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1 Introduction

The symmetric Macdonald polynomials Pλ(X; q, t) [10] are a family of functions in X =
{x1, x2, . . . } indexed by partitions, whose coefficients depend on two parameters q and
t. The related nonsymmetric Macdonald polynomials Eµ(X; q, t) were introduced shortly
after as a tool to study Macdonald polynomials, in a series of papers by Cherednik [2],
Macdonald [11], and Opdam [12]. The polynomials Eµ(X; q, t) are indexed by weak
compositions and form a basis for the full polynomial ring Q[X](q, t). Ferreira [5] and
later Alexandersson [1] studied the extension of these to the more general permuted
basement nonsymmetric Macdonald polynomials Eσ

µ(X; q, t), where X = {x1, . . . , xn},
σ ∈ Sn, and the length of µ is n.

The combinatorics of Macdonald polynomials has been actively studied for decades.
In [7], Haglund, Haiman, and Loehr gave a combinatorial formula for the modified Mac-
donald polynomials, H̃λ(X; q, t), and the integral form, Jλ(X; q, t). In [8] they subsequently
provided a formula for the nonsymmetric Macdonald polynomials Eµ(X; q, t), which
was then broadened to the more general polynomials Eσ

µ(X; q, t) in [1, 5].
In [3], the first and second authors with Haglund, Mason, and Williams introduced a

new family of quasisymmetric functions Gγ(X; q, t) they named quasisymmetric Macdon-
ald polynomials. They showed that Gγ(X; q, t) is indeed a quasisymmetric function, and
gave a combinatorial formula for Gγ(X; q, t) refining the compact formula for Pλ from
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[4]. The Macdonald polynomial Pλ(X; q, t) is a sum of these quasisymmetric Macdonald
polynomials, and at q = t = 0, Gγ(X; q, t) specializes to the quasisymmetric Schur functions
QSγ(X) introduced by Haglund, Luoto, Mason, and van Willigenburg in [9].

The goal of this article is to write an expansion of the polynomials Gγ(X; q, t) in the
fundamental basis. This basis was introduced by Gessel in [6] and is one of the most
common bases of the vector space of quasisymmetric functions. Our main results are
the following Theorems, see Section 2 for the relevant definitions.

Theorem 1.1. Let γ be a strong composition. Then

Gγ(X; q, t) = ∑
τ∈ST(γ)

tcoinv(τ)qmaj(τ)

 ∏
u∈d̂g(γ)
u 6∈W(τ)

1− t
1− qleg(u)+1tarm(u)+1


× ∑

U⊆W(τ)

(−t)|U|
(

∏
u∈U

1− qleg(u)+1tarm(u)

1− qleg(u)+1tarm(u)+1

)
FV(τ)∪U.

Theorem 1.2. Let γ be a strong composition. Then

Gγ(X; 0, t) = ∑
τ∈ST1(γ)

(1− t)ω(τ)(−t)|Des(τ)|tcoinv(τ)−coinv(Des(τ))FV̂(τ).

This article proceeds through a series of purely combinatorial proofs and results
using a variety of tableaux enumeration techniques, organized as follows. In Section 2,
we provide the relevant background. Section 3 provides a proof for Theorem 1.1. In
Section 4 we provide an alternative expansion in the Hall–Littlewood case, yielding
Theorem 1.2 and a related result for Jack polynomials.

2 Preliminaries and definitions

For a nonnegative integer n, a weak composition α = (α1, . . . , αk) |= n is a list of nonneg-
ative integers called the parts of α, summing to n, so that n = |α| = ∑k

i=1 αi. Let α+

denote the composition obtained by collapsing the (weak) composition α by removing
the zero-parts from α. We call a composition with no non-zero parts a strong composition.
If α1 ≥ α2 ≥ · · · ≥ αk, then α is called a partition. We denote by inc(α) the composition
obtained by sorting the parts of α in increasing order. Define β(α) to be the permutation
of longest length such that β(α) ◦ α = inc(α), where the length of a permutation is the
number of inversions in its word representation.

Example 2.1. For α = (2, 1, 0, 0, 3, 0, 1), we have α+ = (2, 1, 3, 1), inc(α) = (0, 0, 0, 1, 1, 2, 3),
and β(α) = (6, 4, 3, 7, 2, 1, 5).
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2.1 Quasisymmetric functions

Similar to the symmetric functions, the vector space of quasisymmetric functions has sev-
eral natural bases consisting of functions of fixed degree. We will focus on the monomial
basis {MS} and the fundamental basis {FS}, indexed by subsets S ⊂ [n− 1], for each fixed
degree n. The monomial basis functions are defined as

MS := ∑
i1<i2<···<ik

xα1
i1

xα2
i2
· · · xαk

ik
(2.1)

where k = |S|+ 1, and α is the (strong) composition corresponding to the subset S.
The fundamental basis functions are defined as

FS := ∑
i1≤i2≤···≤in

j∈S =⇒ ij 6=ij+1

xi1 xi2 · · · xin . (2.2)

For example,

M{2,3,6} = ∑
i1<i2<i3<i4

x2
i1 x1

i2 x3
i3 x2

i4 , and F{2,3,6} = ∑
i1≤i2<i3<i4≤i5≤i6<i7≤i8

xi1 xi2 · · · xi8 .

Let S ⊆ [n− 1]. It follows that

FS = ∑
S⊆S′

MS′ . (2.3)

For example, let n = 8 and S = {1, 4}. Then

F{1,4} = M{1,4} + M{1,2,4} + M{1,3,4} + M{1,2,3,4}.

The goal of this article is to give an expansion of the quasisymmetric Macdonald
polynomial Gγ(X; q, t), which we present below, in terms of the fundamental quasisym-
metric basis. Let γ be a strong composition. The quasisymmetric Macdonald polynomial
is defined by the infinite sum

Gγ(X; q, t) = ∑
α: α+=γ

Eβ(α)
inc(α)(X; q, t), (2.4)

where Eσ
µ(X; q, t) is the permuted basement Macdonald polynomial introduced in [5] and

further studied in [1]. We will define Gγ combinatorially in the next section. Note that
Eσ

µ is a polynomial in k variables, where k is the number of parts of µ, so we actually
mean Eσ

µ(X; q, t) = Eσ
µ(x1, . . . , xk; q, t), and σ ∈ Sk.

Remark 2.2. It turns out that Eβ(α)
inc(α)(X; 0, t) = Eid

α (X; 0, t). Thus the quasisymmetric
Hall–Littlewood polynomials Lα(X; t), defined in [9] as

Lγ(X; t) = ∑
α:α+=γ

Eid
α (X; 0, t),

coincide with Gγ(X; 0, t).

3



2.2 Tableaux formula for Eσ
µ(X; q, t)

The polynomial Eσ
µ(X; q, t) has a combinatorial description in the form of a tableaux

formula [7]. We review the relevant statistics for general compositions, though we will
primarily focus on the case where the parts of µ are arranged in weakly increasing order.

For any weak composition α, define dg(α), the diagram of α, to be the composition
shape in French notation with αi boxes in column i from left to right. The rows are
labeled from bottom to top starting with row 1, and a cell in row r and column c is
denoted by coordinates (r, c) ∈ dg(α). Define d̂g(α) to be the set of cells in dg(α) not
contained in the bottom row. If T is a filling of dg(α), the entry in a cell u ∈ dg(α) is
denoted by T(u). Let xT = ∏u∈dg(α) xT(u) be the monomial encoding the content of T.

The reading order of a diagram is the total order given by reading the entries along
the rows from top to bottom, and from left to right within each row. Two cells are said
to attack each other if they are in the same row, or if they are in adjacent rows where the
one above is strictly northeast of the one below. A filling T is considered non-attacking if
T(u) 6= T(v) for any pair of attacking cells u, v.

For a cell u ∈ dg(α), we call leg(u) the number of cells above u in the same column.
We call arm(u) the number of cells to the right of u in columns whose height does not
exceed the height of the column containing u, plus the number of cells to the left of u
in columns of height strictly smaller than the height of the column containing u. More
precisely, let u = (r, i). Then

arm(u) =|{(r, j) ∈ dg(α) : j > i, αj ≤ αi}|+ |{(r− 1, j) ∈ dg(α) : j < i, αj < αi}|

See Figure 2.1. Denote by South(u) the cell directly below u in the same column. The
set of descents of a filling of dg(α) is

Des(T) = {u ∈ d̂g(α) : T(u) > T(South(u))},

and the major index is
maj(T) = ∑

u∈Des(T)
leg(u) + 1.

Triples consist of a cell x, the cell y = South(x) directly below, and a third cell z in the
arm of x. If z is in the same row as x, this is called a type A triple, and if z is in the same
row as y, this is called a type B triple, as shown:

Type A:
x
y

z
Type B: z

x
y

Coinversion triples consist of type A triples where the entries are increasing in clock-
wise orientation, plus type B triples where the entries are increasing in counterclockwise
orientation. The coinv(T) statistic is defined as the total number of all such triples.
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row 5
row 4
row 3
row 2
row 1

Figure 2.1: The diagram of the composition (3, 1, 4, 2, 1, 4, 3, 5, 4) and the cells in the leg
and the arm of the cell u = (3, 6). Here leg(u) = 1 and arm(u) = 4.

Let γ be a strong composition, and let σ = β(γ) be the longest permutation such that
σ ◦ γ = inc(γ). Define NAT(γ) to be the set of non-attacking fillings of dg(inc(γ)) such
that the entries of the first row are order-equivalent to σ when read in reading order.

Example 2.3. Let α = (0, 4, 0, 3, 1, 0, 0, 3). Then inc(α) = (0, 0, 0, 0, 1, 3, 3, 4), α+ = (4, 3, 1, 3),
and β(α) = (7, 6, 3, 1, 5, 8, 4, 2). The NAT associated to α are fillings of dg(inc(α+)) with
the bottom row equal to (5, 8, 4, 2): the last ` entries of β(α), where ` = `(α+) = 4.
Notice that (5, 8, 4, 2), is order-equivalent to (3, 4, 2, 1), and (3, 4, 2, 1) = β(α+). Thus in
particular, all tableaux associated to α also belong to NAT(α+), such as the one below.

5
2 7 5
4 1 2

5 8 4 2

∈ NAT((4, 3, 1, 3))

By comparing with [1], we obtain the combinatorial formula for Eβ(α)
inc(α)(X; q, t), where

α is a weak composition:

Eβ(α)
inc(α)(X; q, t) = ∑

T∈NAT(α+)
T has bottom row π

wt(T)xT, (2.5)

where π is the last ` entries of β(α), for ` = `(α+). Here, the weight of a (nonstandard)
filling T is

wt(T) = qmaj(T)tcoinv(T) ∏
u∈d̂g(α+)

T(u) 6=T(South(u))

(1− t)
(1− qleg(u)+1tarm(u)+1)

(2.6)

Remark 2.4. We have given the tableaux formula for Eσ
µ where the parts of µ are weakly

increasing. A general formula exists (see [1] for details) for an arbitrary composition
µ and a permutation σ by keeping track of the “basement” of a filling. Comparing
definitions, it follows that for any composition α, the basement of a filling of dg(inc(α))
can be recovered uniquely from the bottom row of the filling.
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2.3 Standard, packed, and non attacking fillings

A packed filling is one that uses every integer from the set {1, . . . , m} for some m. Any
filling compresses to a packed filling by shifting the alphabet of values in the filling
down as necessary: given a set {s1, . . . , sk} with s1 < · · · < sk, the entries si become i.

It is convenient to work with packed fillings in the context of quasisymmetric func-
tions. We consider every packed filling T to be the representative of the family of fillings
which compress to T.

Lemma 2.5. Suppose T′ ∈ NAT(γ) compresses to a packed filling T ∈ NAT(γ). Then
coinv(T′) = coinv(T) and maj(T′) = maj(T).

The proof of the above lemma follows from the fact that the relative order of entries
is preserved by compression. Moreover,

∑
T′

xT′ = MT,

the sum being over all fillings T′ that compress to the packed filling T, and MT is the
monomial quasisymmetric function corresponding to the content of T. Thus the q, t-
generating function of the family of fillings that compress to the packed representative
T is the weight of T times MT. Hence, we may work with the finite set of packed fillings
to represent all possible fillings.

From (2.4) and (2.3), we thus obtain

Gγ(X; q, t) = ∑
T∈NAT(γ)
T packed

qmaj(T)tcoinv(T)MT ∏
u∈d̂g(γ)

T(u) 6=T(South(u))

(1− t)
(1− qleg(u)+1tarm(u)+1)

. (2.7)

Example 2.6. For γ = (1, 2), all the packed nonattacking fillings in NAT(γ) are shown
below with their weights, to obtain

G(1,2) = M{1} +
(1− t)(1 + t + qt)

1− qt2 M{1,1}.

γ = (1, 2): 2
1 2

M{1}

3
1 2

qt(1−t)
1−qt2 M{1,1}

2
1 3

(1−t)
1−qt2 M{1,1}

1
2 3

t(1−t)
1−qt2 M{1,1}

Standard fillings (or standard tableaux), denoted by ST(γ), are fillings of dg(inc(γ))
such that every element in the set {1, . . . , n} appears exactly once, where n = |γ|. Thus
there is a bijection τ : dg(inc(γ)) → {1, . . . , n} between cells of dg(inc(γ)) and the
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entries {1, . . . , n}, and so we can slightly abuse notation and refer to both a cell and its
entry when we work with standard tableaux.

Define the standardization map std : NAT(γ) → ST(γ) as follows. For T ∈ NAT(γ),
let τ = std(T) be the unique standard filling in ST(γ) that preserves the relative order
of the original tableau, and where the reading order is used to break ties. It is straight-
forward to check that if τ is the standardization of T, then coinv(T) = coinv(τ) and
maj(T) = maj(τ). See Example 2.7 for the standardization std(T) of T ∈ NAT((1, 4, 3)).

Let T ∈ NAT(γ) with standardization τ = std(T), and n = |γ|. Define the reading
word of T to be the sequence of entries of T listed in reading order, denoted by rw(T).
The reading word of τ is thus a permutation of {1, . . . , n}. Define ID(τ) to be the inverse
descent set, where i ∈ ID(τ) if i + 1 precedes i in rw(τ).

Example 2.7. We show T ∈ NAT((1, 4, 3)) and the corresponding standardization τ =
std(T). We have rw(τ) = (3, 5, 1, 8, 6, 2, 7, 4), and ID(τ) = {2, 4, 7}.

T =

2
13
35
241

τ = std(T) =

3
15
68
472

For τ ∈ ST(γ), define V(τ) ⊆ [n − 1] to be the set of entries such that i ∈ V(τ)
if i ∈ ID(τ) or if i and i + 1 are in cells that attack each other. Define W(τ) = {i ∈
τ : South(i) = i + 1} to be the set of entries i with i + 1 directly below. Note that
V(τ) ∩W(τ) = ∅.

Given a standard filling τ with n cells, the cells labelled from 1 to n− 1 are partitioned
into three blocks:

• The cells with entries in V(τ), namely those cells where i ∈ ID(τ) OR i and i + 1
are in attacking cells.

• The cells with entries in W(τ), namely those cells where i + 1 is directly below i.

• The rest of the cells with entries in [n− 1]\(V(τ) ∪W(τ)).

Let γ |= n. We consider the pre-image in NAT(γ) of standard fillings τ ∈ ST(γ).
For a choice of V(τ) ⊆ S ⊆ [n− 1], define a destandardization map δS(τ) : dg(γ) → Z

as follows. Let α be the (strong) composition corresponding to the set S. Let w be
the word containing the content associated to α in weakly decreasing order, given by
w = (1α1 , 2α2 , . . . , kαk) where α has k parts. Define δS(τ) := w ◦ τ to be the unique filling
of dg(γ) with content α that standardizes to τ.

Example 2.8. Consider the standard tableau τ from Example 2.7. ID(τ) = {2, 4, 7}, and
the set of indices i such that i and i + 1 are in cells that attack each other is {6}, so
V(τ) = {2, 4, 6, 7}. Thus, S can be any subset of [7] containing V(τ). We show some
examples of δS for various choices of S:
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δ{ 1,2,3,
4,5,6,7

}(τ) = 3
15
68
472

δ{1,2,4,
5,6,7

}(τ) = 3
14
57
362

δ{2,4,
6,7

}(τ) = 2
13
35
241

The following lemma gives the weight of a destandardized filling in terms of its
standardization.

Lemma 2.9. Let γ |= n, τ ∈ ST(γ), and S such that V(τ) ⊆ S ⊆ [n− 1]. Then

wt(δS(τ)) = tcoinv(τ)qmaj(τ) ∏
u∈d̂g(γ)
u 6∈W(τ)

1− t
1− qleg(u)+1tarm(u)+1 ∏

u∈S∩W(τ)

1− t
1− qleg(u)+1tarm(u)+1

.

For a strong composition γ |= n where `(γ) is the number of parts, define h(γ) =
n− `(γ) to be the number of cells in dg(γ) without its bottom row. Note that h(γ) is the
number of cells in d̂g(γ).

3 Proof of Theorem 1.1

We will start with a proof for the q = 0 specialization of Theorem 1.1 to develop the
main ideas of the proof. The proof for the general q case follows the same strategy.

3.1 The q = 0 case

We assume q = 0 throughout this section. Let γ be a strong composition. When we com-
pute compute Gγ(X; 0, t), the only surviving tableaux in (2.7) are those with an empty
descent set, which means the entries must be non-increasing as we read the columns
from bottom to top. We denote the subsets of NAT(γ) and ST(γ) that have nonzero
weight at q = 0 by NAT0(γ) and ST0(γ), respectively. We will prove the following.

Gγ(X; 0, t) = ∑
τ∈ST0(γ)

tcoinv(τ)(1− t)h(γ)−|W(τ)| ∑
U⊆W(τ)

(−t)|U|FV(τ)∪U. (3.1)

Observe the following. The denominator in the product of (2.7) vanishes, and the
weight of each T ∈ NAT0(γ) becomes

wt(T) = tcoinv(T)(1− t)|{u∈d̂g(λ) : T(South(u)) 6=T(u)}|.

Moreover, for τ ∈ ST0(γ), Lemma 2.9 specializes to

wt(δS(τ)) = tcoinv(τ)(1− t)h(γ)−|W(τ)\S|. (3.2)

We are now ready to prove Theorem 1.1 at q = 0.
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Proof of (3.1). From the definition, we have

Gγ(X; 0, t) = ∑
T∈NAT0(γ)

wt(T)xT

= ∑
τ∈ST0(γ)

∑
V(τ)⊆S⊆[n−1]

wt(δS(τ))MS

= ∑
τ∈ST0(γ)

∑
V(τ)⊆S⊆[n−1]

tcoinv(τ)(1− t)h(γ)−|W(τ)\S|MS

= ∑
τ∈ST0(γ)

tcoinv(τ)(1− t)h(γ)−|W(τ)| ∑
V(τ)⊆S⊆[n−1]

(1− t)|S∩W(τ)|MS (3.3)

where the third line is by (3.2). We then reformulate the second summation:

∑
V(τ)⊆S⊆[n−1]

(1− t)|S∩W(τ)|MS = ∑
W⊆W(τ)

(1− t)|W| ∑
V(τ)⊆S⊆[n−1]

S∩W(τ)=W

MS

By the binomial theorem, (1− t)|W| = ∑U⊆W(−t)|U|. Plugging in gives

∑
W⊆W(τ)

∑
U⊆W

(−t)|U| ∑
V(τ)⊆S⊆[n−1]

S∩W(τ)=W

MS = ∑
U⊆W(τ)

(−t)|U| ∑
W⊇U

∑
V(τ)⊆S⊆[n−1]

S∩W(τ)=W

MS

= ∑
U⊆W(τ)

(−t)|U| ∑
V(τ)∪U⊆S⊆[n−1]

MS

= ∑
U⊆W(τ)

(−t)|U|FV(τ)∪U,

which completes the proof.

3.2 The general q case

Let γ be a strong composition of n. Recall that the weight of a tableau T ∈ NAT(γ) is

wt(T) = tcoinv(T)qmaj(T) ∏
u∈d̂g(γ)

T(South(u)) 6=T(u)

1− t
1− qleg(u)+1tarm(u)+1

.

As in the q = 0 case, we split the set NAT(γ) via the destandardization map δS into
disjoint components indexed by their representative standard fillings in ST(γ). For τ ∈
ST(γ) and any V(τ) ⊆ S ⊆ [n− 1], again, the only cells that will potentially change the
weight of the destandardized tableau δS(τ) are those in W(τ). This is because when an
entry i ∈ τ has i + 1 above it, it is possible for that pair to destandardize to the same
value if δS(τ) ◦ τ−1(i) = δS(τ) ◦ τ−1(i + 1), changing the product in the weight function.

We require the following lemma.
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Lemma 3.1. Let W be any subset of the cells of dg(λ). Then

∏
u∈W

1− t
1− qleg(u)+1tarm(u)+1

= ∑
U⊆W

(−t)|U|
(

∏
u∈U

1− qleg(u)+1tarm(u)

1− qleg(u)+1tarm(u)+1

)
.

We can now prove the main result.

Proof of Theorem 1.1. The proof is now completely analogous to the q = 0 case with ad-
dition of Lemma 3.1 in place of the binomial theorem.

4 Further simplifications and specializations

In this section, we further simplify the result for the Hall–Littlewood case (q = 0) from
Section 3.1. First, we introduce some notation. Let

ST1(γ) = {τ ∈ ST(γ) : i ∈ Des(τ) =⇒ South(i) = i− 1}.

That is, reading down columns, values can decrease by at most 1 per cell. We may
send any element of τ′ ∈ ST1(γ) to an element of τ ∈ ST0(γ) by sorting entries within
their columns to become weakly decreasing from bottom to top. In this case the cells
containing descents are sent to some U ⊂ W(τ), though the values in the cells may
change. To make this sorting function invertible, we need to keep track of U. For any
U ⊆ W(τ), consider the map ιU that sends τ ∈ ST0(γ) to τ′ ∈ ST1(γ) by reversing the
order of certain consecutive values in columns of τ. Specifically, for each maximal set
{i, i + 1, . . . , i + k− 1} ∈ U, the values in [i, i + k] are reversed so that {i + 1, i, . . . , i + k}
is similarly maximal in Des(τ′). All other values are fixed. Note that since the cells of
standard filling τ are identified with the values they contain, we represent U by a subset
of [n]. Further, since τ ∈ ST0(γ) is the result of sorting the entries within the columns of
τ′, τ′ has a unique preimage.

Next, for τ′ ∈ ST1(γ), let

coinv(Des(τ′)) := ∑
u∈Des(τ′)

arm(u),

ω(τ′) := h(γ)− |{i ∈ τ′ : i and i + 1 share a column}|.

Lastly, we replace V(τ′) with a new set in the context of ST1(γ). The descent group of
i is the maximal connected set of cells in the column of i such that every cell is a decent
except the bottom cell. By construction, every cell is contained in a unique descent
group. We say i attacks i + 1 through descents if a cell in the descent group of i attacks a
cell in the descent group of i + 1. Notice that if i attacks i + 1 in τ′ ∈ ST1(γ), then i must
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be at the top of its descent group and i + 1 must be at the bottom of its descent group.
Define V̂(τ′) as the set of i in τ′ such that i ∈ ID(τ′) or i attacks i + 1 through descents.
Since i attacking i + 1 implies i attacks i + 1 by descents, it follows that V(τ′) ⊆ V̂(τ′).

Example 4.1. Consider τ ∈ ST0((1, 4, 3)) and τ′ = ι{3,4}(τ) ∈ ST1((1, 4, 3)).

τ =

3
41
52
786

τ′ =

5
41
32
786

Here, coinv(Des(τ′)) = 2, ω(τ′) = 2, ID(τ′) = {3, 4, 7}, and V̂(τ′) = {2, 3, 4, 5, 6, 7}.
Theorem 1 (Theorem 1.2). Let γ be a strong composition. Then

Gγ(X; 0, t) = ∑
τ∈ST1(γ)

(1− t)ω(τ)(−t)|Des(τ)|tcoinv(τ)−coinv(Des(τ))FV̂(τ).

Proof. The proof is a matter of changing the order of summations in (3.1), applying ιU,
tracking the changes to statistics, and combining the sums. Combining the two sums
completes the proof.

4.1 Jack specialization

We also consider the specialization of Gγ(X; q, t) to the setting of Jack polynomials, from
which we immediately get a new definition of a quasisymmetric Jack polynomial. Recall
that the Jack polynomial indexed by a partition λ with parameter α is a symmetric
polynomial that can be obtained from

Jλ(X; α) = lim
t→1−

 ∏
u∈dg(λ)

1− tarm(u)+1tα leg(u)

1− t

 Pλ(X; tα, t).

Thus define the quasisymmetric Jack polynomial indexed by a strong composition γ as

Gγ(X; α) = lim
t→1−

 ∏
u∈dg(λ)

1− tarm(u)+1tα leg(u)

1− t

Gγ(X; tα, t). (4.1)

Using Theorem 1.1 we obtain the following corollary.

Corollary 4.2. The quasisymmetric Jack polynomial has the following fundamental expansion:

Gγ(X; α) = ∑
τ∈ST(γ)

 ∏
u∈W(τ)

(α(leg(u) + 1) + arm(u) + 1)


× ∑

U⊆W(τ)

(−1)|U|
(

∏
u∈U

α(leg(u) + 1) + arm(u)
α(leg(u) + 1) + arm(u) + 1

)
FV(τ)∪U.
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