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The maximum multiplicity of a generator in a
reduced word
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2Department of Mathematics, Brandeis University

Abstract. We study the maximum multiplicityM(k, n) of a simple transposition sk =

(k k + 1) in a reduced word for the longest permutation w0 = n n− 1 · · · 2 1, a problem
closely related to much previous work on sorting networks and on the "k-sets" problem.
After reinterpreting the problem in terms of monotone weakly separated paths, we
show that, for fixed k and growing n, the optimal collections are periodic in a precise
sense, so that

M(k, n) = ckn + pk(n)

for a periodic function pk and constant ck. In fact we show that ck is always rational,
and compute several bounds and exact values for this quantity.

Keywords: reduced word, wiring diagram, k-set, weakly separated.

1 Introduction

Write sk = (k k + 1) for the adjacent transpositions in the symmetric group Sn. A reduced
word for a permutation w ∈ Sn is an expression w = si1 · · · si` of minimal length, and in
this case ` = `(w) is called the length of w; we write R(w) for the set of reduced words
of w.

There is a unique permutation w0 = n n− 1 · · · 2 1 of maximum length (n
2), called

the longest permutation. Reduced words of w0 have been extensively studied, as maximal
chains in the weak Bruhat order [4], in total positivity and cluster algebras, and in the
context of random sorting networks [2]. It is not hard to see that the minimum mul-
tiplicity of sk in a reduced word for w0 is min(k, n− k), while the average multiplicity
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can be computed using the Edelman–Greene bijection [5]. In this extended abstract we
outline our study of the quantity M(k, n), the maximum multiplicity of sk among all
reduced words of w0. This problem is considerably more difficult, as evidenced by its
close connection to the well-known k-sets problem.

Throughout much of the abstract we consider monotone weakly separated paths instead
of reduced words themselves. From this perspective certain periodicity phenomena ap-
pear which are obscured when considering reduced words or their associated pseudoline
arrangements.

1.1 Relation to the k-sets problem

Given a collection A of n distinct points in R2, a k-set is a subset B ⊆ A of size k which
can be separated from A − B by a straight line in R2. The k-set problem, studied since
work of Lovász [7] and Erdős–Lovász–Simmons–Straus [6] in the 1970s, asks for the
maximum number of k-sets admitted by any collection A. This problem has since found
application in the analysis of some geometric algorithms.

A common approach to this problem proceeds by first applying projective duality
to recast the problem in terms of regions of height k in an arrangement of n lines,
and then relaxing it by considering arrangements of n pseudolines (curves in the plane
such that each pair crosses exactly once). Many of the strongest known results for the
k-sets problem work with this relaxation, and all available data [1] indicates that the
answers in fact agree for lines and for pseudolines. An arrangement of n pseudolines
can equivalently be thought of as the wiring diagram for a reduced word of w0, and in
this context the problem becomes to maximizing the total number of sk’s and sn−k’s
appearing. We show in Section 4 that the slope ck defined by M(k, n) ∼ ckn is the same
whether we consider the total multiplicity of sk and sn−k or just that of sk, so that our
original problem is very closely linked to the (pseudoline version of) the k-sets problem.

1.2 Outline

In Section 2 we introduce monotone weakly separated paths and establish an equivalent
version of the main problem in these terms. Section 3 introduces arc diagrams and applies
these to give bounds onM(k, n). In Section 4 we show that the quantity

ck := lim
n→∞

M(k, n)
n

exists, is rational, and is equal to the corresponding limit which counts multiplicities of
both sk and sn−k. Rationality is a corollary of a stronger property: optimal monotone
weakly separated paths are actually periodic in a precise sense. We also give exact
values for c1, c2, and c3. Finally, in Section 5 we discuss the problem (which is easy
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for the symmetric group) of minimizing the multiplicity of sk in a reduced word for the
longest element w0 in other finite Coxeter groups.

2 Preliminaries

In this section, we establish relations between reduced words and monotone weakly
separated paths. We say that two different sets I, J ⊂ [n] are weakly separated if max I −
J < min J − I or max J − I < min I − J, and that a collection of sets is weakly separated
if each pair of sets is weakly separated. Note that being weakly separated is not a
transitive relation. Weakly separated collections are fundamental objects in the theory
of the totally nonnegative Grassmannian and related cluster algebras (see, e.g. [8]). A
sequence of subsets (A0, A1, . . . , AN) is a monotone weakly separated path if the collection
{A0, . . . , AN} is weakly separated and for each i = 1, . . . , N, both Ai − Ai−1 =: {xi} and
Ai−1 − Ai =: {yi} are singleton sets with xi > yi.

Given a reduced word i ∈ R(w) where w = si1 · · · si` , and a fixed simple generator
sk = (k k + 1), let a1 < · · · < aN be the positions of all sk’s in i. We obtain permutations
w(j) = si1si2 · · · siaj

that come from subwords of i, where w(0) = id. For j = 1, . . . , N, let

Aj = {w(j)(1), w(j)(2), . . . , w(j)(k)} and write Pk(i) = (A0, A1, . . . , AN).

Proposition 1. Let Pk(i) be constructed as above. Then Pk(i) is a monotone weakly separated
path. Conversely, for any monotone weakly separated path P that starts with {1, 2, . . . , k}, there
exists a reduced word i such that Pk(i) = P.

Proof. Let i ∈ R(w) and Pk(i) = (A0, . . . , AN). If some Aj and Aj′ with j < j′ are not
weakly separated, then there exists a ∈ Aj − Aj′ and a′ ∈ Aj′ − Aj such that a > a′. By
definition, w(j) < w(j′) in the right weak Bruhat order, but (a, a′) is a left inversion of w(j),
not of w(j′), contradiction. In other words, if we consider the wiring diagram associated
to i, the wires labeled a and a′ must intersect from A0 to Aj, and intersect again from Aj
to Aj′ , meaning that i cannot be reduced. As a result, {A0, . . . , AN} is a weakly separated
collection. At the same time, Aj = Aj−1 − {x} ∪ {y} if we write (x y)si1 · · · siaj−1 =

si1 · · · siaj−1siaj
. And x < y since i is reduced. Thus, Pk(i) = (A0, . . . , AN) is a monotone

weakly separated path.
Now suppose that we are given a monotone weakly separated path P = (A0, . . . , AN)

with A0 = {1, . . . , k}. Start with w(0) = id. We are going to construct w(1), w(2), . . . with
a reduced word i along the way such that Pk(i) = P. Suppose that we have constructed
w(j) = si1 · · · sim and let x ∈ Aj − Aj+1, y ∈ Aj+1 − Aj with x < y. Suppose that
w(j)(a) = x and w(j)(b) = y with a ≤ k < b. We can continue the construction of i
by w(j+1) = wj(sasa+1 · · · sk−1)(sb−1sb−2 · · · sk+1)sk. Here, sasa+1 · · · sk−1 moves x from
position a to position k while sb−1sb−2 · · · sk+1 moves y from position b to position k + 1.
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In the end, the sk exchanges the values x and y. Therefore, we automatically have
{w(j+1)(1), . . . , w(j+1)(k)} = Aj − {x} ∪ {y} = Aj+1 as desired. The only thing left to
show is that the word i coming from such construction is reduced.

If i is not reduced, we can without loss of generality assume that in some step when
we are constructing w(j+1) from w(j), a simple generator sp exchanges a larger value at
position p with a smaller value at position p + 1. Keep the notation as in the above
paragraph. We can’t have p = k since sk always exchanges Aj − Aj+1 at position k
with Aj+1 − Aj at position k + 1. So by symmetry, we assume p < k, and that such
sp exchanges value x ∈ Aj+1 − Aj at position p with value z at position p + 1, with
x > z. Since z < x, the values z and x must have been switched before, when we are
constructing w(j′+1) from w(j′), with j′ < j. By construction, we are either moving z out
of Aj′ to Aj′+1, or moving x into Aj′+1 from out of Aj′ . In both cases, z /∈ Aj′+1 and
x ∈ Aj′+1. As a result, x ∈ Aj′+1 − Aj+1, z ∈ Aj+1 − Aj′+1, but z < x. As Aj+1 and Aj′+1
are weakly separated, we must have max Aj+1 − Aj′+1 < min Aj′+1 − Aj+1. But j′ < j,
there cannot possibly be a monotone path from Aj′+1 to Aj+1. Contradiction. Thus, this
construction results in a reduced word i as desired.

Consequently, we say that Pk(i) is the monotone weakly separated path associated
to i ∈ R(w). Clearly, if Pk(i) consists of N + 1 subsets from A0 to AN, then there
are exactly N sk’s in i. Proposition 1 allows us to translate the problem of finding the
maximal number of sk’s in R(w) to finding the longest monotone weakly separated path
that starts at {1, 2, . . . , k}.

3 Bounds forM(k, n) and arc diagrams

3.1 M(k, n) and arc diagrams

For positive integer 1 ≤ k ≤ n− 1, let M(k, n) denote the maximum possible number
of appearances of sk’s in a reduced word of w0 ∈ Sn. In this section, we describe known
values forM(k, n) and, in situations where values are yet unknown, current bounds we
have had.

For our purpose, by a monotone separated sequence from {1, 2, . . . , k} to {n− k + 1, . . . ,
n− 1, n}, we mean a finite sequence (T1, T2, . . . , Tm) of k-tuples of integers in [n] which
satisfies

• T1 = {1, 2, . . . , k},

• Tm = {n− k + 1, . . . , n− 1, n},

• for each i ∈ [m− 1], there exist α, β ∈ [n] for which Ti− Ti+1 = {α} and Ti+1− Ti =
{β} and α < β, and
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• for any 1 ≤ i < j ≤ m, every element in Tj − Ti is greater than every element in
Ti − Tj.

When k < n are given, the maximum possible number of terms in a monotone separated
sequence from {1, 2, . . . , k} to {n− k + 1, . . . , n− 1, n} is exactlyM(k, n) + 1. Therefore,
we may translate the studies of the maximum number of appearances of sk’s to those of
monotone separated sequences.

An important tool for investigating monotone separated sequences is the arc dia-
gram, which we define as follows. The arc diagram of a monotone separated sequence
(T1, T2, . . . , Tm) is the simple undirected graph on the vertex set [n] in which an edge (i, j)
appears if and only if there exists a ∈ [m− 1] such that {i, j} = (Ta− Ta+1)∪ (Ta+1− Ta).
The number of edges in an arc diagram is exactly one less than the number of terms in
the monotone separated sequence. Thus, M(k, n) is the maximum possible number of
edges in an arc diagram obtained from a monotone separated sequence from {1, 2, . . . , k}
to {n− k + 1, . . . , n− 1, n}.

It is helpful to think of arc diagrams as geometric objects embedded on the plane. We
put the vertex i ∈ [n] of the diagram at the point (i, 0) ∈ R2 so that the vertices 1, 2, . . . , n
become collinear points in this order. Furthermore, we draw each edge (i, j) on the arc
diagram as a semicircle on the upper-half plane with the segment connected the points
(i, 0) and (j, 0) as a diameter. We also assign weights to these edges. Imagine that each
semicircular curve in an arc diagram has weight 1. Let us further assume that for each
curve, the weight is distributed uniformly across the horizontal length. For example, if
we are considering the edge e from (1, 0) to (4, 0), then there is weight exactly 2/3 above
the segment [2, 4] coming from this edge e. Since the weight of the whole diagram is
the number of edges, we have that M(k, n) is the maximum possible weight in an arc
diagram.

By considering the weight, we obtain the following upper bound forM(k, n).

Proposition 2. M(k, n) ≤
(

1 +
1
2
+

1
2
+

1
3
+

1
3
+

1
3
+

1
4
+ · · ·︸ ︷︷ ︸

k terms

)
· n.

Proof (Sketch). For each i ∈ [n− 1], the vertical strip above the segment [i, i + 1] on the
plane contains at most k distinct semicircle parts. Suppose there are ` parts. For each
t ∈ Z≥1, there are at most t of these ` parts which come from semicircles of diameter t.
Therefore, there are at most t parts which contribute the weight of 1/t to the segment
[i, i + 1]. This gives the desired bound.

Corollary 3. M(k, n) ≤
√

2k · n.

We remark that one can easily improve the bound given in Proposition 2 using a
more careful version of the same argument as in the proof above. Namely, note that the
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segments [i, i + 1] near the ends (vertices 1 or n) contribute less weight because there are
fewer than k pieces of curves above those segments. However, this would simply give an
improvement of Ok(1) and would not improve the multiplicative constant in front of n.

3.2 Explicit formulas forM(k, n) for specific values of k

We now describe the formulas for M(k, n) for k = 1, 2, 3. When k = 1, it is easy to
see that M(1, n) = n − 1 for each n ∈ Z≥2. Now let’s consider the case when k = 2.
A more careful version of Proposition 2 gives the bound M(2, n) ≤

⌊3n−5
2

⌋
, for each

n ∈ Z≥3. In fact, we claim that M(2, n) =
⌊3n−5

2

⌋
by giving explicit constructions. Let

us construct an infinite sequence of ordered pairs inductively as follows. In the first step,
let s1 := ({1, 2}). In the i-th step, for each i ≥ 2, suppose that the rightmost entry of si−1
is the ordered pair {a, a + 1}, we append

{a, a + 2}, {a + 1, a + 2}, {a + 2, a + 3}

in this order to the right end of si−1, and declare the newly constructed sequence to be
si. The limit of si as i→ ∞ is the infinite sequence

12− 13− 23− 34− 35− 45− 56− 57− 67− 78− 79− 89− · · · .

It is straightforward to check that for each n ∈ Z≥3, the first
⌊3n−5

2

⌋
+ 1 terms of the

infinite sequence above form a monotone separated sequence from {1, 2} to {n− 1, n}.
This completes the proof of the formula

M(2, n) =
⌊

3n− 5
2

⌋
.

Let us make a remark about the construction of the infinite sequence above. We think
of the infinite sequence as an infinite repetition of the repeatable pattern 12− 13− 23− 34.
We start with the pattern and repeat it many times to obtain the infinite sequence. Note
that not all patterns are repeatable: if we repeat some monotone separated sequence,
then the resulting sequence might no longer by separated. For example, the pattern
12− 13− 23 is not repeatable, since 12− 13− 23− 24− 34− · · · is not separated. (Note
the interlacing between 13 and 24.)

Now we consider the case when k = 3. The upper bound in Proposition 2 gives
M(3, n) ≤ 2n −O(1). It turns out that the coefficient 2 in front of n is not the right
constant for M(3, n). To see why, we give a heuristic argument as follows. For the
value of M(3, n) to be 2n − O(1) as n gets large, almost every segment [i, i + 1] in
the arc diagram must contribute weight 2 to the diagram. Each such segment must
contain exactly three pieces of semicircles above it: one contributing weight 1 that is
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connecting i and i + 1, one contributing weight 1/2 that is connecting i − 1 and i + 1,
and one contributing weight 1/2 that is connecting i and i + 2. Such a diagram would
be too dense to have come from a valid monotone separated sequence from {1, 2, 3} to
{n− 2, n− 1, n}. We have the following theorem (whose proof we currently omit here).

Theorem 4 (Decomposition Theorem for k = 3). Let n ≥ 4 be a positive integer. Let G be
any arc diagram for a monotone separated sequence from {1, 2, 3} to {n − 2, n − 1, n}. Then,
there exist interior-disjoint closed intervals I1, I2, . . . , It such that (i) [1, n] =

⋃t
i=1 Ii, (ii) each Ii

has length µ(Ii) at most 4, and (iii) the weight of the semicircle pieces above each Ii is at most
11
6 · µ(Ii).

Theorem 4 implies thatM(3, n) ≤ 11
6 n−O(1). Like before, a more careful version of

the same argument givesM(3, n) ≤
⌈

11
6 n
⌉
− 5, for each n ∈ Z≥4. In fact, we claim that

M(3, n) =
⌈

11
6 n
⌉
− 5. To do so, we once again find a suitable repeatable pattern. The

construction for each n ∈ Z≥4 will be divided into cases according to n modulo 6. To
construct the sequence for n we first repeat the repeatable pattern

P = 123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 678− 789

many times, and we finish the sequence with a certain pattern that depends on n modulo
6 (full details of which are not shown here). The construction matches the proven upper
bound, whence

M(3, n) =
⌈

11
6

n
⌉
− 5,

for all n ∈ Z≥4.

4 Asymptotics ofM(k, n): existence and rationality.

Let us define the constant ck := limn→∞
M(k,n)

n for any k ∈N. From the arguments from
previous section, we know that this limit exists for k = 1, 2, 3. In particular, we have
found c1 = 1, c2 = 3

2 , and c3 = 11
6 . These constants are well defined.

Theorem 5. The limit ck exists and it is a rational number for any k ∈N.

The prove of existence is trivial, it is based on two inequalities forM.

Lemma 6. For three integers k < n ≤ m, we have

M(k, n) ≤M(k, m).

Lemma 7. For three integers k < n, m we have

M(k, n) +M(k, m) ≤M(k, n + m).
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Proof of existence. By two lemmas, we know that for any k ≤ n ≤ m, we have

M(k, m) ≥ bm
n
cM(k, n).

Fix any n, then
M(k, m)

m
≥ bm

n
c n

m
M(k, n)

n
.

Since bm
n c

n
m tends to 1 when m goes to infinity, any accumulation point is at least M(k,n)

n .
By Corollary 3, we know that M(k,n)

n <
√

2k, i.e., the sequence M(k,n)
n is bounded. Hence,

it has a limit.

Our proof of rationality is standard in combinatorics, however it is very technical.

Sketch of the proof of rationality. Fix k for this proof. We will work with reduced decompo-
sitions of words in Sn and with its wiring diagrams (we can work with any permutation
instead of the longest). The left order of wires are (1, 2, 3, . . . , n) (the 1st wire is on the
top), we read all wire diagrams from left to right. We will change our wiring diagrams.

Given a word W, we construct the word W ′ in the following way:

• Start from the left and if we found an intersection of wire i and i + 1 on the level
distinct from k, then we just forget about this intersection. This word is still re-
duced.

• If for wire a we have k bigger wires, which are higher than a, then we can imme-
diately forget about the wire a. Because we can’t do swaps with a on the level k.
Therefore from this moment we say that the wire a has place ∞ (a strictly goes
down).

• Repeat the previous two steps as long as possible.

We can’t repeat this simplifications forever, therefore we will stop at some moment.
Wiring diagrams W ′ and W have the same number of intersections on the level k. There-
fore, it is enough to work with these simplified diagrams.

Now we can say that we also have infinitely many wires instead of n. We read
these simplified wiring diagram from the left and we can encode any configuration by
natural number and some combinatorics. The natural number at the moment is the
number of wires went to infinity. For the other wires it is only important their orders
at the beginning and at this moment, we call this combinatorics at this moment. The
important observation is that simplified wiring diagrams have only finitely many distinct
combinatorics. Let Ck be the set of all such possible combinatorics (this set depends on
k).

We encode each wiring diagram at each moment by a pair of natural number and a
combinatoric. Since the number of combinatorics is bounded, we get that ck is rational.
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In particular, we can prove that the size of the set Ck is at most kk2+2k, which gives to us
that the denominator of ck is also bounded by kk2+2k.

It is natural to consider another problem, namely when we want to maximize the
appearances of sk and sn−k. Let M̄(k, n) be the maximal number of appearances of sk
and sn−k in the reduced words from Sn. The asymptotic of these numbers are the same
as for the above problem.

Theorem 8. For any k ∈N, there is a limit limn→+∞
M̄(k,n)

n and it is given by

lim
n→+∞

M̄(k, n)
n

= lim
n→+∞

M(k, n)
n

= ck.

Proof. Consider any reduced word and its wiring diagram. We say that a wire has
type (i, j,±), if its highest position is i and its lowest position is j, and + (−) means
that the highest position is to the left (right) of the lowest position. Note, that there
is no two wires of the same type (otherwise they should intersect at least twice, but
our word is reduced). Let a be the number of wires, which were at some moment at k
highest positions; Let b be the number of wires, which were at some moment at k lowest
positions. We counted at most 2k2 wires twice, then a + b ≤ n + 2k2. Note that the
number of sk depends only on these a wires and the number of sn−k depends only on
that b wires. Hence, the number of appearances of sk and sn−k in this reduced word is
at mostM(k, a) +M(k, b) < cka + ckb ≤ ck(n + 2k2).

Therefore M(k, n) ≤ M̄(k, n) < ck(n + 2k2). Then there is the limit limn→+∞
M̄(k,n)

n
ant it is equal to ck.

5 Other types

In this section, we investigate a related question: for the longest element w0 of a finite
Coxeter group W, what is the minimum number of appearances of a generator si in
R(w0), the set of reduced words for w0. This question is very easy in type An−1 where
W ' Sn. Namely, the minimum number of occurrences of the simple transposition
(i i + 1) in R(w0) is min{i, n − i}. We will treat this matter in a type-uniform way
and show that there is a surprising phenomenon with respect to these numbers and the
Cartan matrix of W (Theorem 10).

Throughout this section, let

W = 〈s1, . . . , sn | (sisj)
mij = id for all i, j〉

be a finite Coxeter group generated by a set of simple reflections S = {s1, . . . , sn}. For
w ∈ W, let `(W) denote the Coxeter length of w. For J ⊆ S, the parabolic subgroup WJ
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is the subgroup of W generated by J, viewed as a Coxeter group with simple reflections
J. Each left coset wWJ of WJ in W contains a unique element wJ of minimal length,
and the set {wJ | w ∈ W} of these minimal coset representatives is called the parabolic
quotient W J . Letting wJ ∈ WJ be the unique element such that wJwJ = w, we have
`(wJ) + `(wJ) = `(w) and this is called the parabolic decomposition of w. As W is finite,
W J is finite and it contains a unique element wJ

0 of maximum length. We utilize the
Bruhat order on W and W J , where u ≤ w if u equals a subword of a (or equivalently,
any) reduced word of w. We refer readers to [3] for a detailed exposition on Coxeter
groups.

We start with an algorithm to compute the minimum number of si that appears in
R(w) for all w.

Proposition 9. Fix w ∈W and si ∈ S. Define a sequence of Coxeter group elements w(0), w(1), . . .
as follows: w(0) = wJi and w(k+1) = (w(k)si)

Ji if w(k) 6= id, for k ≥ 0, where Ji = S− {si} is
a maximal subsystem of S. Then the minimum number of si that appears in R(w) is the k for
which w(k) = id.

Proof. First notice that in this procedure, if w(j) 6= id, then as w(j) ∈ W Ji , it must have
a single descent at si. As a result, `(w(j+1)) ≤ `(w(j)si) < `(w(j)) so we will eventually
end up at the identity. This procedure also produces a (class of) reduced word of w with
k si’s where w(k) = id.

Let k be such that w(k) = id and take an arbitrary reduced word si1si2 · · · si` of w. Pick
out the si’s in this reduced word as iaK = iaK−1 = · · · = ia1 = i where aK < aK−1 < · · · <
a1. For j = 0, 1, . . . , K − 1, let u(j) = si1si2 · · · siaj+1

which is the product from si1 to the

(j + 1)th si in this reduced word counted from the right. Also say u(K) = id.
Recall the following standard fact of Coxeter groups: if x ≤ y, then x J ≤ yJ for any

subsystem J ⊂ S. This can be proved via an application of the subword property of
Bruhat orders. Also see [3].

We now show that u(j) ≥ w(j) for j = 0, 1, . . . , k in the Bruhat order by induction.
For the base case, notice that both u(0) and w(0) is in the left coset wWJi and since w(0)

is the minimal coset representative, we have u(0) ≥ w(0). Now assume u(j) ≥ w(j) 6= id
for some j ≥ 0. By definition, both of them have a right descent at si so we have
u(j)si ≥ w(j)si by the fact in the last paragraph with J = {si}. With another application
of this fact with J = Ji, we have (u(j)si)

Ji ≥ (w(j)si)
Ji = w(j+1). At the same time, u(j+1)

and u(j)si are in the same coset of WJi by definition, so u(j+1) ≥ (u(j)si)
Ji ≥ w(j+1). The

induction step goes through.
Finally, u(k−1) ≥ w(k−1) 6= id. This means u(k−1) 6= id so K > k − 1, K ≥ k as

desired.

Recall that a generalized Cartan matrix A of a Coxeter system (W, S) is a real n × n
matrix such that
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• Aii = 2 for i = 1, . . . , n and Aij ≤ 0 for i 6= j,

• Aij < 0 if and only if Aji < 0 and Aij Aji = mij − 2 for i 6= j.

We say that a generalized Cartan matrix A is restricted if mij = 3, or equivalently, there
is a single edge between si and sj in the Dynkin diagram, implies that Aij = Aji = −1.
Note that if (W, S) is simply-laced, then any restricted generalized Cartan matrix is the
Cartan matrix. We now state our main result of the section.

Theorem 10. Let W be a finite Weyl group generated by S = {s1, . . . , sn}. Let v ∈ Rn
>0 be such

that vi is the minimum number of appearances of si in a reduced word of w0. Then there exists a
restricted generalized Cartan matrix A ∈ Rn×n of W such that Av ≥ 0, where the comparison
is made entry-wise.
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