makes sense to rewrite it as 2x1x2

2x3x4, and all the
symmetric versions of this monomial will also appear as coefficients. This leads to the
minimal polynomial αG2 ´ βG ` e4

2 (for G “ F{t5) , and thus to the closed form (4.1).
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4.2 Enumeration of whirls and vortices

We go back from simple whirls to possibly peelable whirls with empty interior by
alternately adding sequences of rectangles on the two horizontal and the two vertical

sides. This yields the generating function Pptq “ t5C4ptq
ˆ

2

1´

ˆ

1
p1´tq2 ´1

˙ ´ 1
˙

. Such whirls

can be transformed into a whirl with ą 1 windmills by substituting the interior by another
whirl (see Figure 2). Thus whirls W with empty interior of the innermost windmill are
enumerated as a sequence of Pptq{t. So we obtain the generating function Wptq “ 1

1´Pptq{t .

Finally, to get the family V of vortices (i.e., the rectangulations that avoid , , ,
, , , ), we replace the innermost windmill by a rectangulation that avoids all

eight patterns (i.e., Case 10 from Theorem 1, counted by Zptq “
tp1´2tq

1´4t`2t2 ). This leads to

Vptq “ WptqZptq “ p1 ´ 2tq
`

1 ´ 4t ` 2t2
` p1 ´ 2tq

?
1 ´ 4t

˘

{p2t3
q “ tC2

ptqp1 ` t2C4
ptqq,

which is exactly the generating function of the sequence A026029, as conjectured in [15,
Table 3, entry 1345678]. This concludes the proof of Theorem 3.

As for any algebraic generating function, the corresponding sequence satisfies a linear
recurrence, pn`4qvn´6pn`2qvn´1`4p2n´1qvn´2“0, from which one can compute vn in
time Op

?
n ln nq and singularity analysis gives vn „ 4n`2{

?
πn´3{2.

5 Conclusion

In this article, we solved several conjectures related to families of pattern-avoiding
rectangulations and permutations. We proved that all our generating functions are N-
algebraic3, and we provide an interesting example of N-algebraic structure (the simple
whirls, counted by t5C4ptq) for which no context-free grammar is known.

Merino and Mütze [15, Table 3] mention a few more families of rectangulations for
which enumeration is still open. Some are in fact tractable with variants of methods
presented here. These results will be included in the full version. It would also be of
interest to consider further forbidden patterns, e.g., to determine which patterns lead to
algebraic, D-finite, D-algebraic generating functions. Is it the case that they all lead to a
Stanley–Wilf-like conjecture: is the number of such rectangulations bounded by An, for
some constant A? In conclusion, rectangulations, while having a very simple definition,
are an inexhaustible source of challenging problems for generating function lovers!

3This is the class of generating functions counting words of length n generated by unambiguous
context-free grammars. It has many noteworthy structural and asymptotic properties [8, 10].

https://oeis.org/A026029
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