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SPECIALIZATIONS OF GENERALIZED

LAGUERRE POLYNOMIALS

D. STANTON1

ABSTRACT. Three specializations of a set of orthogonal polynomials with "8 different
q's" are given. The polynomials are identified as g-analogues of Laguerre polynomi-
als, and the combinatorial interpretation of the moments give infinitely many new
Mahonian statistics on permutations.

1. Introduction.

The Laguerre polynomials L^[x) have been extensively studied, analytically [E]
and combinatorially [F-S], [V]. There is also a classical set of ̂ -Laguerre polyno-
mials, [Mj. Recently, a set of orthogonal polynomials generalizing the Laguerre
polynomials has been studied [Si-St]. These polynomials in some sense have "8
different q's". Various specializations of them give many orthogonal polynomials
associated with different types of set partitions. The purpose of this paper is to
present the specializations which are true g-analogs of L^x). By this we mean that
the nth moments, instead of being n!, are basically n!,.

The com.binatorial description of these moments leads to new Mahonian statistics
on permutations, in fact infinitely many such statistics. These statistics are given
in Theorems 2, 3 and 4.

We shall use the terminology and notation found in [G-R], and let

[^j?=
l-qn
T^7'

rn - 5"
[n\r, 3 =

r - s

2. The polynomials and their moments.
Any set of monic orthogonal polynomials satisfies the three term. recurrence

relation

Pn+l(x) =: (a; - i)n)pn (r) - AnPn-l(3:).

For the set of orthogonal polynomials with 8 different "q's" considered in [Si-St],
the coefficients are

(2. 1) bn = a[n + l]r, 3 + &[n](, u, /\n = a6[n]p, g["]^, w.

The polynomials defined by (1) are the generalized Laguerre polynomials that we
will specialize.

1 The author was partially supported by the Mittag-Leffler Institut and by NSF grant
.
DMS90-01195.
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The fundamental combinatorial fact (Theorem 1) that we need here concerns the
moments for these polynomials. They are generating functions for permutations ac-
cording to certain statistics. For the definition of these statistics^ it is convenient
to represent a permutation o- as a word cr(l)<7(2). -. (7(n) consisting of increasins
runs, separated by the descents of the permutation. For example, th~e permutation
CT = 26|359|7|148 has 4 runs and 3 descents. The elements a{i) of a fall into four
classes: the elements which begin runs of length ^ 2 (openers), the elements which
close runs of length ^ 2 (closers), the elements which form singleton runs (single-
tons), and the elements which continue runs (continuation). We shall abbreviate
these classes of elements "op", "dos", "sing", and "cont" respectively. In the ex-
ample, the openers are {2, 3 1} the dosers are {6, 9, 8}, the singleton is'{7}, and the
continuation elements are {5,4}.

Definition 1. For a e Sn, the statistics lsg{a} and rsg^a) are defined by

^(<7)=E^(!)
1=1

rsg{a) = ^rsg(z),
2=1

where Isg^i) = the number of runs-of a strictly to the. left. of i which contain .
elements smaller and greater than i, and rsg(z) ̂ 'the number of runs of a'strictly'
to the right ofi which contain elements smaller and greater "than i..

In the example lsg(7)=l, from the run 359 to the left of 7, and lsg(a) = 6. The
theorem in [Si-St] computes the joint distribution of the Isg and rsg statistics on
the 4 types of elements of <r. We put lsg(sing]((r) equal to the sum oflsg(i) over all
z which are singletons. Analogously we define Isg and rsg on the other three classes
of points of cr. We also use run(o-) for the number of runs of o-.

Theorem 1. The nth moment p. n for the polynomials given in (1) is

^n = Y^ rlsg(sing)((T)5rs8(si"8)(^));lsg(cont)(c7)^rsg(cont)(o-)^lsg(op)(<7)^rsg(op)((r)
<7£5^ .

v lsg(clos)((T)^rsg(clos)(<T)^run(cr)^n-Tun(o-)

For the example a = 26|359|7|148 the weight is rl5^3ulplg2ulw2a4^ The
parameters {r, s, t, u, p, q, v, w} are the so-called "8 different q's."

We will be concerned with the case when the moments in Theorem 1 are multiples
ot n! \n\ }y[n - l]g ... [l]y. It is clear from (2. 1) that the moments are fixed under
the interchange of {r, s}, {t, u}, {p, q}, and {v, w}, and also fixed if p and q are
interchanged with v and w. Also, the parameter b can be rescaled to 1. "

3. The specializations.

In this section we state three different specializations of the polynomials in (1).
Each of these three cases will have moments which are basically n'g.

First we choose the parameters so that the polynomials coincide with the manic
little 9-Jacobi polynomials [G-R, p. 166], pn (z(l - q)q, qa , 0; q\ which have

(3. 1) &" = qn -l[n + 1 +a], + g"+a-l[n],, A, = <?2n-3+o[n]Jn + a. ],.
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The appropriate specialization occurs only for o: = 0, pn (a;g(l - g), 1, 0), and is

r==t==p==u=g2, s=-u=g=w, a= 1/g, & == 1. The measure for pn(x;a, b, q)
is purely discrete, with masses of fg.g^Ji^J)^ at a; = gi. An easy calculation

shows that the moments are given by ̂ ^ = c^^-^-. Thus for pn(^9(l-g), 1, 0), we
have /^n = g~"n!g. Based upon these remarks, Theorem 1 becomes the following
theorem.

Theorem 2. For o- 6 5'n, ^et

5(cr) := n - run(o-) 4- 2lsg(^a-) + rsg{a~}.
Then

^ q3^ 
= n\q-"-"' = n . q-

crCSn

Moreover, we see from the symmetry of (2. 1) with respect to the 4 pairs of "q's"
that Theorem. 2 holds for 16 statistics related to s(a). These 16 are obtained by
choosing the coefficients 1 and 2 for Isg and rsg independently for the four types of
elements of cr. This means for example that

s'(or) = n - run(o-) 4- lsg(sing)+2rsg(smg)4-lsg(op)J-2rsg(op)

4- 2lsg(cont)+rsg(cont)+21sg(clos)+rsg(clos)

also satisfies Theorem 2. We will see later (Proposition 1) that in fact there are
infinitely many statistics related to s{a).

We state here the explicit formula for the polynoraials, which is just the definition
of the little g-Jacobi polynomials:
(3. 2), (r=t=g2, s=u==q, a=l/q, b=l)

n| \rz],... \n-k+l}. (-l^kxn~ki.
kPn(x) =

n
.^-\

/-^l
k=0

Inl [n-k+l]y(-l)kxn-kq^^ )-1

For our second specialization we consider

(3. 3) ^=<?"+l[n+l], +<?n-l[n],, \n ^ q2n-l[n\, [n},.
The appropriate values are r=t=p==v=q, s=u=q=iu, a=q, b=l. The
polynomials turn out to be a sum of two little g-Jacobi polynomials,

p»W=n^)(-l)"[A(s-" ^ '. ^-<))
-(l-9n)2^1

or equivalently
(3. 4), (r=t=$-, s=u=q, a=q, b=l)

,
1-n 0;

q2
g, xq{l - q)

pVn{x) = Xn+^ | ̂  | [n], . . . [n-k+2], {[n-k], +qn^-l)kxn-kq^+[-irg ^^n\,.
fc=i L Jg

We omit the proof of these formulas. It is a verification of the recurrence relation
(1) from the recurrence relation for the little g-Jacobi polynonilals.

Since these polynomials do not explicitly appear in the literature, we cannofc com-
pute the moments by quoting the relevant facts about their measure. Nonetheless,
the moments and measure are easily determined.
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Proposition 1. The moments for the polynomials in (3) are JJ. Q = 1, and fJ,n =
qn\q, n > 0. The measure is purely discrete, with masses ofgl(g;g)oo/(g;g)i-i a.t
q /(I - q), i > 1, and a mass ofl - q at 0.

Proof. The g-binomial theorem clearly shows that the total mass ̂ o=(l- ?)+g=
1. It also implies

^ " -Z^TTT
g'V(9;^

^(l-9)n(9;9)i-i
=qn\q +(l-g)5n, o.

+ (1 - 9)<5n,0

Thus the stated measure has the right moments. To show that the polynomials are
orthogonal with respect to this measure, we show that the linear functional defined
by the measure annihilates pi, p2 i- . . . Then the three term recurrence shows that

the polynomials are orthogonal. However, given the explicit formula (3) for the
polynomials, it is also easy to check that the moments do annihilate pi, p2 i- . . . D

We then get a companion theorem to Theorem 2. It a;lso has 16 equivalent
versions.

Theorem 3. For a e Sn, let

5(cr) := run(o-) - 1 + 2lsg{cr) + rsg(^a}

Then

S 1-w - "!..
veSn

We remark that Theorems 2 and 3 are valid for an infinite number of variations

of the statistic ^(o-). It is easy to verify that for each o-   5'n

(3. 5) lsg{op~){cr~) + rsg{op')(a) = lsg{clos}{a} + r5g(c/os)(cr).

(In fact there is. a specialization of {r, 5, <, u, p, g, u, w} with one free parameter
giving (2) that corresponds to (4). ) Therefore in the definition of 5(0-) the pairs
of coefficients {1, 2} and {1, 2} on the openers and closers can be replaced with
{1 +c, 2 + c} and {1 -c, 2 - c}. This provides a variation of Theorems 2 and 3 for
each choice of the real parameter c. For example, c = 1 gives the unusual choice of
coefficients {2, 3} and {0, 1}.

Our third choice for specialization is the set of the classical g-Laguerre polyno-
mials L'^{x(l - q); q) [M], [G-R, p. 194], whose monlc form has

(3. 6) bn = q -2n-a [n]g + q -2n-l-a [n+l+a}y, \n=q l-4n-2a n\q[n+a}q-

The appropriate values are r=t=p=v= q~'1 = b, s =u== q=iu := q~ = a
for L°, (a;(l - q\q'). Again a measure of these polynomials is explicitly known [M,
Th. I], and the moments for L^(2-(l - q), q') can be found as

^-(^+l;9)ng-na-(T)/(i-g)n.
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For Q: = 0 this is q~^ 2 ^n\g. However the combinatorial version of this theorem is
equivalent to Theorem 2, if q is replaced 1/q. Thus no new combinatorial theorem
results. We record here the explicit formula for the monic form of L^{x(l - q); q},

(3. 7) p^x) =^|^| [n+a}g-.. [n+a-k+ l]^-l)kxn-kqk(k-Q-2n\
fc=0 L J ?

4. The "odd' polynomials.
Ifr =p, 5 = q, t = v, and u == w, then the polynomials defined by (1) are the

"even" polynomials for the polynomials defined by (see [C, P.41J)

bn=0, A2n=&[n](, u, Asn+i = a[n+l]r,,.

The odd polynomials have the coefficients

(4. 1) bn = a[n + l]r, 3 + b[n + l]^u, A^ = a6[n + l]^[n](, u.

The moments for these odd polynomials satisfy ^n(oJri) = /^n+i(euen)/^i(euen).
Since'all of our specializations in §2 satisfied r=p, 5 =g, ?t= u, and u = w, these.
'odd" polynomials also have moments which are. multiples of (n + l)!^. There is a

version of Theorem 1 for the "odd polynomials" which yields more statistics related
to 5(cr). We do not state this combinatorial theorem here, rather in this section we
state what these odd polynomials are, give their moments, and state in Theorem 4
what the statistics related to s(cr) are. Clearly the odd polynomials are analogues
of the Laguerre polynomials L^(x).

We keep the parameters r, s, t, u. This specialization gives the "even" and "odd"
polynomials a combinatorial interpretation as weighted versions of injective maps
(see [F-S], L°^x) and L^(x)). This family with "4 q's" also contains other families
of orthogonal polynomials of combinatorial interest.

We list here. the odd polynomials for the three cases in §3, and the respective
moments.

(1) little 9-Jacobi pn{x{l - q)q, q, Q; q}, ^ = g-" (n + l)t^
(2) little 9-Jacobi pn{x{l - q), q, 0; g), /u^ = (n + 1)!^,
(3) g-Laguerre L\{x(l - q); q), ̂  = ^-("2+3n)/2 ̂  ^ ^,^

The combinatorial theorem that results is Theorem 4. We shall need the
definition of another statistic n(o-). Partition the elements of <7 6 5"n into three
classes: elements to the left of the run with 1, elements in the run with 1, and those
to the right of the run with 1. Suppose that the left to right minima of the portion
of o- to the right of the run with 1 contains no singletons. Put n(o-) = 0. Otherwise,
let 3 be the last singleton to the right which is a left to right minima. Also let r
be the maximum of the run with 1. Then let n(<7) be the number of elements of a
which lie to the left of the run with 1, and lie between s and r.

Theorem 4. For o-   Sn, let

5(a) := run(cr) - 1 + 21sg*{a) + rsg^a) + n{a\

127



where Isg* and rsg* are defined by changing the definitions of Isg and rsg: for the
cJosers and singletons, the run containing the element 1 is ignored in the caJcula. tion
of Isg* and rsg*. For the openers and continuations, the the run containing 1 is
always counted in Isg* (if it is to the left), or in rsg* (if it is to the right).

Theorem 4 also holds if run(cr) - 1 Is replaced by n - run(o-). Moreover, the
role of closers and openers can be interchanged in Theorem 4, and there are also
16 variations, although complicated ones. A version of Theorem 4 holds for permu-
tations of length n + 1 with the following condition: the run with 1 also contains
n + 1, and there are no left to right singleton minima after the run with 1. There
are n! such permutations in 5n4-i.

Finally, we remark that these specializations are the only ones we have found for
which the moments factor into an analog of n!. They are also the only specializations
which give the three sets of polynomials that were considered.
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