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Abstract. We introduce toric promotion as a cyclic analogue of Schützenberger’s promo-
tion operator. Toric promotion acts on the set of labelings of a graph G; it is defined as
the composition of certain toggle operators, listed in a natural cyclic order. We provide
a surprisingly simple description of the orbit structure of toric promotion when G is a
forest. We then consider more general permutoric promotion operators, which are de-
fined as compositions of the same toggle operators, but in permuted orders. When G
is a path graph, we provide a complete description of the orbit structures of all permu-
toric promotion operators, showing that they satisfy the cyclic sieving phenomenon.

Keywords: promotion, cyclic analogue, cyclic sieving, toggle operator

This is an extended abstract for the articles [2] and [4]. The first of these articles—
written by the first author—focuses on toric promotion, while the second article—written
by all three authors—concerns the more general permutoric promotion operators.

1 Introduction

In his study of the Robinson–Schensted–Knuth correspondence, Schützenberger [9, 10]
introduced a beautiful bijective operator called promotion, which acts on the set of lin-
ear extensions of a finite poset. Haiman [6] and Malvenuto–Reutenauer [7] found that
promotion could be defined as a composition of local toggle operators (also called Bender–
Knuth involutions). Promotion is now one of the most extensively studied operators in
the field of dynamical algebraic combinatorics.

Following the approach first considered by Malvenuto and Reutenauer [7], we define
promotion on labelings of graphs instead of linear extensions of posets. Let G = (V, E)
be a graph with n vertices. A labeling of G is a bijection V → Z/nZ. We denote the set
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of labelings of G by ΛG. Given distinct a, b ∈ Z/nZ, let (a b) be the transposition that
swaps a and b. For i ∈ Z/nZ, the toggle operator τi : ΛG → ΛG is defined by

τi(σ) =

{
(i i + 1) ◦ σ if {σ−1(i), σ−1(i + 1)} ̸∈ E;
σ if {σ−1(i), σ−1(i + 1)} ∈ E.

In other words, τi swaps the labels i and i + 1 if those labels are assigned to nonadja-
cent vertices of G, and it does nothing otherwise. Define promotion to be the operator
Pro : ΛG → ΛG given by

Pro = τn−1 · · · τ2τ1.

Here and in the sequel, concatenation of operators represents composition.
A recent trend in algebraic combinatorics aims to find cyclic analogues of more tra-

ditional “linear” objects (see [1, 5] and the references therein). In the same vein, we
introduce a cyclic analogue of promotion called toric promotion; this is the operator
TPro : ΛG → ΛG given by

TPro = τnτn−1 · · · τ2τ1 = τn Pro .

Our first main result reveals that toric promotion has remarkably nice dynamical
properties when G is a forest.

Theorem 1 ([2]). Let G be a forest with n ≥ 2 vertices, and let σ ∈ ΛG be a labeling. The orbit
of toric promotion containing σ has size (n − 1)t/ gcd(t, n), where t is the number of vertices in
the connected component of G containing σ−1(1). In particular, if G is a tree, then every orbit of
TPro : ΛG → ΛG has size n − 1.

Theorem 1 stands in stark contrast to the wild dynamics of promotion on most
forests. For example, even when G is a path graph with 7 vertices, the order of Pro : ΛG →
ΛG is 3224590642072800, whereas all orbits of TPro : ΛG → ΛG have size 6.

We now consider a generalization of toric promotion in which the toggle operators
τ1, . . . , τn can be composed in any order. Let [n] = {1, . . . , n}, and let π : [n] → Z/nZ be
a bijection. The permutoric promotion operator TProπ : ΛG → ΛG is defined by

TProπ = τπ(n) · · · τπ(2)τπ(1).

One would ideally hope to have an extension of Theorem 1 to arbitrary permutoric
promotion operators. Unfortunately, trying to completely describe the orbit structure of
TProπ : ΛG → ΛG for arbitrary forests G and arbitrary permutations π seems to be very
difficult. However, it turns out that we can do this when G is a path. To state our main
result, we need a bit more terminology.

Let [k]q = 1−qk

1−q = 1 + q + · · · + qk−1 and [k]q! = [k]q[k − 1]q · · · [1]q. The q-binomial

coefficient [kr]q is the polynomial
[k]q!

[r]q![k − r]q!
∈ C[q].
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Let X be a finite set, and let f : X → X be an invertible map of order ω (i.e., ω is
the smallest positive integer such that f ω(x) = x for all x ∈ X). Let F(q) ∈ C[q] be
a polynomial in the variable q. Following [8], we say the triple (X, f , F(q)) exhibits the
cyclic sieving phenomenon if for every integer k, the number of elements of X fixed by f k

is F(e2πik/ω).
Although we view the set Z/nZ as a “cyclic” object, it will often be convenient to

identify Z/nZ with the “linear” set [n] and consider the total ordering of its elements
given by 1 < 2 < · · · < n. If π : [n] → Z/nZ is a bijection, then a cyclic descent of π−1

is an element i ∈ Z/nZ such that π−1(i) > π−1(i + 1) (note that n is permitted to be a
cyclic descent).

Let Pathn and Cyclen be the n-vertex path graph and cycle graph, respectively. In
[2], the first author conjectured that for every bijection π : [n] → Z/nZ, the order of
TProπ : ΛPathn → ΛPathn is d(n − d), where d is the number of cyclic descents of π−1.
Our next main theorem not only proves this conjecture, but also determines the entire
orbit structure of TProπ in this case.

Theorem 2 ([4]). Let π : [n] → Z/nZ be a bijection, and let d be the number of cyclic descents
of π−1. The order of the permutoric promotion operator TProπ : ΛPathn → ΛPathn is d(n − d).
Moreover, the following triple exhibits the cyclic sieving phenomenon:(

ΛPathn , TProπ, n(d − 1)!(n − d − 1)![n − d]qd

[
n − 1
d − 1

]
q

)
.

Note that when d = 1, the sieving polynomial in Theorem 2 is n(n − 2)![n − 1]q,
which agrees with Theorem 1.

Remark 1. Theorem 1 determines the orbit structure of toric promotion when G is a
forest. It is still open to understand the dynamics of toric promotion for other graphs,
including cycles. Theorem 2 determines the orbit structure of any permutoric promotion
operator when G is a path. It would be interesting to gain a better understanding of
TProπ when G is another type of tree, even when π−1 has just 2 cyclic descents.

In Section 2, we summarize some of the main ideas that go into the proof of Theo-
rem 2, referring the reader to our full article [4] for the (quite involved) details that we
have omitted. We also briefly summarize a proof of Theorem 1 in Section 3, though we
refer the reader to [2] for a full proof.

2 Dynamics of Permutoric Promotion

As before, fix a bijection π : [n] → Z/nZ, and let d be the number of cyclic descents of
π−1. We assume from now on that G is the path graph Pathn so that TProπ is an operator
on ΛPathn . Given a finite set X and an invertible map f : X → X, we write Orb f for the
set of orbits of f .
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2.1 A Reduction

Let Compd(n) denote the set of compositions of n with d parts (i.e., d-tuples of positive in-
tegers that sum to n). There is a natural rotation operator Rotn,d : Compd(n) → Compd(n)
defined by Rotn,d(a1, a2, . . . , ad) = (a2, . . . , ad, a1). Reiner, Stanton, and White [8] proved

that the triple
(
Compd(n), Rotn,d, [n−1

d−1]q

)
exhibits the cyclic sieving phenomenon. As it

turns out, this result is responsible for the factor of [n−1
d−1]q in the sieving polynomial in

Theorem 2.
Let cyc : ΛPathn → ΛPathn be the cyclic shift operator given by (cyc(σ))(v) = σ(v) + 1.

Let Φn,d : ΛPathn → ΛPathn be the operator

cycd
1

∏
i=n−d

(τiτi+1 · · · τi+d−1) = cycd(τn−dτn−d+1 · · · τn−1) · · · (τ2τ3 · · · τd+1)(τ1τ2 · · · τd).

Using the identity cyc τi = τi+1 cyc together with the fact that τi and τj commute when-
ever j ̸∈ {i − 1, i + 1}, one can show (see [4] for details) that

Φn/ gcd(n,d)
n,d = TProlcm(d,n−d)

π . (2.1)

Using a result about friends-and-strangers graphs from [3], one can prove that every orbit
of Φn,d has size divisible by n/ gcd(n, d) (see [4, Lemma 6.3]). A substantial portion
of our full article is devoted to proving that every orbit of TProπ has size divisible by
lcm(d, n− d) (see [4, Proposition 5.1]). Together with (2.1), these divisibility results allow
us to transfer the problem of describing the orbit structure of TProπ to that of describing
the orbit structure of Φn,d. Thus, we deduce Theorem 2 from the following proposition

and the fact that
(
Compd(n), Rotn,d, [n−1

d−1]q

)
exhibits the cyclic sieving phenomenon.

Proposition 1. There is a map Ω : OrbΦn,d → OrbRotn,d such that |Ω(O)| = d
n |O| for every

O ∈ OrbΦn,d and |Ω−1(Ô)| = d!(n − d)! for every Ô ∈ OrbRotn,d .

2.2 Sliding Stones and Colliding Coins

We now discuss how to construct the map Ω from Proposition 1. Code implement-
ing several of the combinatorial constructions described in this section can be found at
https://cocalc.com/hrthomas/permutoric-promotion/implementation.

For each integer k, let θk = τq+d+1−r, where q and r are the unique integers satisfying
k = qd + r and 1 ≤ r ≤ d. Let

νℓ = θdℓθdℓ−1 · · · θd(ℓ−1)+2θd(ℓ−1)+1.

Observe that θk+dn = θk for all integers k. We have

Φn,d = cycd θd(n−d) · · · θ2θ1 = cycd νn−d · · · ν2ν1.

https://cocalc.com/hrthomas/permutoric-promotion/implementation
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By combining the identity cyc τi = τi+1 cyc with the fact that cycn is the identity map,
one can easily verify that Φm

n,d = θmd(n−d) · · · θ2θ1 = νm(n−d) · · · ν2ν1 whenever m is a
positive multiple of n/ gcd(n, d).

Define a state to be a pair (σ, t) ∈ ΛPathn × Z; we call σ the labeling of the state and
say that the state is at time t. A timeline is a bi-infinite sequence T = (σt, t)t∈Z of states
such that σt = νt(σt−1) for all t ∈ Z. Note that every state belongs to a unique timeline.
For σ ∈ ΛPathn , let Tσ be the unique timeline containing the state (σ, 0).

Let v1, . . . , vn be the vertices of Pathn, listed from left to right. For each ℓ ∈ [n], let
vℓ be a formal symbol associated to vℓ; we will call vℓ a replica. Let s1, . . . , sd be stones
of different colors. We define the stones diagram of a state (σ, t) as follows. Start with
a copy of Cyclen, whose vertices we identify with Z/nZ. Place s1, . . . , sd on the vertices
t + d, . . . , t + 1, respectively. Then place each replica vℓ on the vertex σ(vℓ) of Cyclen; if
this vertex already has a stone sitting on it, then we place the replica on top of the stone.

Suppose we have a timeline T = (σt, t)t∈Z. We want to describe how the stones dia-
grams of the states evolve as we move through the timeline. We will imagine transform-
ing the stones diagram of (σt−1, t − 1) into that of (σt, t) via a sequence of d small steps.
The i-th small step moves si one space clockwise. Now, (θd(t−1)+i · · · θd(t−1)+1)(σt−1)
is obtained from (θd(t−1)+i−1 · · · θd(t−1)+1)(σt−1) by applying the operator θd(t−1)+i =
τt+d−i. If this operator has no effect, then we do not move any of the replicas v1, . . . , vn
during the i-th small step (in this case, the stone si slides from underneath one replica
to underneath a different replica). Otherwise, θd(t−1)+i has the effect of swapping the
labels t + d − i and t + d − i + 1, so we swap the replicas that were sitting on the vertices
t + d − i and t + d − i + 1 (in this case, the stone si carries the replica sitting on it along
with it as it slides). Figure 1 illustrates these small steps for a particular example with
n = 8, d = 3, and t = 1.

Figure 1: The d = 3 small steps transforming the stones diagram of a state at time 0
into the stones diagram of the next state at time 1.

Now consider d coins of different colors such that the set of colors of the coins is the
same as the set of colors of the stones. We define the coins diagram of a state (σ, t) as
follows. Start with a copy of Pathn. For each i ∈ [d], there is a replica vℓ sitting on the
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stone si in the stones diagram of (σ, t); place the coin with the same color as the stone si
on the vertex vℓ (see Figures 2 and 3). Note that the set of vertices of Pathn occupied by
coins is {σ−1(t + 1), . . . , σ−1(t + d)}.

Consider how the coins diagrams evolve as we move through a timeline T = (σt, t)t∈Z.
Let us transform the stones diagram of (σt−1, t− 1) into that of (σt, t) via the d small steps
described above. Let vℓ be the replica sitting on si right before the i-th small step, and
let vℓ′ be the replica sitting on the vertex one step clockwise from si right before the i-th
small step. When si moves in the i-th small step, it will either carry its replica vℓ along
with it or slide from underneath vℓ to underneath vℓ′ ; the latter occurs if and only if
ℓ′ = ℓ± 1. In the former case, no coins move during the i-th small step; in the latter case,
a coin moves from vℓ to the adjacent vertex vℓ′ (which did not have a coin on it right
before this small step).

If we watch the coins diagrams evolve as we move through the timeline, then by
the previous paragraph, the coins will move around on Pathn, but they will never move
through each other. Therefore, it makes sense to name the coins c1, . . . , cd in the order
they appear along the path from left to right, and this naming only depends on the
timeline (not the specific state in the timeline). Define a traffic jam to be a maximal
nonempty collection of coins that occupy a contiguous block of vertices (so the vertices
occupied by the coins in a particular traffic jam induce a connected subgraph of Pathn).
Note that a traffic jam could have just a single coin. We say a traffic jam touches a wall if
it contains a coin that occupies v1 or vn.

At any time, a coin has an idea of the direction in which it expects to move next
(our coins are conscious now). Note that this is not necessarily the direction in which
it will move next because it may change its mind before it moves. The way that a
coin c decides which direction it expects to move is as follows. Suppose c currently
occupies vertex vj, and suppose the coins in the traffic jam containing c occupy the
vertices vr, vr+1, . . . , vs. The coin c looks at the stones diagram and reads ahead in the
clockwise direction, starting from the stone of its color, and it determines whether it first
sees vr−1 or vs+1. If it first sees vr−1, it expects to move left; if it first sees vs+1, it expects
to move right. If r − 1 is not the index of a replica (because r = 1), the first replica that c
sees will be vs+1; similarly, if s + 1 is not the index of a replica (because s = n), the first
replica c sees will be vr−1.

Figure 2 shows several stones diagrams and coins diagrams. In each coins diagram,
an arrow has been placed over each coin to indicate which direction it expects to move.

Lemma 1 ([4]). When a coin moves, it moves in the direction that it expects to move.

The importance of understanding the direction in which a coin expects to move is
that it will enable us to understand collisions. There are two-coins collisions, which involve
two coins that occupy adjacent vertices of Pathn; there are left-wall collisions, which can
occur when c1 occupies v1; and there are right-wall collisions, which can occur when cd
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occupies vn. The prototypical examples of collisions are when two non-adjacent coins
move to become adjacent or when a coin moves to become adjacent to a wall, but other
examples are possible when traffic jams of size greater than 1 are involved.

The precise definition of a two-coins collision that occurs in a traffic jam that does
not touch a wall is as follows. We say coins ci and ci+1 are butting heads if they occupy
adjacent vertices and ci expects to move right while ci+1 expects to move left. We say
ci and ci+1 are involved in a two-coins collision at a small step if they are not butting
heads immediately before the small step and they are butting heads immediately after
the small step. This can happen either because the two coins were not adjacent prior to
the small step, but it can also happen because the two coins were adjacent but one of
them changed its mind about the direction it expected to move.

The definition of a collision has to be slightly modified when considering a traffic
jam that touches a wall; the reader may refer to [4] for details.

We say a collision occurs at time t if it occurs during a small step between times t − 1
and t.

Example 1. Suppose n = 6 and d = 3. Figure 2 shows some stones diagrams and coins
diagrams evolving over time. At each stage, the arrow over a coin points in the direction
that the coin expects to move. Collisions are indicated in the coins diagrams by stars,
and each star is colored to indicate which stone moves in the small step during which
the collision occurs. ♢

Example 2. Suppose n = 6 and d = 3. Figure 3 shows the stones diagrams and coins
diagrams of a particular timeline at times 0, 1, . . . , 17. For brevity, we have not shown the
individual small steps. All of the collisions the occur at time t (i.e., during the small steps
between time t − 1 and time t) are indicated in the coins diagram at time t. The color of
the star can be used to determine the small step during which the collision occurs. One
can check that the states in this timeline are periodic with period 18. ♢

Let CollT be the set of all collisions that take place in the coins diagrams of the states
of the timeline T . We define a directed graph with vertex set CollT by drawing an arrow
from a collision κ to a collision κ′ whenever there is a coin involved in both κ and κ′ and
the collision κ occurs before κ′. Let (CollT ,≤T ) be the transitive closure of this directed
graph. Let HT be the Hasse diagram of (CollT ,≤T ). This Hasse diagram, which is
one of our primary tools, has the shape of a bi-infinite chain link fence (see Figure 4).
Suppose κ1 ⋖T κ2 is an edge in HT . Then κ1 and κ2 are collisions that both use some coin
c; we define the energy of this edge, denoted E(κ1 ⋖T κ2), to be the number of different
vertices that c occupies between these two collisions, including the vertices occupied by c

when the collisions occur. More generally, if κ1 ⋖T κ2 ⋖T · · ·⋖T κr is a saturated chain in
HT , then we write E(κ1 ⋖T κ2 ⋖T · · ·⋖T κr) for the tuple (E(κ1 ⋖T κ2), . . . , E(κr−1 ⋖T κr))
of energies of the edges in the chain.
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Figure 2: The evolution of stones diagrams and coins diagrams over time, with each
individual small step illustrated. At each moment, we have drawn an arrow over each
coin to indicate which direction it expects to move. Each collision is indicated by a star
whose color is the same as that of the stone that moved to cause the collision. Each
labeling is depicted in red numbers below the path.
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Figure 3: The stones diagrams and coins diagrams of the states in a timeline at times
0, 1, . . . , 17. Here, n = 6 and d = 3. The collisions that occur during the small steps
between times t − 1 and t are represented by color-coded stars in the coins diagram at
time t. Each labeling is depicted by the red numbers below the path.
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Figure 4: The Hasse diagram HT , where T is the timeline containing the states whose
stones diagrams and coins diagrams are shown in Figure 3. We have drawn the Hasse
diagram sideways (to save vertical space), so each cover relation κ ⋖T κ′ is drawn with
κ to the left of κ′. Each collision is represented by a star whose color is the same as that
of the stone that moved to cause the collision. Blue numbers indicate the times when
the collisions occur. Edges are labeled by their energies.

A diamond in HT consists of collisions κ1, κ2, κ3, κ4 together with four edges given by
cover relations κ1 ⋖T κ2, κ1 ⋖T κ3, κ2 ⋖T κ4, κ3 ⋖T κ4. A half-diamond in HT consists of
collisions κ′1, κ′2, κ′3, where κ′1 and κ′3 are either both left-wall collisions or both right-wall
collisions, together with two edges given by cover relations κ′1 ⋖T κ′2 and κ′2 ⋖T κ′3. Our
arguments rely crucially on the following lemma.

Lemma 2 ([4]). In any half-diamond in the Hasse diagram HT , the two edges have the same
energy. In any diamond in the Hasse diagram HT , opposite edges have the same energy.

For each collision κ ∈ CollT , let φ(κ) be the collision involving the same set of
coins as κ that occurs next after κ. In other words, if κ is the bottom element of a dia-
mond (respectively, half-diamond), then φ(κ) is the top element of that same diamond
(respectively, half-diamond). We extend this notation to saturated chains in HT (in-
cluding edges) by letting φ(κ1 ⋖T κ2 ⋖T · · ·⋖T κm) = φ(κ1)⋖T φ(κ2)⋖T · · ·⋖T φ(κm).
We define the period of HT to be the smallest positive integer p such that e and φp(e)
have the same energy for every edge e of HT . A transversal of HT is a saturated chain
T = (κ0 ⋖T κ1 ⋖T · · ·⋖T κd) such that κ0 is a left-wall collision, κd is a right-wall col-
lision, and κi involves the stones ci and ci+1 for every i ∈ [d − 1]. In other words, a
transversal is a saturated chain that moves from left to right across HT . We define the
energy composition of T to be the tuple E(T ) = (ε1, . . . , εd), where εi is the energy of the
edge κi−1 ⋖T κi; note that E(T ) ∈ Compd(n).

Lemma 3 ([4]). Let T be a timeline, and let T be a transversal of HT . Then E(φ(T )) =
Rotn,d(E(T )). The period of HT is equal to the size of the orbit of Rotn,d containing E(T ).
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Proof. The second statement follows from the first because, by Lemma 2, the energies of
all edges in HT are determined by the energy composition of a single transversal of HT .
The first statement is also immediate from Lemma 2.

Example 3. Suppose n = 6 and d = 3. Let HT be the Hasse diagram from Figure 4, and
let T = (κ0 ⋖T κ1 ⋖T κ2 ⋖T κ3) be the transversal consisting of the collisions that occur
at times 2, 5, 6, 10. Then E(T ) = (2, 1, 3) ∈ Comp3(6). The period of HT is 3, which
is the size of the Rot6,3-orbit containing (2, 1, 3). The transversal φ(T ) consists of both
the collisions that occur at time 8 along with the collisions at times 13 and 16. We have
E(φ(T )) = (1, 3, 2) = Rot6,3(E(T )). Similarly, E(φ2(T )) = (3, 2, 1) = Rot2

6,3(E(T )). ♢

For k, t ∈ Z, let σ
(k)
t = cyc−k(σt+k). It follows immediately from the definition of a

timeline that the sequence T (k) = (σ
(k)
t , t)t∈Z is also a timeline; that is, νt(σ

(k)
t−1) = σ

(k)
t

for all t ∈ Z. Furthermore, the stones diagram of (σ
(k)
t , t) is obtained from that of

(σt+k, t + k) by moving all stones and replicas k positions counterclockwise. It follows
that the coins diagrams of (σ

(k)
t , t) and (σt+k, t + k) are identical. Therefore, if κ is a

collision in CollT (k) that occurs at time t, then there is a collision ψk(κ) ∈ CollT that
occurs at time t + k. The resulting map ψk : CollT (k) → CollT is an isomorphism from
(CollT (k) ,≤T (k)) to (CollT ,≤T ); furthermore, under this isomorphism, corresponding
edges of the Hasse diagrams HT (k) and HT have the same energy.

Recall that we write Tσ for the unique timeline containing the state (σ, 0). It follows
from Lemma 3 that the energy compositions of the transversals of HTσ

form a single
orbit Ω̃(σ) of Rotn,d. If Tσ = (σt, t)t∈Z (so σ0 = σ), then Φn,d(σ0) = σ

(n−d)
0 , so TΦn,d(σ0) =

T (n−d)
σ . Using the isomorphism ψn−d, we find that Ω̃(σ0) = Ω̃(Φn,d(σ0)). Thus, we

obtain a map
Ω : OrbΦn,d → OrbRotn,d

that sends the Φn,d-orbit containing a labeling µ to Ω̃(µ). In [4], we prove that this map
satisfies the conditions in Proposition 1; we omit the proof here.

3 Toric Promotion on a Forest

Let us briefly mention how the perspective of stones and coins diagrams can be used to
prove Theorem 1. Let G = (V, E) be a forest. Let v1, . . . , vn be the vertices of G, and let
v1, . . . , vn be their replicas. We can represent a labeling σ ∈ ΛG by placing each replica
vk on the vertex σ(vk) of Cyclen. We again place a stone on a vertex of Cyclen to indicate
which toggle we are about to apply, and we put a coin on the vertex of G whose replica
sits on the stone.

Let T be the connected component of G containing σ−1(1); this is the connected
component on which the coin always sits. Let t be the number of vertices of T. As we
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apply the sequence of toggles τ1, τ2, . . . (repeating cyclically), the coin will move around
to all of the vertices in T. One can show that for all vertices vj, vj′ ∈ V such that vj is
in T and j ̸= j′, there is a unique time in the interval [1, t(n − 1)] during which vj sits
on the stone and vj′ sits one space clockwise of the stone. This implies that if vk is a
vertex of degree δ in T, then there are n − δ − 1 times in the interval [1, t(n − 1)] when
vk rides clockwise one space on the stone, and there are t − δ − 1 times in the interval
[1, t(n− 1)] when vk moves counterclockwise one space because the stone slides through
it. On the other hand, if vk is a vertex that is not in T, then vk never rides on the stone,
and there are t times in the interval [1, t(n − 1)] when vk moves counterclockwise one
space because the stone slides through it. It follows that applying t(n − 1) toggles has
the effect of rotating the stone and all of the replicas counterclockwise by t. This implies
the desired result.
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