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Abstract. The Heawood graph is a remarkable graph that played a fundamental role
in the development of the theory of graph colorings on surfaces in the 19th and 20th
centuries. Based on permutahedral tilings, we introduce a generalization of the clas-
sical Heawood graph indexed by a sequence of positive integers. We show that the
resulting generalized Heawood graphs are toroidal graphs, which are dual to higher
dimensional triangulated tori. We also present explicit combinatorial formulas for their
f -vectors and study their automorphism groups.
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1 Introduction

The Heawood graph is a remarkable graph which played a fundamental role in the his-
torical development of the theory of map colorings on surfaces. The four color theorem
is an important result in this area, and perhaps one of the most well known results in
mathematics in general. It states that for any map on a sphere, for example Europe,
there is a coloring of that map with four colors, such that each region (or country) has
one color and any two adjacent regions1 have different colors. This problem has an
interesting history dating back to 1852, but the theorem was only proved more than a
hundred years later in 1976 by Kenneth Appel and Wolfgang Haken [1] after many false
proofs and false counterexamples, and it is the first major result in mathematics that was
proved using a computer.

One famous false proof of the four color theorem was given by Alfred Kempe in
1879 [4]. His proof was announced in Nature [5] and was regarded as an established fact
for more than a decade. In 1890, Percy John Heawood found a gap in Kempe’s proof,
and modified his argument to show that five colors are sufficient to color a map on a
sphere [3]. This became known as the five color theorem.
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Project P 33278. Our work was also supported by the ANR-FWF International Cooperation Project
PAGCAP, funded by the FWF Project I 5788.

1Two regions are adjacent if they share a common boundary curve segment, not just a point.
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In the same paper [3], Heawood investigated coloring of maps on other surfaces.

He showed that Np =

⌊
7+
√

1+48p
2

⌋
colors are sufficient to color a map on the oriented

surface of genus p ≥ 1, where ⌊x⌋ is the largest integer not greater than x. For instance,
it is possible to color any map on a torus (genus p = 1 surface) using seven colors.
Heawood also showed that for p = 1 the number seven is tight, by showing a map of
the torus where seven colors are necessary: a map consisting of seven regions for which
any two regions are adjacent to each other.
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Figure 1: Reproduction of Heawood’s map on a torus from 1890. The inner and outer
circle are identified to produce a torus.

The fact that the number Np is tight for a genus p orientable surface became known
as Heawood’s Conjecture, and was finally proved in 1968 [10]. The case p = 1 (the torus)
is known as the seven color theorem, and has inspired beautiful math-art works.

The Heawood graph is defined as the graph of Heawood’s map: its vertices are the
common points of three pairwise adjacent regions, and the edges are the lines connecting
these points. It is a toroidal and distance-transitive graph on 14 vertices and 21 edges.
Our favorite representation of Heawood’s graph is illustrated in Figure 2a, which is
based on a highly symmetric representation due to Leech in [8, Figure 2]. Note that
here, the graph is the graph induced by the edge graph of the seven hexagons, where
the boundary is identified by gluing the opposite colored lines as illustrated.

The main purpose of this paper is to introduce a generalization Hk of Heawood’s
graph that extends Leech’s representation. Our generalization is indexed by a sequence
k = (k1, . . . , kd+1) ∈ Nd+1 of positive integers for some d ≥ 2, and recovers the classical
Heawood graph when k = (1, 1, 1). As in the classical case, we show that Hk is a toroidal
graph which is naturally embedded in a d-dimensional torus.

When there are three parameters, the generalized Heawood graph H(k1,k2,k3) is a 2-
dimensional generalization of the classical Heawood graph. It is obtained by gluing
together ∏(ki + 1) − ∏ ki regular hexagons: From a “central" hexagon one adds ki
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(c) k = (3, 1, 2)

Figure 2: Examples of the Heawood graph Hk in dimension 2. The opposite sides
(with the same color) are identified, making this graph a toroidal graph. The torus is
the gray hexagon with opposite edges identified.

hexagons pointing in the direction at angle (i − 2)2π
3 for i = 1, 2, 3; then fill the “big

hexagon” that they generate with other small hexagons. Several examples are illustrated
in Figure 2. We also provide three different choices of fundamental domain in Figure 3,
where the torus can be visualized in its more common rectangular presentation.

The case d = 3 gives 3-dimensional generalizations of the Heawood graph. The
smallest choice of parameters is H(1,1,1,1), which is obtained by gluing 15 = 24 − 14

polytopes that are 3-dimensional permutahedra, see Figure 4. The boundary of the result
is identified to itself to form the complex into a 3-dimensional torus (see Section 4.2).

One special object of interest is the dual triangulation of H(1,1,...,1). This triangulation
consists of 2d+1 − 1 vertices and appeared in the work of Wolfgang Kühnel and Gunter
Lassmann from the 1980’s in [6, 7]. Interestingly, it is conjectured to be a minimal
triangulation of the d-dimensional torus [9, Conjecture 21].

A longer version of this extended abstract with more details and proofs is available
at [2].

2 The generalized Heawood graph

The generalized Heawood graph Hk is indexed by a sequence k = (k1, . . . , kd+1) ∈ Nd+1

of positive integers for some d ≥ 2. It is obtained by making some identifications on an
infinite graph G̃d, which is the graph of the d-dimensional permutahedral tiling. Before
explaining this connection, we provide a direct definition in this section.
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Figure 3: Different presentations of the fundamental domain for the Heawood graphs
H(1,1,1), H(2,2,2) and H(3,1,2).

The vertices Vert(G̃d) of the graph G̃d are the elements of the affine subspace

{x = (x1, . . . , xd+1) : x1 + · · ·+ xd+1 = 1 + · · ·+ (d + 1)} ⊂ Rd+1

whose entries are integers containing all the numbers 1, 2, . . . , d + 1 mod (d + 1). For
instance, all permutations of [d + 1] satisfy this property. Two vertices x, y of G̃d are
connected by an edge if y − x = ej − ei for some i ̸= j, where e1, . . . , ed+1 denote the
standard basis vectors in Rd+1. Figure 5 shows a portion of the graph G̃2, where the
blue hexagon is the convex hull of all permutations of [3].

For k = (k1, . . . , kd+1) ∈ Nd+1 we denote by Mk the matrix

Mk =



k1 + 1 −k2
k2 + 1 −k3

. . . . . .
. . . . . .

kd + 1 −kd+1
−k1 kd+1 + 1


(2.1)
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Figure 4: The Heawood graph H(1,1,1,1) is the edge graph of this portion of the 3-
dimensional permutahedral tiling after properly identifying its boundary by transla-
tions (see Section 4.2), making it into a toroidal graph.

and let w1, . . . , wd+1 ∈ Zd+1 be the vectors

wi = (d + 1)ei −
d+1

∑
j=1

ej. (2.2)

Equivalently, wi has ith coordinate equal to d and all other coordinates equal to −1.
Note that if x ∈ Vert(G̃d) then x + wi ∈ Vert(G̃d). Moreover, if x, y ∈ Vert(G̃d) are

connected by an edge then x + wi and y + wi are connected by an edge as well. In other
words, the graph G̃d is invariant under translations by the vectors w1, . . . , wd+1.

We denote by Ld the lattice of integer linear combinations of the wi

Ld := {a1w1 + · · ·+ ad+1wd+1 : a1, . . . , ad+1 ∈ Zd+1}, (2.3)

and by Sk ⊂ Ld the sublattice

Sk :=
{

a1w1 + · · ·+ ad+1wd+1 :
(a1, . . . , ad+1) = (b1, . . . , bd+1)Mk
for some b1, . . . , bd+1 ∈ Z

}
. (2.4)

That is, Sk is the set of linear combinations of w1, . . . , wd+1 whose coefficient vector
(a1, . . . , ad+1) is an integer linear combination of the rows of Mk.

We say that x, y ∈ Vert(G̃d) are k-equivalent, in which case we write x ∼k y, if

y = x + v for some v ∈ Sk. (2.5)

Two edges of G̃d are k-equivalent if one is a translation of the other by a vector in Sk.
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Figure 5: The graph G̃2 of the permutahedral tiling for d = 2. Commas and parenthesis
are omited for simplicity. An overlined number k represent the negative number −k.
For instance, 143 represents the vertex (−1, 4, 3).

Definition 2.1 (Generalized Heawood graph). Let k = (k1, . . . , kd+1) ∈ Nd+1 be a se-
quence of positive integers for some d ≥ 2. The Heawood graph Hk is the graph whose
vertices and edges are the k-equivalent classes of vertices and edges of G̃d, respectively.
In other words, Hk is the graph obtained by identifying vertices and edges of G̃d up to
translation by vectors in Sk.

Example 2.2 (Classical Heawood graph). The classical Heawood graph is obtained when
d = 2 and k = (1, 1, 1), and is illustrated in Figure 6. The lattice L2 consists of integer
linear combinations of the vectors w1 = (2,−1,−1) , w2 = (−1, 2,−1), w3 = (−1,−1, 2).

The associated matrix is

M(1,1,1) =

 2 −1
2 −1

−1 2


The sublattice S(1,1,1) consists of integer linear combinations of the rows of this matrix,
when considered as vectors of coefficients of the wi’s, i.e. integer linear combinations of
the vectors 2w1 − w2, 2w2 − w3, 2w3 − w1.

Figure 6 shows a tiling of the plane, where each fundamental tile consists of seven
hexagons: one hexagon in the center together with its six surrounding hexagons. The
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barycenters of the central hexagons correspond exactly to elements of the sublattice
S(1,1,1). The equivalence relation ∼=k then identifies vertices and edges via translations
that transform one fundamental tile into another.

0

w1

w2

w3

2w1 − w2

2w2 − w3

2w3 − w1

Figure 6: The classical Heawood graph H(1,1,1) as a quotient of the graph of the per-
mutahedral tiling in dimension two.

Our aim is to prove some structural and enumerative properties of the generalized
Heawood graph. Our first result is the following.

Theorem 2.3. The generalized Heawood graph Hk is a vertex-transitive graph with d!Dk many
vertices and (d+1)!

2 Dk many edges, where

Dk = det Mk = ∏(ki + 1)− ∏ ki. (2.6)

Similarly to the classical case, the generalized Heawood graph is the dual graph of a
triangulated torus, for which a simple combinatorial formula for its number of faces can
be explicitly given.
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We denote by {n
k} the Stirling number of the second kind, which counts the number

of ways to partition a set of n objects into k non-empty subsets. These numbers can be
explicitly calculated as {

n
k

}
=

1
k!

k

∑
i=1

(−1)k−i
(

k
i

)
in. (2.7)

Theorem 2.4. The generalized Heawood graph Hk is the dual graph of a triangulation of a
d-dimensional torus with f -vector ( f0, f1, . . . , fd) determined by

fi = i!
{

d + 1
i + 1

}
Dk. (2.8)

In particular,

f0 = Dk, fd = d! Dk, fd−1 =
(d + 1)!

2
Dk. (2.9)

Table 1 shows the factor c(i, d) := fi/Dk for some small values.

d
i

0 1 2 3 4 5

2 1 3 2
3 1 7 12 6
4 1 15 50 60 24
5 1 31 180 390 360 120

Table 1: The factor c(i, d) for some small values of i and d.

Example 2.5 (d = 2). We consider the classical Heawood graph, when k = (1, 1, 1). The
factor D(1,1,1) = 23 − 13 = 7 counts the number of hexagons in Figure 2a. The f -vector
of its dual 2-dimensional triangulated torus is

(1 · 7, 3 · 7, 2 · 7) = (7, 21, 14).

Interpreting this in the graph setting, we have 7 hexagons, 21 edges, and 14 vertices.
When d = 2, with a general k, we have Dk many hexagons, 3Dk many edges, and

2Dk many vertices. Table 2 shows these numbers for all the examples in Figure 2.

3 The affine arrangement and the permutahedral tiling

In order to prove these results, it is useful to build on the connection with permuta-
hedral tilings and their dual affine arrangements. We consider the collection of affine
hyperplanes

Hk
ij = {x ∈ Rd+1 : xj − xi = k}
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k
i

0 1 2

(1, 1, 1) 1 · 7 3 · 7 2 · 7
(2, 2, 2) 1 · 19 3 · 19 2 · 19
(3, 1, 2) 1 · 18 3 · 18 2 · 18

Table 2: Number of hexagons, edges, and vertices for the Heawood graphs in Figure 2.

for 1 ≤ i < j ≤ d + 1 and k ∈ Z.
The affine Coxeter arrangement H̃d of type Ãd is the restriction of this arrangement to

the hyperplane V = {x ∈ Rd+1 : x1 + · · ·+ xd+1 = 0}. For d = 2, this is the arrangement
of affine hyperplanes of a triangular lattice, which is illustrated on the left of Figure 7.

w̃1

w̃2

w̃3

0

w1

w2

w3

Figure 7: A finite piece of the simplicial complex C̃2 of the affine Coxeter arrangement
of type Ã2 (left). A finite piece of its dual tiling of space by permutahedra PT 2 (right).

In general, the arrangement H̃d decomposes the space V into an infinite number of
simplices, giving rise to an infinite simplicial complex that we denote by C̃d. The vertices
of this complex are the elements of

L̃d := {x ∈ V : xj − xi ∈ Z, for all 1 ≤ i < j ≤ d + 1}. (3.1)

This set is a lattice, which is known as the weight lattice of type Ad. It is generated by
integer linear combinations of the vectors w̃1, . . . , w̃d+1 determined by (d + 1)w̃i = wi, as
defined in (2.2). They satisfy the relation

w̃1 + · · ·+ w̃d+1 = 0. (3.2)

For d = 2, the dual of the triangular lattice is the hexagonal lattice, which is illustrated
on the right of Figure 7. This generalizes to higher dimensions, where the dual of the
complex C̃d is a combinatorial structure known as the permutahedral tiling.
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The permutahedron Permd is the convex hull of all permutations of [d + 1]:

Permd = conv {(i1, . . . , id+1) : for {i1, . . . , id+1} = [d + 1]} ⊆ Rd+1. (3.3)

The permutahedral tiling PT d is the infinite tiling of the affine subspace

{x ∈ Rd+1 : x1 + · · ·+ xd+1 = 1 + · · ·+ (d + 1)} (3.4)

whose tiles are translates Permd +v of the permutahedron, for v ∈ Ld. An example for
d = 2 is shown on the right of Figure 7.

4 The triangulated torus and the Heawood complex

4.1 The triangulated torus

We consider the sublattice S̃k ⊂ L̃d defined by

S̃k :=
{

a1w̃1 + · · ·+ ad+1w̃d+1 :
(a1, . . . , ad+1) = (b1, . . . , bd+1)Mk
for some b1, . . . , bd+1 ∈ Z

}
. (4.1)

Its elements are integer linear combinations of the vectors w̃1, . . . , w̃d+1, whose vector of
coefficients is an integer linear combination of the rows of the matrix Mk.

We say that two faces F, F′ ∈ C̃d are k-equivalent, and write F ∼k F′, if F′ = F + v for
some v ∈ S̃k. That is, the face F′ is a translation of F by v ∈ S̃d.

Definition 4.1 (The torus). The quotient complex Tk = C̃d/S̃k is the simplicial complex of
k-equivalent classes of faces of C̃d. In other words, Tk is the simplicial complex of faces
of C̃d up to translation by vectors in S̃k.

We define the fundamental vectors with respect to k as the elements of the set

F̃k =

{
a1w̃1 + · · ·+ ad+1w̃d+1 :

0 ≤ ai ≤ ki ∈ Zd+1

at least one ai = 0

}
. (4.2)

Lemma 4.2. The quotient L̃d/S̃k is finite. Its cardinality is det Mk = ∏(ki + 1)− ∏ ki. The
fundamental vectors in F̃k are element representatives of the classes of L̃d/S̃k.

Proposition 4.3. Tk is a triangulated d-dimensional torus on Dk = det Mk many vertices.

The proof of this proposition is based on a parallelepiped domain of Tk, which we
explain in the longer version of this manuscript [2], see the first illustration in Figure 8.

We also provide a permutahedral domain, see the second illustration in Figure 8,
which leads to the following independent result.

Proposition 4.4. The permutahedron Permd with opposite facets identified by translation is a
topological d-dimensional torus.



Generalized Heawood graphs 11

Figure 8: The parallelepiped domain and the permutahedron domain of T(3,1,2), and
the fundamental tile and the permutahedron domain of HC(3,1,2).

4.2 The Heawood complex

We say that two faces B, B′ of the permutahedral tiling PT d are k-equivalent, and write
B ∼k B′, if B′ = B + v for some v ∈ Sk. That is, the face B′ is a translation of B by a
vector v ∈ Sk.

Definition 4.5 (The Heawood complex). The Heawood complex HCk = PT d/Sk is the
polytopal complex of k-equivalent classes of faces of PT d. That is, HCk is the polytopal
complex of faces of PT d up to translation by vectors in Sk.

We define

Fk =

{
a1w1 + · · ·+ ad+1wd+1 :

0 ≤ ai ≤ ki ∈ Zd+1

at least one ai = 0

}
. (4.3)

Since wi = (d + 1)w̃i, then the vectors in Fk are just the fundamental vectors in F̃k,
dilated by a factor of d + 1. The fundamental tile Pk is the union of the permutahedra of
the form Permd +v with v ∈ Fk. An example of the fundamental tile P(1,1,1), including
six translations of it, is illustrated in Figure 6.

In general, translations of the fundamental tile Pk by elements of the sublattice Sk
tile space. Thus, the Heawood complex is the complex of faces of this fundamental tile,
where the boundary is identified according to how the translations glue together, see
also Figure 4.

Proposition 4.6. The following hold:

1. The Heawood graph Hk is the edge graph of the Heawood complex HCk.

2. The Heawood complex and the torus are dual complexes: HCk
∼= T ∗

k .
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3. The Heawood graph Hk is the dual graph of the torus Tk.

This, together with Proposition 4.3, finishes part of the proof of our main Theo-
rem 2.4. The proof of the remaining enumerative part can be found in the longer version
of this manuscript [2]. There, we also describe the automorphism groups of the trian-
gulated torus Tk and the generalized Heawood graph Hk, and discuss about potential
generalizations including the hyperbolic setting.

In view of Proposition 4.4, we finish with the following open question.

Question 4.7. What is the topology of other families of polytopes with opposite facets
identified by translation?

Natural families that fit into this context are Permutahedra arising from finite Cox-
eter groups, Postnikov’s generalized permutahedra obtained by removing some pairs
of opposite facets of the classical permutahedron, and Zonotopes in general. A small
example of the first and the last is an octagon. Identifying opposite edges of an octagon
leads to a topological 2-hole torus.

References

[1] K. Appel and W. Haken. “The solution of the four-color-map problem”. Sci. Amer. 237.4
(1977), pp. 108–121, 152. doi.

[2] C. Ceballos and J. Doolittle. “Generalized Heawood Graphs and Triangulations of Tori”.
arXiv:2307.11859.

[3] P. J. Heawood. “Map Colour Theorem”. Quant. J. Math. 24 (1890), pp. 332–338.

[4] A. B. Kempe. “On the Geographical Problem of the Four Colours”. Amer. J. Math. 2.3
(1879), pp. 193–200. doi.

[5] A. B. Kempe. “How to Colour a Map with Four Colours”. Nature 21 (1880), 399–400. doi.

[6] W. Kühnel and G. Lassmann. “The rhombidodecahedral tessellation of 3-space and a
particular 15-vertex triangulation of the 3-dimensional torus”. Manuscripta Math 49 (1984),
pp. 61–77. doi.

[7] W. Kühnel and G. Lassmann. “Combinatorial d-tori with a large symmetry group”. Discrete
Comput Geom 3 (1988), pp. 169–176. doi.

[8] J. Leech. “Seven region maps on a torus”. Math. Gaz. 39 (1955), pp. 102–105. doi.

[9] F. H. Lutz. “Triangulated Manifolds with Few Vertices: Combinatorial Manifolds”. arXiv:
math/0506372.

[10] G. Ringel and J. W. T. Youngs. “Solution of the Heawood map-coloring problem”. Proceed-
ings of the National Academy of Sciences 60.2 (1968), pp. 438–445.

https://dx.doi.org/10.1038/scientificamerican1077-108
https://arxiv.org/abs/2307.11859
https://dx.doi.org/10.2307/2369235
https://dx.doi.org/10.1038/021399a0
https://dx.doi.org/10.1007/BF01174871
https://dx.doi.org/10.1007/BF02187905
https://dx.doi.org/10.2307/3609970
https://arxiv.org/abs/math/0506372
https://arxiv.org/abs/math/0506372

	Introduction
	The generalized Heawood graph
	The affine arrangement and the permutahedral tiling
	The triangulated torus and the Heawood complex
	The triangulated torus
	The Heawood complex


