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The Combinatorics of Evolutionary Trees-a Survey

L. A. Szekely, * P. L. Erdos, M. A. Steel

ABSTRACT: We survey here results and problems from the reconstruction theory of
evolutionary trees, which involve enumeration and inversion.

1. Introduction

Since the work of Darwin, there has been a dream of biologists: to reconstruct the tree of
evolution of living things. That tree could be the only scientific basis for classification. In

the last two decades the dramatic progress in molecular biology (reading long segments of
genetic sequences) led to a new field, the theory of molecular evolution.

One assumes that the process of evolution is described by a tree, in which no degree
exceeds 3, since evolutionary events are too rare to coincide. In this tree the leaves denote

existing species represented by corresponding segments of aligned DNA sequences, the
unlabelled branching vertices may denote unknown extinct ancestors; since fossils do not
keep records of the DNA sequence. For a given set of existing species, we define their true
tree by taking the subtree induced by them in the tree describing the process of evolution
and undoing the vertices of degree two. We term any binary tree, in which leaves are
labelled by the species and the branching vertices are unlabelled, an evolutionary tree.
The very problem of reconstruction may be put in this way: given a set of species with
corresponding segments of aligned DNA sequences, select the true tree from the set of
possible evolutionary trees.

In this paper we assume that every bit of the aligned DNA sequence is one of the
four nucleotides, A (Ademne), G (Guanine), C (Cytosine), T (Thymine); i.e. we neglect
insertions and deletions. Biologists also would like to subdivide an edge of the true tree by
a root r to denote a common ancestor and the direction of the evolution. However, if you
have a procedure to solve the problem above, it easily can be applied to finding the root
by outgroup comparison: add a new species to your list which is known to be far from all
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your species, reconstruct the larger true tree, and the neighbor of the new species can be
considered the root of the smaller true tree.

It is not always the case, that A, G, C, T arethe letters of the alphabet; a two-letter

alphabet (identifying purines A= G and pyrimidines C = T), and a 20-letter alphabet of
amino acids for protein sequences are also possible.

To solve the reconstruction problem, one needs a mathematical model that distin-

guishes the true tree in mathematical terms, and one also may expect, that the math-
ematical model in question corresponds to a known or generally assumed mechanism of

molecular evolution. One also may expect several other attributes of the model, as Hendy,

Penny, and Steel [PHS1] listed: a polynomial time algorithm for tree reconstruction, con-

vergence on relatively short sequences to the true tree, insensitivity to small errors in input

data, and falsifiabilty of the model in a Popperian sense. However, no tree reconstruction

method proposed is powerful enough to meet all these criteria; many popular ones do not

even correspond to any assumed mechanism of molecular evolution. It is no surprise, that

Penny, Hendy, Zimmer and Hamby [PHZH] can show sets of species, for which different

evolutionary trees have been published on the basis of different data, and eveu on the basis

of the same data, using different methods. In [PHS1], [PHS2], and other papers, Penny et

al. gave a program to put the theory of evolutionary trees on a sound philosophical and

mathematical foundation.

It is not the point of the present paper to overview advantages and shortcomings

of all tree reconstruction methods. For a comparison of different methods, see [PHS1].

We restrict the present paper to our modest contribution, that involves enumeration and

inversion, to that program. Sections 3-5 closely follow [SSE]. We give no proofs.

Cavalli-Sforza and Edwards [CSE] introduced the parsimony principle to the analogy

of many minimum principles in science. In many instances the parsimony principle yields

reasonably good trees, however no mechanism of evolution is accountable for it, and there

are situations-where some branches of the true tree have significantly diflFerent rate of

change-in which it may be false, see Felsenstein [F]. Section 2 is devoted to the parsimony

principle and related enumeration results.

Section 3 describes a Fourier inverse pair depending on trees and Abelian groups, and

specializes it to the group Z^. Section 4 sets Kimura's models of molecular evolution

in terms of Section 3 and outlines the spectra! analysis/closest tree method. Section 5

130



is devoted to the construction of a complete set of invariants for Cavender's model and

Kimura's 3-parameter model, and Section 6 concludes.

2. The parsimony principle

Let C denote the letters of our alphabet, which frequently will be referred to as a set of
colours, and let Cm denote the set of m-letter words over that alphabet. Let T be an
evolutionary tree with leaf set L. We term a map ̂ :L - ^ Cm as a leaf-colouration. The
colouration ^ : V(T) - > Cm is an extension of the leaf-colouration ^ if the two maps are
identical on the set L. The changing number of the colouration ^ is the number of pairs
of <edge, letter position>, where end-vertices of the edge have different colours at the
corresponding letter position according to ̂ . We term the minimum changing number of
the tree T over all extensions of ̂  the length of T. The parsimony principle says, that the
true tree has minimum length, i.e. maximum parsimony. Unfortunately, results of Foulds
and Graham [FG] show that the decision problem, whether for a set of leaves and assigned
words, an evolutionary tree with prescribed length exists, is NP-hard, even when \C\ = 2.
Therefore, from a statistical point of view, it is reasonable to ask for the expectation and
variance of the length of a random evolutionary tree, in order to use this information as

a selection principle (Steel [Sl]). Not much is known yet on the variance, but there are
some results on the expectation. The computation of the expectation can be reduced to
the solution of the following enumeration problem.

Problem. Let A(ai,..., a<) ̂  > 2, a, > l, n= ai+... + a^ denote the number of binary
trees with a, labelled leaves of colour i, With unlabelled branching vortices, with length k.
Evaluate fk{ai,..., at).

This enumeration problem is still open; not even a conjectured value of fk(ai,..., at) is at
hand. We list here the solved instances of the problem. Carter, Hendy, Penny, Szekely
and Wormald [CHPSW] proved the

Bichromatic binary tree theorem.

h(a, b) =(k- l)!(2n - Sk)N(a, k)N(b, k)^2n_5y-[^,
;n - zm - D!!

where a+b = n and

N^k)=(2x^k^ly2 x-2k-l)\\.

(1)

(2)

131



For more than 2 colours, results for extreme length values are available. Observe that
with k colours present, the length is at least k-1. For this extreme value, Carter & al.
[CHPSW] proved

A-, (.u..., «*)=^2_"^,, ^, i)-^. i).
For ai > 2, using inclusion-exclusion, Steel [Sl] went further to prove

(k - l)(4(n - fc)2 -2n+ k)(2n -5)'!
/fc(ai,..., afc) = (2n - 2fc + 1)!!

7V(ai, l). --lV"(afc, l).

In another paper Steel [S2] obtained:

f^k, k^W^}Q(^^k_^[y,
a==

(3)

where [xl}Q{x) = 2(4^^F3). Notice that with 3 colour classes of size k the length is at

most 2k, an extreme case, again. D. Penny [personal communication] computed some small
values of / for 3 colours, which may be useful for making and/or checking conjectures:

,^(2, 2, 3) = 27, 318, 600 for m = 2, 3, 4;

,^(2, 2, 4) = 165, 2610, 7620 for m = 2, 3, 4;

,^(2, 3, 3) =99, 1566, 5526, 3204 for m = 2, 3, 4, 5;

,^(3, 3, 3) =351, 6966, 40554, 60858, 19116 for m = 2, 3, 4, 5, 6;

,^(2, 2, 5) = 1365, 27090, 106680 for m = 2, 3, 4;

,^(2, 3, 4) = 585, 11610, 57420, 65520 for m - 2, 3, 4, 5.

A trivial, but useful formula in establishing more values of / is

/fc(ai,..., ar, l) = (2n-5)/fc-i(ai,..., a^). (4)

Using (1) and (4), one easily extends the little table above for the values of fm {l, a, b}.

The first proof of the bichromatic binary tree theorem relied on generating functions,
multivariate Lagrange inversion and computer algebra. Later on, Steel gave a proof from
a combinatorial decomposition based on Menger's theorem [Sl], and Erdos and Szekely
[ES2] simplified his proof further. It has turned out, that (2) counts binary forests of
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k components on x labelled leaves, such that every component contains one vertex of

degree two or zero [CHPSW], [E]. The term k\N{a, k)N(b, k) nearly present in (1) can be
explained as such forests being built on both colour classes of leaves and then the trees

are matched in all possible ways. Then the rest of (1) comes into play at building different
trees of length k from the matched forests.

It became evident, that a solution of the general enumeration problem requires a good
characterization of the fact, that the length of a tree is not less than t; for two colours
Menger's theorem provides for such a good characterization. A natural generalization of
the length is the well-known multiway cut problem; given a graph G and N C V((5), find
an edge set of minimum size, whose deletion separates each pairs of N. Dalhaus & al.
[DJPSY] showed that the multiway cut problem is NP-hard (even for planar graphs, if
I TV I is not bounded). Hence, the existence of such a good characterization is unlikely in
general. For r > 2 colours and (not necessarily binary) trees Erdos and Szekely [ES3]
proved the following min-max theorem to give good characterization:

Theorem. The length of a leaf coloured tree is equal to the maximum number of oriented

paths, connecting differently coloured leaves, such that no edge is used by two oppositely
oriented paths, and no two paths using the same edge end in the same colour.

However, this is not enough in itself, to solve the problem. Notice that it is unlikely that
a product formula like (1) solves the problem, since the given numerical values have some
large prime factors e.g. 43, 53, 89; and (3) does not suggest any closed form either.

We would like to close this section with applications and a by-product. The applica-
tions are in biology. The well-known astronomer Sir Fred Hoyle has suggested that the
Earth is continuaUy bombarded by viruses (including influenza viruses) that originate from
comets. Henderson, Hendy and Penny [HHP] showed that his hypothesis may be rejected
with very high probability; their basic mathematical tool was the bichromatic binary tree
theorem. A further similar application, due to Steel, Hendy and Penny [SHP], applies
the bichromatic binary tree theorem to calculate a permutation-based statistic for aligned
sequences over the 2-letter alphabet, which allows for a test, whether the alignment is
significantly "tree-like".

The byproduct is a bijection of Erdos and Szekely [ESl] between some trees with
unlabelled branching vertices and set partitions, which gives a unified technique to solve a
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number of tree enumeration problems. The motivation for the bijection came from count-

ing evolutionary trees, which yields a semifactorial function (Gavalli-Sforza and Edwards
[CSE]), like the number of partitions of a 2n-element set into 2-element sets. Had not
we seen counting of trees with unlabelled branching vertices in biomathematics, we would
hardly have ever come to this point.

3. A Fourier calculus

Let us be given a tree T with leaf set L and one arbitrary leaf E, called a root. We do not
need that the tree is binary, but we assume that no vertex has degree two. Suppose that

we are given a finite Abelian group G and for the edges e 6 E(T} we have independent
G-valued random variables ̂ e with pe{g) := Prob{^e = g) and EgeGPe(^) = 1. Produce a
random G-colouration of the leaves of the tree by evaluating ^e for every edge and giving

as colour to the leaf I the product of group elements along the unique Rl path. Let /o.

denote the probability that we obtain a leaf colouration a : L\ {R} - > G. We need to
recall some facts on characters and the Fourier transform, which can be found in [J] or in

[EvS].

Lemma. Let G be a finite Abelian group, then

(i) the character group G is isomorphic to G.

(ii) if f :G ->C isa. complex-valued function and f : G

f{x) = E xWM.
geo

then for all g ^ G

w = T^ E ̂ )Ax).

C is defined by

\G\
xeo

(iii) The characters of a direct product group are exactly the products of characters.

Take G'n-l = the set of colourations cr : L\ {R} - > G endowed with pointwise mul-

tiplication. Let\= (-^i^ G :l ^ L\ {R}) be an ordered (n - l)-tuple of char-
acters. Then ^ £ G'n-l acts on Gn~1 according to Lemma (iii). For e £ E(T), set

Le={l G. L :e separates I from R'mT}. Define

rx= n E^)II^)- (5)
eEE(T)geG l^Le

In [SSE] we obtained the following inverse pair:
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Theorem.

rx= S AH^MO) a"^
o-eo"-! i

(6)

^= =T E rxF[^(0). (7)
x£Gn-1 '

In [SSE] we observed that (6) and (7) are equivalent by Lemma (ii) for any f : Gn~1 - > C
and r : G'"-l -> C; and it is no longer difficult to prove (6) with our f^ and r^, as soon as
the correct definition (5) is discovered. Let us specialize the Theorem for G= Z^-, since it
admits a combinatorial description and has practical significance at the same time. Fourier
calculus over Z^- occured many times in the literature (see [SSE] for some references), but
not for the saine purpose.

For every l^L\{R}, take a copy oiG, G=G^= Z^ and G = G^by

^ = {(<7i,.., <r^) : (T, C {1}}, G^ = {(JTi,.., Z^) : X, C {Z}},

both endowed with the positionwise symmetric difference operation as group multiplica-
tion. For ̂ = (Xi,..., Xm)^ G^ and ̂  = ((7i,..., o-^) e ^ define the action

xW={-i^'i=l}ainxi}.

For the direct product of G^s and G^s one has

Gn-1 = {(<ri,.., ^) :(T, CZ\{^}}, Gn-1 = {{X[,..^X'J:XI, CL\{R}}.

For the combinatorial interpretation the key observation is that the latter formula can be
identified with

(?n-1 = { ,.., ^) :x, c z, \Xi\ even},

endowed by the positionwise symmetric difference operation as group multiplication and
character action

 ,..,
^)(<7l,.., ^)=(-l)^-=ll(rln^l

under the correspondence

x^f^:
xi={^

, if \Xi\ even,
U{R}, if |^,'| odd.
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Now (5) turns into

^,..... x_= n E(-i)l''n{i:cep(T'x<)}l>'. (»).XIT-^XT,
e^E(T)gCM

where P(T, Xi) = {e e E{T) : \Le n Xi\ odd} (the unique T-join of the set Xi for a graph
theorist); and (6)-(7) turns into (8)-(9)

Vm 1^.. n V.

^,..., x»= E (-i)E^k<n^1/..,.-
0-1,..., (T^

_L_ v (_^T=^^X^
'<Tl,..., 0-m - r>m(n_] -X. 1, ..., -X.m

(8)

(9)^m(n-l)
X-i,..., Xm

It is an important fact that the connecting matrices in (6)-(7) are- after normalization-

unitary, and hence the connecting matrices in (8)-(9) are Hadamard.

4. Kimura's models of niolecular evolution

After the work of Kimura, the general assumption for the mechanism of molecular evolution

is that changes in the DNA are random. It is assumed that changes at different sites are

independent and of identical distribution. In case the data violates too much the condition

on identical distribution, one may thin out the sequences by considering one site of each of

the codons (the consecutive triplets of nucleotides encoding amino acids), particularly the

third position, which is more redundant in the coding scheme than the other two positions,

and therefore less influenced by natural selection. For m = 1, the model described in

Section 3 specializes to a model of Cavender Cl , for which Hendy and Penny found

the special case of the calculus above and applied it in their spectra! analysis/closest

tree method for tree reconstruction from sequences over a 2-letter alphabet [H], [HP1],

[HP2J. Our part was the generalization for other groups; the practical importance of this

generalization is mostly for m = 2, i.e. for sequences over the 4-letter alphabet A, G, C,

T. We explain the m = 2 case in details, the explanation also applies, mutatis mutandis,

to m = 1. It is an interesting paradox of the theory of evolution, that evolution is random

at the molecular level and follows natural selection at a high level.

From now on we describe Kimura's 3-parameter model [K2, K3] and some restricted ver-

sions of it, which are known as Kimura's 2-parameter model [Kl] and Jukes-Gantor model
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[JC], (the Jukes-Cantor model is more explicit in Neyman [N]). We follow the group theo-
retical setting of these models from Evans and Speed [EvS]. Take the symmetric difference
group of the subsets of M = {1, 2}, which is the Kleinian group ̂ 2 x Z^ with generators
{1} and {2}. We compromise at this point and do not assume any longer, that evolution-
ary trees and the true tree are binary, but we assume, that they have no vertex of degree
two. Take the true tree with a common ancestor r, a random subset of M is assigned
under a certain (unknown) distribution to r. To every edge of the tree a random element
of the Kleinian group is assigned independently. In the group theoretical setting of the
Kimura's models [EvS], the elements of the Kleinian group are identified with nucleotides,
A^ 0, (5 ̂  {2}, C ^ {I}, T ^ M. The random group element at r tells the original
nucleotide value there, and the rajidom variable at an edge describes the nucleotide change
on that edge. In terms of biology, multiplication by 0 on an edge causes no change in the
nucleotide, multiplication by {2} causes transition, and multiplication by {1} or M causes
one of the two possible types of transversions. To every leaf / the product of group elements
along the unique path rl and in r itself is assigned. We have a random 4-colouration of the
leaves (in fact, of all vertices) of the tree. That is Kimura's 3-parameter model of molecu-
lar evolution. Kimura's 3-parameter model allows for every edge e of the tree 4 arbitrary
probabiUties which sum up to 1, i.e. 3 free parameters, which may be different on different
edges. Kimura's 2-parameter model is similar, but further restricted by pe ({2}) = pe {M)
for all edges, and finally, the Jukes-Cantor model requires in addition pe ({l}) = Pe{M) for

all edges.

It is very interesting, that the models above were equipped with substitution mecha-
nisms for transitions and transversions that fit perfectly the group theoretical description,
although this was not the motivation for their invention.

The model, in which we work, slightly differs from Kimura's models, namely, we do
not have a root r for an unknown common ancestor. This is in no way a serious loss, since,
as we have already explained, it easily can be found by outgroup comparison. The root
that we use, is, like in Section 3, one arbitrary leaf R, which represents an existing species.
At every site of the sequence of R, we find a group element, and for normalization, in
every leaf we multiply at the same site with the inverse of that group element. We refer
to the sequences obtained as normalized sequences, note, that the normalized sequence
of R contains identity elements only. From the normalized sequences we can read a leaf
colouration at every bit; we count relative frequencies of leaf colourations and we treat
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these relative frequencies as if they were the ,01, 0-2 leaf colouration probabilities from the

model of Section 3. Observe that the propagation of group elements along the tree is
direction dependent unless pe (g) = Pe{9~1) for all e and g; and without this condition

the normalization would not make sense. However, for G == Z^, the condition holds

automatically.

We had a set of species with corresponding segments of aligned DNA sequences. We

selected an arbitrary species for R and we normalized the sequences from R, and obtained

an f'a^^^ relative frequency of the colouration (o-i, <72) among the bits. Now we face the
following problem: which tree T and probability distributions pe (p) over its edges yield a

leaf colouration probability , 01, 02 = /ai. o-z ^or ^ (<Ti5<72)? Working with real data, we
must be satisfied with the best approximation in a reasonable norm. Having the pe's on

the edges of the true tree allows for estimating a time scale, i. e. how far ago in time the

evolutionary events in question did happen. The following theorem will give a solution for

the problem; we formulate it for G = Z^.

Let H denote the connecting Hadamard matrix in (8). Let f denote the vector of

/cri,..., cr^'s in (8). We adopt the convention of writing [v]. for the jth coordinate of the
vector v. Let K denote the Hadamard matrix, in which rows and columns are indexed

with subsets of M, and the general h, g entry is

(-l)"'n»l;
let pe denote the vector, for which [pe ]^ = Pe{h). For a positive vector v, we denote by

log v the vector, for which [log v]^ = log[v]^.. We define an important set here, which is
essential also for our results on invariants:

C(T) ={(.".,.")= e^E(T). k^M. .. ={^(JB: ^ise}- t10'

We generalized with Hendy [SHSE] the spectral analysis/closest tree method as follows:

Theorem. In the model of Section 3 for G = Z^,

[H-llogH{]^,...,^
fo,
[K-llogKp^,

if((ri,.., ^)^C(T),
if(0,.., 0)^(<7i,.., ^)eC(T)

defined by c and h in (10),
- Eee£;(T) Eo^hGM [Jft:-l log KPe]^ if (o-l, ..., 0-m) - (0, ..., 0),

if all the logarithms are to be taken of positive numbers.

(11)
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We note here, that the model of Section 3 does not imply the existence of the logarithms;

however, for real data, there is no problem with them, due to the fact, that the probabilities

pe (g) are sufficiently small for g -f- (0,..., 0). Working with f arising from the model of

Section 3, (11) and (10) tell the edges of the tree, and from (11) one can obtain pe for all

edges as well.

Working with empirical f , the closest tree method, which is a branch-and-bound

algorithm, determines then the evolutionary tree and the pc's over its edges, which yields

f, such that H~l logfff approximates H~l \ogHf best in the Euclidean norm. The actual

computation can be facilitated by writing H into a synunetric form achieving ff-l =

4tl~nH and by an adaptation of the fast Fourier transform. The inverse pair (8)-(9) is a
necessary tool in proving (11).

5. Invariants

There is a continuing interest in the theory of invariants of evolutionary trees. Roughly
speaking, an invariant is a polynoinial identity, which holds on one evolutionary tree no

matter what the probabilities assigned to the edges are, and usually does not hold on other

evolutionary trees. The great advantage of using invariants is that one may discriminate

against some trees without (strong) assumptions regarding the probabilities. Invariants

were introduced by Gavender and Felsenstein [OF], [02], [C3] and Lake [L], and recently
Evans and Speed [EvS] gave an algebraic technique based on Fourier analysis to decide if
a polynomial is invariant or not for Kimura's 3-parameter model.

Here we give explicitly a complete set of invariants for the mathematical model de-

scribed in Sections 3-4 for G = Z^-. We still do not assume, that the tree is binary, but we

assume, that no vertex has degree two. For a formal definition, let us be given a tree T and
another tree T on the same leaf set L and root jR. Introduce the indeterminates x,̂

1,

for all o-i C L\ {R}, i = l, 2,..., m. A multivariate polynomial g(..., a;o. o.^,... ) is an
invariant of the tree T, if q vanishes after the substitution of /^,..., ^'s into x^,..., a^\
for any ̂ e independent random variables over the edges of T. We expect from an invariant,
that it is non-zero on a typical ,^,.. 0.^; and hence searching for the true tree T', having
the observed /<^,..., ^, we may reject a wrong candidate T, using its invariant(s).

A set of invariants of T is complete, if for any other tree T', at least one of the poly-
nomials does not vanish on some /^,..., ^^. (Then, it comes for free, that it discriminates
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against almost all probability distributions. ) For m = 1, our complete set ofinvariants was
already found by Hendy [H], although it is not explicit there. These invariants are very

similar to (11), but note, that (11) is not a polynomial identity. Define the polynomials

Rx,,..., x^= ^ (-1)
\~*m \^.. n V".l^'i=l 10-i d Ai]

xcri,..., <7m

CTl,..., ^m

for X, C £, |Xi| even, i = l, 2,..., m. Now for an arbitrary given (/?i,..., pm ) (pi c L\{R},

i = l, 2,..., m), define the polynoinial 6p^,..., p^ of all the variables Xai,..., am'-

'pl,..., Pm n R
»***»-^-T1 n EXi,..., X.

(Xi,..., Xm)--

^"n \X, np, \SO mod 2
(Xi,...,Xm):

^r^ |x;np. |=i mod 2

Theorem. The polynomials {6pi,..., p^ : (pi,..., /?m) ^ C(T)} maice a complete set of
invariants of T.

It is worth making the following comment here. Evans and Speed [EvS] made the

following conjecture: "the number of algebraically independent invariants and the number
of free parameters among the pe (?)'s obtained by an informal parameter count add up

to the number of variables a;,^,..., ^^". Their first problem seems to have been to set
candidates for these independent invariants. Assume that for g ^ 9, Pe{g) is a variable

and pe (0) = 1 - S3^0Pe(fif)'then the number of variables /ai,..., o-^ 
is 2m(-n~l\ the number

of free parameters is |E(T)|(2m - 1), the number of invariants given in the theorem is

2m(n-l) _ \C{T)\ = 2m(n-l) - [E(T)|(2m -!)-!; and actually, we have one more invariant,
S/cri,..., a^ == 1- The numerology works, but a positive result here would seem to involve

algebraic geometry.

If it comes to application of these invariants, then values of polynomial functions must

be computed instead of the polynomials, since computer algebra in many variables is rather

prohibitive.

Problem. Generalize the above set of invariants to the case of arbitarary finite Abelian

group.
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6. Conclusion

The spectral analysis method has the advantage of using all the genetic information from

the sequences, a property, which is not shared by most other reconstruction techniques. As

it was pointed out in [H], [PHSl], [PHS2], it satisfies the Popperian program of falsifiability.

Namely, the probabilities pe {h) resulting from (11) might be negative numbers in the closest

tree. That this can happen for artificial data but not for real data is a circumstancial

evidence for the truth of Cavender's model and Kiniura's 3-parameter model. There is

an additional Popperian test for Kimura's 3-parameter model, namely, that in (11), for

(ori;o-2) ^ C(T), (TI 7^ <72, [^'-1 log ITf] 01,02 = 0; and this test does not even assume any
knowledge on the closest tree.

Compared with spectral analysis, the parsimony principle is a rather rough exploratory
method. However, with small binary trees and uniform small probabilities pe {g) for any

change (g ^identity), pe {g}2 « Pe(5)» changing twice for a nucleotide is highly unlikely,

and the parsimony principle turns into an approximation of Kimura's model. The parsi-

mony principle and the closest tree method are both imnimum principles, although with

different objective functions.

The second author proposes the development of randomized algorithms for tree re-

construction. In view of the successes of randomized algorithms in situations where de-

terministic algorithms fail, this approach could be promising, although nothing is done

yet.
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