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Abstract. A sandpile torsor algorithm is a map which associates each plane graph
(i.e. planar embedding) with a free transitive action of its sandpile group on its span-
ning trees. We define a notion of consistency, which requires a torsor algorithm to be
preserved with respect to a certain class of contractions and deletions. We then show
that the rotor-routing sandpile torsor algorithm (which is equivalent to the Bernardi
algorithm) is consistent. Furthermore, we demonstrate that there are only three other
consistent algorithms, which all have the same structure as rotor-routing. This proves a
conjecture of Klivans. The paper corresponding to this extended abstract can be found
at [8].

Keywords: sandpile group, sandpile torsor, rotor-routing

1 Introduction

Let G be a finite connected multigraph. The sandpile group of G, which we denote Pic0(G),
is a finite abelian group given by the cokernal of the graph Laplacian matrix over the
integers. A remarkable fact, which follows from Kirchhoff’s matrix-tree theorem, is that
the size of Pic0(G) is equal to the number of spanning trees of G (see [4, Theorem 7.3]). The
traditional proof of this result is non-bijective, and for many graphs, no automorphism
invariant bijections exist unless G is given additional structure (see [15, Theorem 8.1]).
This problem is often resolved by working with ribbon graphs.

Let χ specify a cyclic ordering on the edges adjacent to each vertex of G. The pair
(G, χ) is called a ribbon graph. Holroyd et al. demonstrated that the rotor-routing algorithm
induces a free transitive group action of Pic0(G) on T (G), which depends on the ribbon
structure χ and a choice of sink vertex [9]. In particular, this makes T (G) a Pic0(G)-torsor,
so we will call such an action a sandpile torsor action.

On a MathOverflow post, Ellenberg asked if there exist certain classes of ribbon
graphs for which natural sandpile torsor actions can be defined without requiring a
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sink vertex [7]. Chan, Church, and Grochow resolved this question by showing that the
rotor-routing sandpile torsor action on (G, χ) is independent of the sink vertex if and
only if (G, χ) is a plane graph [5, Theorem 2].1 With this result in mind, we define a
sandpile torsor algorithm to be a function which assigns a sandpile torsor action to every
plane graph (G, χ) independent of the choice of sink vertex.

Another sink-dependent sandpile torsor action is given by the Bernardi algorithm [3],
which is distinct from rotor-routing on non-planar ribbon graphs. Baker and Wang
showed that the restriction of the Bernardi algorithm to plane graphs is also a sand-
pile torsor algorithm [2, Theorem 5.1]. Furthermore, they showed that this sandpile
torsor algorithm is equivalent to the rotor-routing algorithm (when restricted to plane
graphs) [2, Theorem 7.1]. This surprising equivalence motivated the following conjecture
by Klivans, which we prove in this paper.

Conjecture 1.1 ([10, Conjecture 4.7.17]). For plane graphs, there is only one sandpile torsor
structure.

One of the challenges in resolving this conjecture is that one must introduce a rea-
sonable definition of sandpile torsor structure. The rotor-routing sandpile torsor algorithm
follows a simple set of rules that can be applied to any plane graph. With this in mind,
we posit that any definition of sandpile torsor structure should include some notion of con-
sistency of induced sandpile torsor actions between different plane graphs. However,
it is difficult to find a suitable consistency condition because there is no general map
between the sandpile groups of different graphs which preserves their structure. The
key insight that motivated the writing of this paper is the formulation of a contraction-
deletion based definition of consistency (see Definition 3.2 and Figure 1).

There are two main results in this paper. In Theorem 3.5, we show that rotor-routing
is consistent. In Theorem 4.4 we show that there are only 3 other consistent sandpile tor-
sor algorithms, which can be obtained from rotor-routing by reversing the cyclic order on
the vertices, taking the inverse action, or both. We say that these algorithms all have the
same structure as rotor-routing. One powerful tool that we introduce is Proposition 4.5,
which implies that on any 2-connected graph, it is possible to transform one spanning
tree to any other by repeatedly swapping leaf edges with edges not on the tree.

2 Background and Definitions

1Following the language of [2], we distinguish between a plane graph, which is a particular planar
embedding, and a planar graph which is a graph where such an embedding exists.



Sandpile Torsor Algorithm Structures 3

2.1 Divisors, Ribbon Graphs, and the Sandpile Group

In this section, we use much of the notation from [5]. See also [6, 10] for more informa-
tion on sandpile groups and chip-firing.

Let G be a finite, connected, undirected graph with vertices V(G) and edges E(G).
We allow multiple edges but not loop edges. For an edge e ∈ E(G), we write i(e) for the
unordered pair of vertices incident to e, which we write in set notation.

Definition 2.1. The group Div0(G) of degree-0 divisors of G is given by

Div0(G) :=

 ∑
v∈V(G)

nvv | nv ∈ Z, ∑
v∈V(G)

nv = 0

 .

For D = ∑ nvv, if there exists an s ∈ V(G) such that nv ≥ 0 for v ̸= s, then we say
that D ∈ Div0

s (G).

Note that while Div0(G) is a group, Div0
s (G) is a monoid because its nonzero elements

lack inverses. The Laplacian matrix ∆ of G is the symmetric matrix defined by ∆ =
deg(G)− A, where A is the adjacency matrix of G and deg(G) is the |V(G)| × |V(G)|
diagonal matrix such that deg(G)vv = deg(v) for every v ∈ V(G).

Definition 2.2. The sandpile group of G, denoted Pic0(G), is the quotient

Pic0(G) := Div0(G)/ imZ(∆).

One way to explore properties of Pic0(G) is in terms of “chip-firing”, also called “the
dollar game”, which we describe below.

Each element D := ∑v∈V(G) nvv ∈ Div0(G) may be viewed as a configuration of
“chips” placed on the vertices of G, also allowing negative “debt” chips (where the total
number of chips matches the total amount of debt). Note that elements of Div0

s (G) have
all of their debt on the sink. In this context, divisors are also called chip configurations.
Given a chip configuration D, we may “fire” a vertex v ∈ V(G) by removing deg(v)
chips from v and placing one chip on each of the neighbors of v. That is, v “gifts” a chip
to each of its neighbors. For our purposes, we allow a vertex to fire regardless of the
number of chips, even if this puts the vertex in debt.

Each row of the Laplacian corresponds to a vertex firing. Thus, the image of the
Laplacian describes an equivalence relation on chip configurations, where D1 and D2
are firing equivalent if D2 can be obtained from D1 by a sequence of vertex firings. This
means that two chip configurations are firing equivalent precisely when they are both
representatives of the same equivalence class of Pic0(G).

Throughout this paper, we will put brackets around a divisor to indicate the cor-
responding equivalence class of Pic0(G). As discussed in the previous paragraph, for
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D, D′ ∈ Div0(G), [D] = [D′] if and only if these two divisors are firing equivalent. We
consider D, D′ ∈ Div0

s (G) to be firing equivalent if they are firing equivalent as elements
of Div0(G).

Let T (G) be the set of spanning trees of G. For convenience, we will treat each
T ∈ T (G) as a subset of E(G) when discussing set containment and as a subgraph of G
when contracting or deleting edges. The following is a version of Kirchhoff’s celebrated
matrix-tree theorem.

Theorem 2.3 (Sandpile Matrix-Tree Theorem for Graphs [4, Theorem 7.3]).

|Pic0(G)| = |T (G)|.

Theorem 2.3 implies the existence of bijections between equivalence classes of Pic0(G)
and elements of T (G). However, in order to define sufficiently “natural” bijections, we
will need to give G some additional structure (see [15] and [5] for discussion on the need
for additional structure).

Let χ be a function which maps each v ∈ V(G) to a cyclic order of edges around v.
The pair (G, χ) is called a ribbon graph. Suppose that G can be drawn in a plane such
that for every v ∈ V(G), χ(v) gives the edges incident to v in counterclockwise order.
Then, (G, χ) is called a plane graph. A graph G is called planar if there exists some χ such
that (G, χ) is a plane graph.

Suppose e ∈ E(G) with i(e) = {v, w}. We will write χ(v, e) for the edge after e that is
incident to v with respect to χ.

Definition 2.4. Let (G, χ) and (G′, χ′) be two ribbon graphs. Then a ribbon graph isomor-
phism is a bijection, ϕ : V(G) ∪ E(G) → V(G′) ∪ E(G′) such that ϕ(V(G)) = V(G′) and
for any e ∈ E(G) such that i(e) = {v1, v2},

1. i(ϕ(e)) = {ϕ(v1), ϕ(v2)};

2. ϕ(χ(vi, e)) = χ′(ϕ(vi), ϕ(e)), for i ∈ {1, 2}.

A ribbon graph automorphism is a ribbon graph isomorphism from a ribbon graph to
itself.

Lemma 2.5. Any ribbon graph isomorphism from (G, χ) to (G′, χ′) induces an bijection from
T (G) to T (G′). Furthermore, ϕ induces an isomorphism ϕDiv from Div0(G) to Div0(G′) which
also describes isomorphisms from Div0

s (G) to Div0
ϕ(s)(G

′) and Pic0(G) to Pic0(G′).

2.2 Sandpile Torsor Actions and Sandpile Torsor Algorithms

Given a ribbon graph (G, χ) and a vertex s ∈ V(G), we will work with a function
α(G,χ,s) : Div0

s (G)× T (G) → T (G) which belongs to a specific class of monoid actions.
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Definition 2.6. A function of the form α̂(G,χ,s) is called a sink-dependent sandpile torsor
action if for any T ∈ T (G), and D, D′ ∈ Div0

s (G), the following properties are satisfied:

1. α̂(G,χ,s)(D, T) = α̂(G,χ,s)(D′, T) if and only if [D] = [D′].

2. α̂(G,χ,s)([0], T) = T.

3. α̂(G,χ,s)(D + D′, T) = α̂(G,χ,s)(D, α̂(G,χ,s)(D′, T)).

4. For any T′ ∈ T (G), there exists some D′′ ∈ Div0
s (G) such that α̂(G,χ,s)(D′′, T) = T′.

Definition 2.7. The function α̂ is called a sink-dependent sandpile torsor algorithm if for any
ribbon graph (G, χ) and s ∈ V(G), the following conditions hold:

1. α̂(G,χ,s) is a sink-dependent sandpile torsor action.

2. For any ribbon graph isomorphism ϕ from (G, χ) to (G′, χ′), and any D ∈ Div0
s (G),

ϕ(α̂(G,χ,s)(D, T)) = α̂(G′,χ′,ϕ(s))(ϕ
Div(D), ϕ(T)).

Definition 2.8. For every plane graph (G, χ), let α(G,χ) be an action of Pic0(G) on T (G).
We call α a sandpile torsor algorithm if there is a sink-dependent sandpile torsor algorithm
α̂ such that for every plane graph (G, χ), s ∈ V(G), D ∈ Div0

s (G), and T ∈ T (G),

α(G,χ)([D], T) = α̂(G,χ,s)(D, T).

We call a specific action of the form α(G,χ) a sandpile torsor action.

Remark 2.9. If we were to replace plane graph with ribbon graph in Definition 2.8, then it
would follow that no sandpile torsor algorithms exist (see [12, Figure 1]).

Notice that a sandpile torsor algorithm α is uniquely defined by a sink-dependent
sandpile torsor algorithm α̂ such that for every plane graph (G, χ), s, s′ ∈ V(G), D ∈
Div0

s (G), D′ ∈ Div0
s′(G), and T ∈ T (G),

α̂(G,χ,s)(D, T) = α̂(G,χ,s′)(D′, T) if and only if [D] = [D′]. (2.1)

Two well-known sink-dependent sandpile torsor algorithms are the rotor-routing al-
gorithm and the Bernardi algorithm. These algorithms are distinct in general, and their
constructions appear unrelated [2, Figure 9]. However, both algorithms satisfy (2.1) [5,
2], and they both define the same sandpile torsor algorithm [2, Theorem 7.1]. This sur-
prising equivalence inspired Conjecture 1.1, which asks if this sandpile torsor algorithm
is in some sense unique. We will not explicitly work with the Bernardi algorithm in this
paper, but we encourage the curious reader to see [2] for its construction, as well as [16]
for an alternate perspective when restricting to plane graphs.
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2.3 Rotor-Routing

Let (G, χ) be a ribbon graph and s ∈ V(G).

Definition 2.10. A rotor configuration with sink s is an assignment of an incident edge to
every vertex of G except for s. Given a rotor configuration ρ and x ∈ V(G) \ s, we write
ρ⟨x⟩ for the edge assigned to x.

We will call these edges rotors. It is useful to visualize a rotor ρ⟨x⟩ as a directed
edge adjacent to x and oriented away from x. Given a fixed sink s ∈ V(G), any tree
T ∈ T (G) can be uniquely represented by a rotor configuration Ts such that for all
x ∈ V(G) \ {s}, Ts⟨x⟩ is the unique edge in T incident to x along the path from x to s.
Then, Ts describes an orientation of the edges of T such that each edge is directed toward
s. Given a sandpile element of the form c − s ∈ Div0

s (G) for some c, s ∈ V(G) (which
we will call the chip and sink vertices respectively), Algorithm 1 describes a sequence of
rotor configurations in which at each step, a single rotor rotates according to the cyclic
order χ (on a plane graph, this would be a counterclockwise rotation). The output rotor
configuration will be of the form T′

s for some other spanning tree T′ ∈ T (G), which we
will use to construct a sink-dependent sandpile torsor algorithm r.

Algorithm 1 Single-chip rotor-routing

Input: A tree T ∈ T (G) and a divisor of the form c − s ∈ Div0
s (G).

Output: The rotor configuration ρ with sink vertex s.
Initialize the rotor configuration ρ = Ts.
Initialize a “traveling” vertex x at c. We call x a chip.
while x ̸= s do

Update ρ: ρ⟨x⟩ = χ(x, ρ⟨x⟩). ▷ rotate the rotor at x by one position.
Replace x with the other vertex incident to ρ⟨x⟩. ▷ move x across the rotor.

end while
return ρ.

Algorithm 1 was first explored by Priezzhev et al. under the name Eulerian walkers
model [14]. By [9, Lemma 3.10], the final rotor ρ in Algorithm 1 is acyclic which implies
the existence of a unique tree T′ ∈ T (G) such that T′

s = ρ. Then, for the inputs c, s ∈
V(G) and T ∈ T (G), we can define the mapping r(G,χ,s)(c − s, T) := T′ where T′

s = ρ is
the output of Algorithm 1.

Holroyd et al. showed how this model could be used to define a sink-dependent
sandpile torsor action on any ribbon graph (G, χ). Fix any D = ∑v∈V(G) nvv ∈ Div0

s (G)

and let N := −ns. Note that D = ∑N
i=1(ci − s) for some sequence of vertices (c1, . . . , cN).

Let T0 = T, and for each i ∈ [1, N], let Ti = r̂(G,χ,s)(ci − s, Ti−1). Then, we define



Sandpile Torsor Algorithm Structures 7

r̂(G,χ,s)(D, T) := TN. By [9, Corollary 2.6], TN does not depend on the ordering of
(c1, . . . , cN). Thus, r̂(G,χ,s) is a well-defined monoid action of Div0

s (G) on T (G).

Theorem 2.11 ([11, Theorem 2.5]). The rotor-routing algorithm r̂ constructed above is a sink-
dependent sandpile torsor algorithm.

Chan, Church, and Grochow proved that, on plane graphs, the rotor-routing action
does not depend on the choice of sink vertex, which implies the following result:

Theorem 2.12. [5, Theorem 2] The rotor-routing algorithm r̂ satisfies (2.1). In particular, it
defines a sandpile torsor algorithm r.

3 Rotor-Routing is Consistent

In this section, we introduce the notion of consistency of sandpile torsor algorithms and
show that the rotor-routing algorithm is consistent.

Throughout this section, (G, χ) is a plane graph, f ∈ E(G), and i( f ) = {c, s}. For
e ∈ E(G), we write G \ e for the graph we obtain from G by deleting edge e and G/e for
the graph we obtain by contracting the edge e. After contracting e, we also remove all
loop edges because these cannot occur on any spanning tree and have no effect on the
rotor-routing algorithm.

Definition 3.1. Let (G, χ) be a ribbon graph with e ∈ E(G), where i(e) = {x, y}.

• Define χ \ e to be equal to χ, except with e removed from χ(x) and χ(y).

• Suppose that after removing edges parallel to e, χ(x) = (e, e1, e2, . . . , ep) and χ(y) =
(e, ê1, ê2, . . . , êl). Define χ/e to be equal to χ except that on the contracted edge z,
we have

(χ/e)(z) := (e1, e2, . . . , ep, ê1, ê2, . . . , êl).

Notice that (G \ e, χ \ e) and (G/e, χ/e) are both plane graphs. If (G′, χ′) can be ob-
tained from (G, χ) through deletion and contraction, we say (G′, χ′) is a minor of (G, χ).

Definition 3.2. A sandpile torsor algorithm α is consistent if for every plane graph (G, χ),
every choice of f ∈ E(G), and every choice of T ∈ T (G), the following three properties
hold (where we define {c, s} = i( f )):

1. For any e ∈ E(G) such that i(e) ̸= {c, s}, if e ∈ T ∩ α(G,χ)([c − s], T), then

α(G,χ)([c − s], T) \ e = α(G/e,χ/e)([c − s], T \ e).

2. For any e ∈ E(G), if e /∈ T ∪ α(G,χ)([c − s], T), then

α(G,χ)([c − s], T) = α(G\e,χ\e)([c − s], T).
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3. For any e ∈ E(G) \ f , if there is a cut vertex x such that all paths from e to f pass
through x, then

e ∈ T if and only if e ∈ α(G,χ)([c − s], T).

The first two conditions of Definition 3.2 are illustrated by Figure 1. The third condi-
tion says that we can treat two subgraphs joined at a cut vertex independently.

Proposition 3.3. Condition 3 of Definition 3.2 is satisfied by the rotor-routing algorithm.

By requiring consistent sandpile torsor algorithms to satisfy Condition 3, we simplify
the proofs of many of the results in Section 4. However, we are not convinced that this
condition is necessary.

Question 3.4. Is Condition 3 of Definition 3.2 implied by the other two?

Theorem 3.5. The rotor-routing sandpile torsor algorithm is consistent.

We reduce this result to 6 specific cases. If an edge e is in both T and T′ := r(G,χ)([c −
s], T), then the rotor at e may be untouched during rotor-routing, it may complete a full
rotation, or it could be oriented in opposite directions in Ts and T′

s. When the edge e is in
neither tree, the travelling vertex may never have crossed e, it may have crossed e in both
directions, or it may have only crossed e in one direction. For some of these cases, the
path of the traveling vertex will change after deleting or contracting e, but we show that
it still crosses the same edges, just in a different order. The planarity condition comes
into play for the final case (where the edge is crossed in one direction). We apply tools
developed by Chan, Church, and Grochow to show that this case is never realized [5].

4 Uniqueness of Consistent Torsor Algorithms

In this section, we classify the consistent sandpile torsor algorithms. In particular, we
show that every consistent sandpile torsor algorithm must either be rotor-routing, or one
of three related algorithms which we say have the same structure as rotor-routing.

For any ribbon graph (G, χ), let χ be the reverse cyclic order around each vertex.
Notice that if (G, χ) is a plane graph, then (G, χ) is a plane graph as well (simply reflect
the planar embedding of (G, χ) to get a planar embedding of (G, χ)).

Definition 4.1. Suppose α is a sandpile torsor algorithm. Define α, α−1, and α−1 such
that for any plane graph (G, χ), S ∈ Pic0(G), and T ∈ T (G), we have:

α(G,χ)(S, T) = α(G,χ)(S, T) = α−1
(G,χ)(−S, T) = α−1

(G,χ)(−S, T).

If α is the rotor-routing algorithm, then α reverses the direction in which the rotors
turn, α−1 switches the role of the chip and sink, and α−1 makes both of these changes.
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Proposition 4.2. If α is a consistent sandpile torsor algorithm, then α, α−1 and α−1 are distinct
consistent sandpile torsor algorithms.

Definition 4.3. Sandpile torsor algorithms α and β have the same sandpile torsor structure
if β ∈ {α, α, α−1, α−1}.

Our goal will be to prove the following version of Conjecture 1.1.

Theorem 4.4. Every consistent sandpile torsor algorithm has the same sandpile torsor structure
as the rotor-routing algorithm.

To show that a sandpile torsor algorithm α is equivalent to rotor-routing, it suffices
to check that α and r are equivalent for all T ∈ T (G) on a generating set of Pic0(G). In
fact, we can further simplify the task by applying the following result.

Proposition 4.5. Suppose that (G, χ) is a 2-connected ribbon graph, T, T̂ ∈ T (G), and s ∈
V(G). It is possible to transform Ts to T̂s by only rotating rotors with indegree 0 (with respect to
the current rotor configuration).

We prove this proposition by defining a partial order on spanning trees such that T̂
is the unique minimal element. We then show that for any T ∈ T (G) \ T̂, it is always
possible to rotate rotors with indegree 0 to reach some T′ that is smaller than T with
respect to our partial order. This is further discussed in Figure 2.

Definition 4.6. Let T ∈ T (G) and c, s ∈ V(G). The pair (c − s, T) is called a source-turn
pair if c is only incident to a single edge of T, and i(χ(c, Ts⟨c⟩)) = {c, s}.

Notice that if (c − s, T) is a source-turn pair, then T′ := r(G,χ)([c − s], T) rotates the
indegree 0 rotor at c by one position without changing any other rotors on the graph.
Furthermore, setting s′ to be the unique vertex such that {c, s′} = i(χ(c, T′

s⟨c⟩)), we have
that (c − s′, T′) is also a source-turn pair. Therefore, repeated application of the rotor-
routing algorithm can be used to freely rotate the rotor at c without changing any other
rotors on the graph. This implies the following corollary of Proposition 4.5.

Corollary 4.7. Let (G, χ) be a 2-connected plane graph. If α(G,χ)([c− s], T) = r(G,χ)([c− s], T)
whenever (c − s, T) is a source-turn pair, then α(G,χ) = r(G,χ).

We now sketch a proof of Theorem 4.4. Let α be a consistent sandpile torsor algorithm
and (G, χ) be a 2-connected plane graph. Suppose for the sake of induction that α(G′,χ′) =
r(G′,χ′) for all 2-connected minors (G′, χ′) of (G, χ). By Corollary 4.7, the result follows
if we show that α(G,χ)([c − s], T) = r(G,χ)([c − s], T) for every source-turn pair (c − s, T).

Let (c − s, T) be an arbitrary source-turn pair, and suppose that α(G,χ)([c − s], T) =

T̂ ̸= r(G,χ)([c − s], T). By applying properties of Definition 3.2, one can show that

E(G) \ (T∆T̂) ⊆ { f , g}, (4.1)
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where ∆ denotes the symmetric difference operator. This leaves us with 4 cases to con-
sider corresponding to the 4 subsets of { f , g}. The bulk of our argument is spent resolv-
ing these cases using a variety of contraction/deletion tricks, properties of Pic0(G), tools
developed by Chan, Church, and Grochow, and other techniques (see [8]).

5 Generalization to Regular Matroids

Regular matroids also have associated sandpile groups [13]. Given a regular matroid M and
a choice of acyclic circuit and cocircuit signatures, Backman, Baker, and Yuen defined an
explicit free transitive action of the sandpile group of M on its bases [1]. We call such
an action a matroidal sandpile torsor algorithm. We can naturally generalize the notions of
consistency and sandpile torsor structure to this context (see [8, Section 6]). We conclude
with the natural extension of Conjecture 1.1 to regular matroids.

Conjecture 5.1. For regular matroids, there is only one sandpile torsor structure.
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s c s c
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(b):
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e2
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Figure 1: An example of the rotor-routing algorithm demonstrating that rotor-routing
is consistent on a graph (G, χ), where χ denotes counterclockwise rotation. We denote
the chip x by a hollow vertex. Figure 1(a) illustrates, using the rotor-routing algorithm,
that T′ = r(G,χ)([c − s], T). Figure 1(b) illustrates how the rotor-routing algorithm
commutes with contraction: T′/e1 = r(G/e1,χ)([c − s], T/e1). Figure 1(c) illustrates how
the rotor-routing algorithm commutes with deletion: T′ = r(G\e2,χ)([c − s], T).

s
x

s
x

s
x

Ts T′
s T̂s

Figure 2: All of the indegree 0 rotors in Ts are in the same final position as they are
in T̂s, so their are no immediate moves to get “closer” to T̂s. However, it is possible to
reach T′

s which has rotor x in the correct position after only moving rotors that are fur-
ther from s than x (with respect to T̂). This general method is used for Proposition 4.5.
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