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SCHUR FUNCTIONS : THEME AND VARIATIONS

BY

I. G. MACDONALD

Introduction and theme

In this article we shall siirvey various generalizations, analogues and
deformations of Schur functions - some old, some new - that have
been proposed at various times. We shall present these as a sequence of
variations on a theme and (unlike e. g. Bourbaki) we shall proceed from
the partici4ar to the general. Thus Variations 1 and 2 are included in
Variation 3; Variq.tions 4 and 5 are particular cases of Variation 6; and in
their turn Variations 6, 7 and 8 (in part) are included in Variation 9.

To introduce our theme, we recall [Mi, Ch. I, § 3] that the Schur
fv.nction s\{x\,..., Xn) (where a-i,... ^Xn are independent indeterminates
and A = (AI,. .. , An) is a partition of length < n) may be defined as the
quotient of two alternants :

(0. 1) S\{xi,..., Xn) =
det(^+"-J) Ki,j<n

det^r-7) l^i. j^n

The denominator on the right-hand side is the Vandermonde determinant,
equal to the product J~[ (a;, - xj).

i<J
When A == (r), s\ is the complete symmetric function hr, and when

A = (lr)> -SA is the elementary symmetric function  r. In terms of the
/i's, the Schur function s\ (in any number of variables) is given by the
Jacobi-Trudi formula

(0. 2) s>==det{h^-i+]}l<i, j<n

Dually, in terms of the elementary symmetric functions, s\ is given by
the Nagelsbach-Kostka formula

(0. 3) SA = det(e^. _, +, )^, ^^
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in which V = (A'i,..., A'^) is the conjugate [Mi, Ch. I, §1] of the
partition A.

There are (at least) two other determinantal formulas for 5^ : one m
terms of "hooks" due to Giambelli, and the other in terms of "ribbons" dis-
covered quite recently by Lascoux and Pragacz [LP2]. K A = (ai,..., ap |
/3i,... ,^) in Frobenius notation [Mi, Ch. I, § I], Giambelli's formula is

(0.4) ^=det(s(". l^))i<, j<p-

To state the formula of Lascoux and Pragacz, let

\(i, 3) =(ai,..., $"..., ay |/9i,..., ^-,..., ^)

ior 1 <iJ <P, where the circumflexes Indicate deletion of the symbols
they cover; and let

[a. |^]=[a. | =A-A^.

In particular, [ai | /9i] is the rim or iorrfer of A, and [a, | ̂ ] is that part
of the border consisting of the squares (/i, fc) such that h >i and k^j.
With this notation explained, the "ribbon formula" is

(0. 5) 5A=det(5[^, |^]) Ki, j<p'

Finally, we recall [Mi, Ch. I, § 5] the expression of a Schur function as
a sum of monomials : namely -

(0. 6) -E x

summed over all column-strict tableaux T of shape A, where. XT =
n XT(s)- (Throughout this article, we shall find it convenient to think of
a'~tableau T as a mapping from (the shape of) A into the positive integers,
so that T(s) is the integer occupying the square s G A.)

All these formulas, with the exception of the original definition (0. 1),
have their extensions to skew Schur functions s^//. - In Place of (°-2) we
have

(0. 7) ^A/^ = det(/iA;-^, -,+j),
and in place of (0. 3) we have

(0. 8) S), /^ = det (ey _^. _^)
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where A , ̂  are the partitions conjugate to A, /i respectively. For the skew
versions of (0. 4) and (0. 5) we refer to [LPi], [LPs]. FinaUy, in place of
(0. 6) we have

(0. 9) SA/^=S

where now T runs over column-strict tableaux of shape \- ^ [Mi, Ch. I,
§5].

To complete this introduction we should mention the Cauchy identity

(0. 10) U(l - x^-1 = ^ ̂ (^)^(y)
i,j \

and its dual version

(0. 11) II(l+a;,y, )=^^(^)^'(!/)
i,j \

where A is the conjugate of A.
If we replace each yj by y^~1 and then multiply by a suitable power of

t/i!/2 . . -i (0-11) takes the equivalent form (when the niunber of variables
z,, yj is finite)

(0. 11') !'[ (xi+yj )=^sx(x)s^, (y)
Ki<n A

Kj<m

summed over partitions A = (Ai,..., An) such that Aj < m, where A =
(AI,... , An) is the complementary partition defined by A, = m - An+i-»,

'^s- 'mlk

and A is the conjugate of A.
The left-hand side of (0. 10) may be regarded as defining a scalar product

(/, g} on the ring of symmetric functions, as follows. For each r > 1 let pr
denote the r th power sum ^ x^, and for each partition A = (AI, A2,. ..)
let p\ denote the product p\^p\, ... The p\ form a Q-basis of the ring
ofsymmetric functions (in infinitely many variables, cf. [Mi, Ch. I]) with
rational coefficients, and the scalar product may be defined by

(0. 12) (PA, P/. )=^^A

where 8\^ is the Kronecker delta, and

^==n?m'-m'!'
t>l
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m; = m, (A) being the number of parts \j of A equal to ?', for each i > 1.
The Cauchy formula (0. 10) is now equivalent to the statement that the

Schur functions s\ form an orthonormal basis of the ring of syminetric
functions, i. e.,

(0. 13) (s\, s^=6^.

Also, from this point of view, the skew Schur function s\^ may be defined
to be s^-(s\)^ where s-^ is the adjoint of multiplication by s^, so that
{s-^f^g} = (fi S^g) for any symmetric functions /, g.

1st Variation : Hall-Littlewood symmetric functions

Let a-i, ... , a-n, < be independent variables and let X = (AI,... , An) be
a partition of length ^ n. The Hall-Liitlewood symmetric function indexed
by A [Mi, Ch. Ill] is defined by

(1. 1) p, (.,,...,. ";<) =^ ^ , (^,... ^IJ^Z)
wt^» v ' tf] xi ~ xj

in which v\(i) ^ Z[t] is a polynomial, (with constant term equal to 1)
chosen so that the leading monomial in P\ is x == x^ ... x^". When
t = 0, the right-hand side of (1. 1) is just the expansion of the determinant
det(a;^-' ), divided by the Vandermonde determinant, so that when
t == 0 the formula (1. 1) reduces to the definition (0. 1) of the Schur function.

None of determinantal formulas (0. 2) - (0. 5) have counterparts for the
Hall-Littlewood functions (so far as I am aware). In place of (0. 6) we have

(1. 2) P^x;t}=^^TWxT
T

summed over column-strict tableaux T of shape A, where </T(() 6 Z[^] is
a polynomial given explicitly in [Mli, Ch. Ill, § 5].

Finally, in place of the Cauchy identity (0. 10) we have

(L3) n l-^/i = E W)P>^ t)p^ <).
T,7 i~xiy} Y

As in the case of the Schur functions, this identity may be interpreted
as saying that the symmetric functions P\(x;t) are pairwise orthogonal
with respect to the scalar product defined in terms of the power-sum
products by

(1. 4) <pA, p, }, =^^n(i-^)-1.
1>1

For more details, and in particular for the definition of the polynomials
b\(t) featuring in the right-hand side of (1. 3), we refer to [Mi, Ch. III].
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2nd Variation : Jack symmetric functions

These are symmetric functions Pw(x) depending on a parameter a,
but unlike the HaU-Littlewood functions (Variation 1) there is no closed
fonniUa such as (1. 1) that can serve as definition. The simplest (and
original) definition is the foUowing : analogously to (0. 12) and (1. 4), we
define a scalar product by

(2. 1) (PA, P, )(0) = S^z.a'W
where /(A) is the length of the partition A, that is to say the number of non
zero parts A.. For each positive integer n, arrange the partitions of n in
lexicographical order (so that (ln) comes first and (n) comes last). Then
the P^ \x) are uniquely determined by the two requirements

(2. 2) ^Q)^\ - ^\P^a\x) = a:A + lower terms

where xx denotes the monomial x^lx^ ..., andby "lower terms" is meant
a sum of monomials xp coiresponding to sequences /? = (^i, ^2,... ) that
precede A in the lexicographical order; and

(2. 3) ^\pW^)^Q ^ ^^

The two conditions mean that the Pw may be constructed from the
monomial symmetnc functions by the Gram-Schmidt process, starting (for
partitions of n) with P(I") = e», the n th elementary symmetric function.

Since the scalar product (2. 1) reduces to (0. 12) when a = 1, it follows
that Pw = 5A when a = 1.

In view^of the definition (2. 1) of the scalar product, the orthogonality
property (2. 3) is equivalent to the following generalization of the
identity (0. 10) :

(2.4) H(l - .,,, )-/. = Sc, (. )pM(, )pW(y)
«,J

where the c\(a) are rational functions of the parameter a which have
been calculated explicitly by Stanley [S] - note, however, that his
normalization of the Jack symmetric functions is different from ours.

As in the case of the Hall-Littlewood symmetric functions, none of the
deterniinantal formulas (0. 2) - (0.5) generalize, so far as is known, to
the present situation. In place of (0. 6) there is an explicit expression for
p\ (x) as a weighted sum of monomials, namely

(2. 5) ^a)(^)=E^(a)^
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summed over column-strict tableaux T of shape X, where /r(o') is a
rational function of a, computed explicitly by Stanley [S], to whom we
refer for more details.

Finally, the dual Cauchy formula (0. 11) generalizes as follows :

(2. 6) II(l+^)=EP^)(^l/a)^
.j >

where as before \' is the conjugate of A.

3rd Variation

Our third variation is a family of symmetric functions P\(x;q, t),
indexed as usual by partitions A, and depending on two parameters q
and t. They include the two previous variations (the Hall-Littlewood
symmetric functions and the Jack symmetric functions) as particular cases
(see below). Since I have given an extended account of these symmetric
functions at a previous Seminaire Lotharingien [M2], I shall be brief here
and refer to loc. cit. for all details. The functions may be most simply
defined along the same lines as in Variation 2 : we define a new scalar
product on the ring of symmetric functions by

(3. 1)
1 - qx'- q

{P\, P^}g, t = s>^z> 11 1 _ t\. '
i>l

and then the symmetric functions P\(x;q, t) are uniquely determined by
the two requirements

(3. 2) P\{x; g, t)=xx+ lower terms,
(3. 3) {P>. P^,, t=0 ifA^^-

If we set q = ta and then let t -^ l, in the limit the scalar product
(3. 1) becomes that defined in (2. 1), from which it follows that the Jack
symmetric function P[a\x) is the limit of P^x;ta ,t) as * -^ 1. Again,
if we set q = 0 the scalar product (3. 1) reduces to (1. 4) and it follows

that P\{x;0, t) is the Hall-Littlewoodsymmetric function PA(a;;<). Finally
if q = t then (3. 1) reduces to the original scalar product (0. 12), and
correspondingly PA(.T; Q, g) is the Schur function s\(x).

In view of the definition (3. 1) of the scalar product, the orthogonality
condition (3.3) is equivalent to the following extension of the Cauchy
identity (0. 10) :

(3. 4) n (^:^)00 = E fcA^, *)-P^; 9, ^)PA(!/; g, t).

»,J
(xiyj;q)
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On the left-hand side of (3. 4) we have used the standard notation

{x;q)^= '[[(1-xq1).
t>0

On the right-hand side, b\(q, t) is a rational function of q and t, given
explicitly in [Mz, § 5].

As in the previous two variations, none of the determinantal formulas
for Schur functions quoted in the introduction appear to generalize to the
present situation. However, the formula (0. 6) for s\ as a sum. of monomials
does generalize : namely we have

(3. 5) P\(x;q, t)=^(p^{q, t)x'

where y^. (q, t) is a rational function of q and t, again given explicit
expression in [M2, §5].

Finally, the dual Cauchy formula (0. 11) generalizes as follows [Mz, § 5] :

(3. 6) H(I +a-^-) = ^Px(x;q, t)P^(y;t, q).
»,J

4th Variation : factorial Schur functions

Let z = (2^1,... , 2'n) be a sequence of independent variables. For each
pair of partitions A, ̂  Biedenharn and Louck have defined a skew factorial
Schur function t\/^(z) in [BLi]. Their original definition (Joe. cit.) was
couched in terms of Gelfand patterns, and in the equivalent language of
tableaux it reads as follows. IfT : \- /j, -> [1, n] is a column-strict tableau
of shape \ - fi, containing only the integers 1, 2, ... , n, let

(4. 1) Z(T)= II (^)-T*(. )+1),
s£A-/t

where T*(i, j) = T(i, j) +j - i (so that T* is a row-strict tableau of shape
A - p.). Then t\f^. {z~) is defined by

(4. 2) t>i^z}=Y,z (T)

summed over all column-strict tableaux T : A-^ -> [l, n].
When fJ, == 0 they write t\ in place of t\^o.
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It is not particularly obvious from this definition that t\/p. (z) is in fact a
(non-homogeneous) symmetric polynomial in 2-1, ... , Zm and Biedenharn
and Louck had some trouble (see [BLi] pp. 407-412) in establishing this
fact directly from their definition (4. 2).

Some time ago I noticed that it followed rather simply from one of
their results (Th. 5 of [BLz]) that an alternative definition of t\(z) could
be given which brought out its analogy with the Schur function s\: namely
(for A == (AI,.. . , An) a partition of length < n)

(4. 3) t, (. ) - det^+n-j)} / det(.S"-J)),
where z^ is the "falling factorial"

(4. 4) ^ =z(z-l)... (z-r+l) (r^O).

Note that since z^ is a monic polynomial in z of degree r, the denominator
in (4. 3) is just the Vandermonde determinant :

det(.,(n-J))=det(zrj )=n^-., ).
i<j

Hence t\ as defined by (4. 3) is the quotient of a skew-symmetric polyno-
mial in 2:1, ... , 2;n by the Vandermonde determinant, and is therefore a
(non-homogeneous) symmetric polynomial in the 2-1. Moreover, it is clear
from (4. 3) that t\(z) is of the form

t\(z) = s\(z) + terms of lower degree,

and hence that the t\(z), as A runs through the partitions of length <, n,
form a Z-basis of the ring An of symmetric polynomials in -?i, ... , 2-n.

In [CL], Chen &: Louck show that t\ (and more generally ^/^i) satisfies
a determinantal identity analogous to (0. 2) and (0. 7). Namely if

Wr(z) = t(^)(z)

for all r > 0 (and Wr{z) = 0 when r < 0) then we have (/oc. cit., Th. 5. 1)

(4. 5) ^/^(^) = det(wA.. -^-, +j(2- - ^j+J - 1))

where in general z +r denotes the sequence (2-1 +r,... , 2;n + ?').
The other determinantal formulas quoted in the introduction all have

their analogues for factorial Schur functions. If we define

fr (z) = t(, r)(z) (0^ r < n)

12
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(and fr (z) = Ofor r <0 and r > n), so that the /r are the analogues of

the elementary symmetric functions, then we have

(4. 6) t^^z} = det(A;. _^. _, +, (z + ^ - j + 1)).

We shall not stop to prove (4. 6) here, nor the hook and ribbon formulas

(4. 7) t^z) = det{t(^^)(z)\^^
=det(<[a, t^, ](2))i<,,, <,

(where A = (o;i,.. ., 0'rj^i,..., /3^) in Frobenius notation, and for the
explanation of the notation [a, \^j] we refer to (0. 5)), since they are special
cases of the corresponding results in Variation 6, which in their turn are
contained in Variation 9. In this development we take (4. 3) and (4. 5) as
definitions of t\ and t\/^ respectively, and deduce (4. 2) from them (see
(6. 16) below), very much in the spirit of [Mi], Chapter I, § 5.

5th Variation : a-paired factorial Schur functions

Let z = (2:1,..., Zn) again be a sequence of independent variables, and
let a be another variable (or parameter). In parallel with the factorial
Schur functions (Variation 4) Biedenharn and Louck BLi] have defined
a-paired factorial Schur functions T\/^a; z). As in the previous case, their
definition was couched in terms of Gelfand patterns, and in the equivalent
language of tableaux it reads as follows. Let

^i = -a; - Zi (1 < i < n)

and for each column-strict tableau T : X- ̂ -^ [l, n] let

(5. 1) (a : z)(T) = U (^) - T*(. ) + 1) {-ST^ - T\s) + 1)
a£A-/t

where (as in § 4) T is the row-strict tableau associated with T (i.e.,
T^i, j)=T(iJ)+j-i). Then

(5. 2) T,/, (a;.)=^(a:^'r)

summed over all column-strict tableaux T : A-/^ -> [l, n]. (When ^ = 0,
they write T\ in place of TA/O-)

13
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Chen and Louck remark ([CL], p. 18) that "it is quite surprising that the
a-paired factorial Schur function enjoys all the properties of the ordinary
factorial Schur function. " The reason for this, we believe, lies in the fact;
that both these classes of symmetric functions are special cases of those
to be defined in our 6th Variation. In the present situation the falling
factorial z^ is replaced by

r-l

^(r)^(r) ^JJ^_, )(^_,)
i=0

where '2'= -cr - z; and since

(z - ?)(? - i) = zJ + ai + z2
it follows that we may write

^r)?(r) =n^+ai)
1=1

where x =. z~z and a, = a{i - 1) +(? - I)2. In Variation 6 below
r

the building blocks are the products (a'|a)r = F[ (a" +ai) defined by an
arbitrary sequence ai, 02, ...

We may then take as an alternative definition of T\{oi; z), where A is a
partition of length ^ n,

(5. 3) Tx{a;z)=
det(2.tA;(A, +n-j)-^(A, +n-j) )

det(^(n-i) -; ("-J') )

([CL], Th. 6. 2); all the determinantal formulas (Jacobi-Trudi etc. ) together
with the tableau definition (5. 2) are consequences of (5. 3), as we shall show
in a more general context in the next section.

6th Variation

Let R be any commutative ring and let a = (an)ra^z be any (doubly
infinite) sequence of elements of R. For each r 6 Z we define rra to be the
sequence whose nth term is a^+r '.

(rra)n = On+r.
Let

(a:|a)r = (a- + a^).. . (a; + Or)

for each r > 0. Clearly we have

(6. 1) (x\a)r+s =(x\aY(x\rra)3

for all r, s >, 0.

14
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Now let a; = (a:i,. ..,.;;") be a sequence of independent indeterminates
over R, and for each a = (a^,... , a^) e N" define

(6. 2) A, (^a)-det((.., K. )^^. ^.
In particular, when a - ^ = (n- l, n - 2,..., 1, 0), since (z. |a)»-^ is a
monic polynomial in a;, of degree (n - j), it follows that

(6. 3) As(x\a)=det(xr^=^x, -x,)
i<j

is the Vandermonde determinant A(a-), independent of the sequence a.
SmceAa(x \ a) is a skew symmetric polynomial in a-i,... , a-n, it is therefore
^visible by Af(x\a) in ̂ [a;i , .. Xn}. Moreover, the determinant A^x\a)
clearly vanishes if any two of the a, are equal, and hence (up to sign)
we may assume that QI > ... >a» >0, i.e., that a = \~+S where
A = (Ai,... , An) is a partition of length < n. It follows therefore that

(6. 4) s^x ) a) = A^+s(x [ a) / As(x \ a)

is a symmetric (but not homogeneous) polynomial in a-i, ... , x^ with
coefficients in R. Moreover it is clear from the definitions that

A\+s(x\a) = a^+s(x) + lower terms,

in the notation of [Mi], ch. I, and hence that

s\(x\a) = s\{x) + terms of lower degree.

Hence the s\(x | a) form an R-basis of the ring A^R == JZ[a;i,..., xn}Gn.
These polynomials s\(x\a~), and their skew analogues 5^, (a; | a) to be

defined later, form our 6th Variation. They include Variations^ and 5 as
special cases : for Variation 4 we take R = 1, x, = z, and a^ = 1 -n
for all n £ Z; for Variation 5 we take R = Z[a], x, = Zi-z, and
a» = (" - l)a + (n - I)2. The Schur functions themselves are given by the
zero sequence : a» =0forall n e 2. When A == (r) we shall write

hr{x\a)=s(r)(x\a) (r > 0)

with the usual convention that hr(x\a) =0ifr < 0; and when A = (lr)
(0<r < n) we shall write

er{x\a)=s^r){x\a) (0 ̂ r ̂  n)

with the convention that er(x\a) =0ifr < Oor r >n.
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Let t be another indeterminate and let

f{t) = H(< - ^).
t^l

From (6. 3) it follows that

f(t)= As^t, xi,..., Xn\a) / Ae^xi,..., Xn\a).

By expanding the determinant Ag^^ along the top row we shall obtain

(6. 5) m=^-l)rer(x\a)(t\a)n-r.
r=0

Let E(a;|a), H(.e|a) be the (infinite) matrices

H(^a)=(^(. r|rl+la))^,,
E(.T|a)=((-iy-te, _. (.F|r^)), ^.

Both are upper unitriangular, and they are related by

(6. 6) E(a;|a)=H(.r|a)-1.

Proof. - We have to show that

^{-l)k-Jek-^x\Tka)h^x\ri+la) = <?,,
3

for all z, k. This is clear if? > ^, so we may assume i < k. Since f(xi) = 0
it follows from (6. 5) that

^-lYer(x\a){x, \a)n-r=0
r=0

and hence, replacing a by rs~la and multiplying by (a;; |a)s-l, that
n

(1) Y^{-l)re^x\T3-la)(xi\a)n-r+s-1 =0
r=0

for all 5 > 0 and 1 <^ i <n. Now it is clear, from expanding the
determinant A(m)+6{x\a) down the first column, that hm(x\a) is of the
form

(2) h^x\a)=^xi\a)m+n-\^x)
t=l

16
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with coefficients u, (a;) rational functions ofa-i, ... , Xn independent of m.
(In fact, it is easily seen that u, (x) = l/f\x, ).)

From (1) and (2) it follows that

n

^-l)rer(x\TS-la)h^(x\a)=0
r=0

for each s > 0. Putting s = k-i and replacing a by ri+la we obtain

^ (-l)fc-^, _, (^ |rfca) ̂ , -, (.F |rt+la) = 0,
t<j<k

as required. []

Next, we have analogues of the Jacobi-Trudi and Nagelsbach-Kostka
formulas (0. 2), (0. 3) :

(6. 7) // A is a partition of length <: n, then

sx(x\a) = det(^;-.-+, (.c | rl-"'a))
=det(e^. _, +, (3. |^-la)).

Proof. - Let Q; = (ai,... , a^) 6 N". From equation (2) above we have
n

h^-n+j(x\rl-Ja) = ^(xkirl-ja)ai+J-lUk(x)
k=l
n

=E(^ia)a'(^iT l-Ja)J-lu^)
k=l

by (6. 1). This shows that the matrix H^ = (/ta. -n+j-(a-|Tl--'a)), , is the
product of the matrices {(xk\a)a')^ and B = ((^fc |Tl--'a)^-lu'^))fc ,.
On taking determinants it follows that

det(^) = Ac, det(5).

In particular, when a = 6, the matrix H^ = (A, _, (.c|r1-^)) is unitrian-
gular and hence has determinant equal to 1. It follows that A< det(B) =1
and hence that

^i{H^=A^{x\a)/ As{x\a),

for all a e N". Taking a - A +^, we obtain the first of the formulas (6. 7).
The second formula, involving the e's, is then deduced from it and (6. 6),
exactly as in the case of Schur functions ([MI j, ch. I, (2. 9)). Q
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Remark. - A consequence of (6. 7) is that the determinant

det(/tA, -i+j(2" |T Ja))?

which appears to involve not only ai, 03, ... but also ao, o-i, . . . , 02-((A)»
is in fact independent of the latter.

More generally, if \ and p, are partitions we define

(6. 8) s^^x\a)=det{h^-,, -i+j(x\T^-:l+la))

and then it follows as above from (6. 6) that

(6. 9) s^^x\a) = det(e^. _^. -,+, (z|r-^+-?-la)).

Moreover,

(6. 10) s\/^(x\a) = 0 unless 0 < \i - p,\ < n for all i.

The proof is the same as for Schur functions : [Mi] ch. I, § 5.

The hook and ribbon formulas (0. 4), (0. 5) remain valid in the present
context : if X = (o'i,... , ap[^i,... , ^p) in Frobenius notation, then

(6. 11) s^x[a)==det{s(^\^)(x\a))^^^
=det(-s[". l^](a'la))l^, ^p-

This will be considered in a more general context in § 9.

Let y = (t/i,.. ,, t/m) be another set of indeterminates, and let (x, y)
denote (.TI, ... , a;n, yi,... , ym ). Then we have

(6. 12) (i)
(")

E{x, y\a)=E(y\rna)E(x\a),

H(x, y\a)=H(x\a)H{y\rna).

Proof. - It is enough to prove (i), since (ii) then follows by taking
inverses and invoking (6. 6). From (6. 5) we have

m+rt

^(-l)^, y|a)(<|ar+"-2=n(<-^)n(<-y,)
t=0 1=1

m

J=l

== ̂ (-iy., ^ | a)(* i a)^' ̂ (-l)fce, (./1 rn-^)(t |T"-^)
j=0

im-fc

k=0

= ^(-iy+ke^x I«) ̂ (2, | r"-^) (< | a)m+n-^-fc
],k
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by use of (6. 1). Since the polynomials (<|a)r, r > 0 are linearly indepen-
dent, we may equate coefficients to obtain

e,-(a-, y|a)= ^ ej(a; |a) efc(!/|r"-Ja).
}+k=i

With a change of notation this relation takes the form

{-l)k~iek-i(x, y\rka)=^{-l)k-Jek-, {x\rka)(-iy-ie^(y\rn+ja)
]

which establishes (i). Q

(6. 13) Let X, fi be partitions. Then

SA/^(a-, y| a) = ^ 5^(2-1 a) s^/^y \ r"a).
I/

Proof. - Let^r^ max(/(A), /(^)). By definition (6. 8), sx/^x, y\a) is
the r x r minor of H(a;, y \ a) corresponding to the row indices /.d - 1, ...
^r -r and the column indices Ai - 1, ... , \r - r, that is to say it is
the element of A H(a;, y|a) indexed by these sets of indices. The formula
(6. 13) now follows from (6. 12) (ii) and the functoriality of exterior powers,*
which together imply that /\rH(x, y\a) = /\r H(x\a). f\r H(y\Tna). Q

By iterating (6. 13) we obtain the following result. Let x^\ ... , a;(") be
resets of variables, where x^ = {xw,..., xff), and let A, ^ be partitions.
Then

(6. 14) ^/, ^(t),... ^(n)|a)=^II^., ^, _, )(^)|^+-+'-.. -^)
W i=l

summed overa ll sequences (i/) = (^°\..., i/(")) of partitions, such that

^=i/(") c^) c---ci/(n)=A. 0

We shall apply (6. 14) in the case that each x^ consists of a single
variable x, (so that r, = Iforl <?. ^ n). For a single a- we have
s\/^x\(i) = 0 unless A - /^ is a horizontal strip, by (6. 10) ; and if A -/^ is
a horizontal strip it follows from (6. 8) that

5A^(^|a)=n^. -^, ^|r^-i+la)
1>1

=JJ(.c|T^-i+la)A'-^.
i>l

* also known as the Cauchy-Binet identity.
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since hr(x\a) = S(r)(. x\a) = (. x\a)r m ^e case °^ a single x, from the
definition (6. 4). Hence

(6. 15) For a single x we have

5A/^(a-|a)= H (a-+ac(, )+i)
s£A-^

if \- p, is a horizontal strip, and s\/^(x\a) = 0 otherwise.
(Here c(s) is the content of s, i.e., c(s) =j" -z if^ = (i, J)-)

From (6. 14) and (6. 15) it now follows that if a; = (a;i,..., a;n)

(6. 16) s^{x\a)=J^(x\a)T
T

summed over column strict tableaux T: A -^ -^ [l, n], where

(x\a)T = ]^[ {xT(s)+dT*(s)}
» . >-?.

and T*(z, j") = T(i, j) + j - i (so that T* is row-strict).

When a, = 1 - z for all z 6 Z (Variation 4), (6. 16) reduces to the
definition (4. 2) of the factorial Schur functions.

Finally, there is an analogue of the dual Cauchy formula : namely (with
the notation of (0. 11'))

(6. 17) nn(. r<+^)=^^A(. r|«)^(2/| -a)
8=1 J=l A

where -a is the sequence (-an)nez-

Proof. - Consider the quotient

As^^x. y} / As^x}As^{y)

which by (6.3) is equal to Y[(xi-yj~). On the other hand, Laplace expansion
S,J

of the determinant Ag^^^^x, y) gives

As^{x, y)= ^ (-l)IA lA^J.r)A^^(y).
AC(m")
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Hence we have

J](^-2/, )= ^ (-l)IA I^(^|a)^, (</|a)
», J ACfm"'

and by replacing each y, by -y^ we obtain (6. 17). Q

Remark. - From the definition (6. 1) it follows that

(^a)r=^^e, _, (a(r)),
Jfc>0

where a(r) = (ai, ct2,.. . , ctr). Hence, with x = (a;i,.. ., Xn),

A^|a)=det(^^fce^_,, (^)))
'/?t^0

=Edet(^)det(^_,, (^))
ft

summed over /3 = (^,... , /?") e N" such that ^> ^> ... > ftn.
On dividing both sides by the Vandermonde determinant A(a-) and

replacing a, /3by \+6, fj, +S respectively, we obtain

(6. 18) s^x\a) = E^(a;)det(eA.-., -i+. (^+"-J))),
/zCA

symmetric in the a;'s but not in the a's.

Now assume that the a's are independent variables; then we can let
n -» oo (which would not have been possible in the contexts of Variations 4
and 5). In the limit the right-hand side of (6. 18) becomes, by virtue of (0. 8),

^^(a")5v/^'(a)
/tCA

where a: = (.z-i,.r2,... ) and a = (01, 02,... ). It follows that

(6'19) ^^(. ci,...,. rn|a)-^(a-||a),

where s^x\\a~) is the "supersymmetric Schur function" defined by

s\(x\\a)=det{hx, -i+j(x\\a))
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in which hr(x |[ a) is the coefficient of tr in the power series expansion of
FI (i - tx{)~1 Yl (i +taj). Thus the limit as n -^ ooof ̂ ^(a;!,. .., Xn\a)
t>l J>1

is symmetric in the a's as well as in the x's. From (6. 19) and (6. 16) we
conclude that, with the notation of (6. 16),

(6. 20) ^x\\a)=^(x\a)rj

summed over all column-strict tableaux T of shape A with positive integer
entries.

For the skew functions the corresponding result reads as follows. Let
x = (3'n)nez, a == (an)n Z now be two doubly infinite sequences of
independent variables, and let A, p, be partitions such that A D ^. The
"skew supersymmetric Schur function" s\^(x\\a) is defined by

s\/^x\\a) = det(^.. -^, -i+j(^ll")),

where hr{x\\a, ') is now the coefficient of tr in the power series expansion
of n (1 - txi)~1 I] (1 + taj). Then we have

t Z j'6Z

(6. 21) s\/^x\\a)=^(x\a)rj

summed over all column-strict tableaux T : \- ^->J.. (6. 20) and (6. 21)
were found independently by lan Goulden and Curtis Greene.

7th Variation

Here we shall work over a finite field F =Fg of cardinality q (so that q
is a prime power). Let a-i, ... , a;n be independent indeterminates over F,
and let V C F[x-i,. .. , a;n] denote the ̂ -vector space speinned by the a;,,
so that -F[a-i,..., . i;n] is the symmetric algebra S(V) of V over F.

For each a = (di ,..., o'n) £ Nn we define

(7. 1) A. =det«J)^^. ^.
lfv^V, v^O, so that

(7. 2) U == QI.Z-I+. . . +an3;n
with coefficients a, G I7', not all zero, then we have

vq = a^ + .. . + a, nxq,
for all integers r > 0, from which it follows that the determinant (7. 1) is
divisible by v in S(V). Hence if VQ is the subset of V consisting of all the
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vectors (7. 2) for which the first non zero coefficient a, is equal to 1, we see
that Ay is divisible in S(V) by the product

(7. 3)

which is homogeneous of degree

P=P(x^..., x^= Jjy,
r Vo

Card(yo)=9n-l+gn-2+... +!.

In particular, when a = 8n = 8 = (n - l, n - 2,... , 1, 0), A( is
divisible by P, and is a homogeneous polynomial of the same degree
qn~1 + qn~2 +... +!; moreover the leading term in each of P and A$ is

.
n-1 _n-2

the monomial a"f x^ ... a-n, and therefore

(7. 4) P = A,.

The determinant Aa clearly vanishes if any two of the a, are equal,
and hence (up to sign) we may assume that ai > ... >Q!n >0, i.e., that
ct = \+ 6 where A = (Ai, ..., An) is a partition of length < n. It follows
from what we have just proved that

(7. 5) S^x^..., Xn)=A^/As

is a polynomial, i. e., an element of S(V), homogeneous of degree

E^' - w-
t=l

These polynomials S\ (and their skew analogues S\/^ that we shall
define later) constitute our 7th Variation. Clearly they are symmetric in
a-i, ... , a;n ; but they are in fact invariant under a larger group, namely
the group GLn(F) (or GL{V)).

For \ig= (^., )   GLn(F), we have

9xi = 7 . 5r(;ia;fc

k=l

and therefore

(gxi)qr =^fffc, 3-

for all integers r ^ 0, from which it follows that gA^ = (det^)Aa and
hence that

S\{gx^,..., gxn) = S\{xi,..., Xn).
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Consequently 5>A(a'i,... , a"n) depends only on (A and) the vector space V,
and not on the particular basis a;i, ... , a;n of V, and accordingly we shall
write S\(V) in place of S\(x-i,..., a-n) from now on.

When A = (r) we shall write

H, (V) = 5(, )(V) (r > 0)

with the usual convention that Hr(V) = Oifr < 0; and when A = (lr)
(0<r ^ n) we shall write

Er(V) = S(, r)(V) (0<r^n)

with the convention that Er(V) ==0'ifr <0or r > n.
A well-known theorem of Dickson states that the subalgebra of GL(V)-

invariant elements of S(V) is a polynomial algebra over F, generated by
the Er(V) (1 < r ^ n). But by contrast with the classical situation, the
^(V) do not form an F-basis of S(y}ciL^V\ as one sees already in the
simplest case n = 1.

Let t be another indeterminate and let

(7. 6) fvW=![{t+^-
vev

From (7. 3) and (7. 4) it follows that

fv(t) = P(<,.ri,..., a;n)/P(a;i,..., a;n)

= A^n+i(^ xl, ---i -rn)/A{^(a;l, . . ., Xn).

By expanding the determinant A$ ^^ along the top row, we shall obtain

(7. 7) fy{t) = yn - E, (V)t^~1 +... + (-l)nEn(V)t.

Since (at + bu)9 = atq + bu9 for all a, fc 6 FI and integers r > 0 (t,u
being indeterminates) it follows from (7. 7) that

(7. 8) fv{at + bu) = afv(t) + bfv(u),

i.e., that fy is an additive (or Ore) polynomial.
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Let y?: S(V) -» S(V) denote the Frobenius map, namely

<^(u) = ^ (u   S(V)).

The mapping y is an i<1-algebra endomorphism of S(V), its image being
F[x^... , x^]. Since we shall later encounter negative powers of <^?, it is
convenient to introduce

S(Y) = [J s(y)^-
r>0

where S(V)g == F[x^ ,... , x^ ]. On S(V), y is an automorphism.

Let E(V), H(V) be the (infinite) matrices

H(y)=(^lff, -. (y))^,
E(y)=((-iy-v^, _. (y))^.

Both are upper triangiilar, with 1's on the dlagonal. They are related by

(7. 9) E(V)=H(y)-1.

Proof. - We have to show that

^(-l)fc-^*(^-, )y>'+l(^, -, ) = ^,,
]

for all i, k. This is clear it i>k. li i < k, we may argue as follows : since
fv(xi) = 0 it follows from (7. 7) that

Vn(Xi) - E, <pn-\Xi) + . .. + (~l)nEnXi = 0
and hence that

(1) yn+r-l(^, ) - vr -\E^n+r-2(x,)
4-.. -+(-l)V-l(^)^r-l(^)=0

for all r > 0 and 1 < i <n. On the other hand, by expanding the
determinant A(^)+< down the first column, it is clear that Hr = Hr(V) is
of the form

(2) Hr=^u,yn+r-\xi)
1=1
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with coefficients u, £ I7'(a'i,. .., a'n) independent of r. From (1) and (2) it
follows that

(3) Hr - yr -\E, )H^ + ... + {-l)nyr-\En)H^n == 0

for each r > 0. Putting r = k -i and operating on (3) with y> , we
obtain

^ (-l)fc-^fc(E, _, )^i+l(^, -, ) = 0
i<j<k

as required. []

Next, we have analogues of the Jacobi-Trudi and Nagelsbach-Kostka
formulas (0.2), (0. 3) :

(7. 10) Let \ be a partition of length < n = dim V. Then

^(y)=det(^-^A, -,+, (V))
=det(^-l^. _^(V)).

Proof. - Let a = (0:1,..., o'n) 6 N". From equation (2) above we have

n

^-]{H^n^} =^ai{x^-j(uk) (1 < i, J ^ n)
fe=l

which shows that the matrix ^yl~} H^^n+j}, , is the product of the
matrices {yo!ixk), ^ 

and (y?l-JUjfc)^ .. On taking determinants it follows

that

(1) det(yl--'ffa;-n+, )=Aa5

where B = d.ek(ipl~3Uk).
In particular, taking a = 8 (so that a, - n +^ == J - Q, the left-hand

side of (1) becomes equal to 1, so that AgB = 1 and therefore

dek{yl-3H^-n+j)=A^/As

for all a G N". Taking a = A+6, we obtain the first of the formulas (7. 10).
The second formula (involving the £"s) is then deduced from it and (7. 9),
exactly as in the case of Schur functions ([Mi], Ch. I § 2). []

More generally, if X and ^ are partitions we define

(7. 11) S^, {V) = det^^-^l^.. -,, -.+, (y))
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and then it follows as above from (7. 9) that also

(7. 11') S^,(V) = det^-^^-l£, ;. _^_, +, (y)).
Moreover

(7. 12) Sx/^, = 0 unless 0< A^ -//^ n /or aZJ ?' > 1.

The proof is the same as for Schur functions ([Mi], Ch. I § 5).

The hook and ribbon formulas (0. 4), (0. 5) remain valid in the present
context : if A = (o;i,.. ., 0'p |/?i,... , ^p) in Frobenius notation, then

S^V)=det(S^^(V))^^
=det(^.. |,, ](V))^,,^

in the notation of (0. 5). These identities are formal consequences of the
definition (7. 11) : see §9 below.

Remark. - Since Hr(V) has degree (qr - l)gn-l, it follows that the

degree of yit'-}+'iHx. -^, -i+j{V) is

q^-3+l^i-^-i+J _ l)gn-1 = g^. +"-« _ g^-+"-J

Hence the determinant (7. 11) (and likewise (7. 12)) is isobaric, and S\/^(V~)
is homogeneous of degree

(7. 13) E(^-^)^-t-
t=l

We shall next consider analogues of the "addition formula"

s\/^(x, y) = ^SA/^(a;)s^(y)
v

for Schur functions ([Mi], Ch. I § 5). For this purpose let U be an ̂ -vector
subspace of V. From (7. 8) it follows that

fu '-v^ fu(v) = JJ (v + -u)
net/

is an F'-linear mapping of V into S(V) with kernel U. Hence fu(V') is
isomorphic to the quotient of V by £7, and we shall write

(7. 14) fu(V) = V/U
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thereby reserving the notation V U for this particular embedding of the
quotient space in S(V). If U is a vector space complement of U in V, the
elements of VfU are the products fu(v} = ]~[ (u+u) as v runs through ?7 ,

ueu

that is to say, they are the products in S(V) of the elements of the cosets
of U in V.

With this notation we have

(7. 15) fy = fv/u o fu [i. e., fv(t) = fv/u{fu(t))}.

Proof. - We have

fv/u{Mt))= n {fuw+w)
we.vfu

= n (^(<) + ^("'))
u'GU'

= n w + u') [by (7. 8)]
u'6t/'

= 11 (<+u+u')=MQ. D
u£[/

u'et/'

(7. 16) Let T be a vector subspace of U. Then

VfU = (V IT} / (U IT}

(with equality, not merely isomorphism).

Proof. - By definition

(V/T)/(U/T) = fu/T{V/T) = fu/T(fT {V))

=fu(V)=V/U. D [by (7. 15)]

(7. 17) (i) E(V) = ^dim(l//{/)(E(^)) . E(Vr/(7),
(ii) H(V) = H(V/?7). ̂ dim(v/y) (H(!7)).

Proof. - It is enough to prove (i), since (ii) then follows by taking
inverses and using (7. 9). From (7. 7) and (7. 15) we have (dim V = n,
dim U = m)
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^(-l)tE, {V)vn-i{t) = fy{t)= fvfu{fu(t))
»>0

= ^-lYE, {V/U}vn -m-} ^{-\)kEk{U^m-k{t))
}>.0 '*;>0

= E ̂ y+kEAV/U)vn-m-'(Ek(U))^-k(t)
j, fc^0

and therefore

E,{V)= ^ E^V/U)yn-m-'{E, (U)).
j+k=i

With a change of notation this can be written in the form

E^(V) = ^ y»-m+&-c(^_, (£7))^-<, (y/^)
a<Kc

or equivalent ly

(-l)c-a^c(^_, (V))
=^(-l)6-a^-m+6(£^([7))(-l)c-^c(Ee-6(y/E7)),

6

proving (i). Q

(7. 18) Let \, fi be partitions. Then

Sx/^v}=^s, /, (yiu)-^m(v/u\s^, {U)).
v

Proof. - Suppose r > max(^(A), /(^)). By definition (7. 11), Sx/^V)
is the r x r minor of H(V) corresponding to the row indices //i - 1, ... ,
{j, r-r and the column indices Ai - 1, ... , Ar - r, that is to say, it is the

r

element of /\H(y) indexed by these sets of indices. The formula (7. 18)
now follows from (7. 17) (ii) and the functoriality of exterior powers, which

together imply that /\ H(V) = A H(y/£7). y,dim(y/y) /\ H(^). Q

By iteration of (7. 18) (and making use of (7. 16)) we obtain

(7. 19) Let VQ>VI > ... >Vr be a chain of subspaces of V. Then

Sx/^iv,} = ^n^dim(vo^-l)^, )/, (.. -. )(v;-i/y.)
('/) ':=1

29



I.G. MACDONALD

summed over all sequences (i/) = (i/(o), i^(l),.
that^=^Cv(l)C---C^r}=\. D

., v^) of partitions such

As in the case of Schur functions, we shall use (7. 19) to express S), /^(V)
as a sum over column-strict tableaux of shape X - p..

If [7 is any finite-dimensional subspace of F(V), let

<u) = n u.
uG-U
u^O

From (7. 7) it follows that

(7. 20) TT(^) = (-l)'^(^)
.ifdimU^d.

If U' is a subspace of U, then U/U' is defined by (7. 14) as a subspace
of S(U) C S(V), and its elements are the products (in S(U) or S(V)) of
the elements of the cosets of U' mU. From this it follows that

(7. 21) 7T(!7/[7') = TT^M^) = I] U.
u^U-U'

We now consider the case where U is 1-dlmensional.

(7. 22) Let U be a l-dimensional subspace ofS(V) and let A, ^ be partitions.
Then

^/^) - (-i)'A-'il n <^c(s)^)
s6A-^t

if\- fi is a horizontal strip, and is zero otherwise.
(Here c(s) is the content of s : c(s) =j -iif s = (ij).)

Proof. - Since dim £7 = 1 we have Er(U) = Oforr > 2 and hence, by
(7. 10),

Hr(U)=S^U)=]^vj-lE, (U)
J=l

=(-i)rn^-17r(?7)
J=l

by (7. 20). From (7. 12), we have S^/^U) = 0 unless _0 ̂  A', - ^ ^ 1 for
allz, that is to say, unless A- ,1 is a horizontal strip. If on the other hand
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A -// is a horizontal strip, we have

S>/, (U) = det(^-^H, ^_^U))
=n^--+l^, _,, (£/)

»>1

=(-1)IA-. |]J^.. -.+1 JJ ̂ -1^)
t^l j=l

=(-1)IA-. | JJ ^c(, )^^ Q
seA-/i

Now let

V: V=Vo>V, >.. ->Vn=0

be a (full) flag in V, so that V; is a vector subspace of V of dimension (n-i}
for each i. Let

7T. (95)=7T(V;_i/y. )= J] ^
vev, _i-v,

for 1 <i < n.

From (7. 19) and (7. 22) it follows that

s>f^ = Er[^-l^c)/. (-l)(v-i/^-)
(v) i=l

=(-I)"-"IEII n y-+c<'>.. («)
(v) t=l ser(')/r(-1)

summed over all sequences (^) = ^0\^\... ^W) of partitions such
that ̂ _= Z. W c z.<1) C ... C ^ = X and each ̂  - ^i-1) is a horizontal
strip. Such sequences are in one-one correspondence with colunin-strict
tableaux T: A -^ -+ [l, n], and hence we obtain

(7. 23) ^/, (^)= (-1)1^1^^, 93)

summed over column strict tableaux T : \- p, -^ [l, n}, where

^(T^)= n ^. (s)-l^)((»),
a£A-/t

and T*{i, j) = T(i, j) +j -i (as in (6. 16)).
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Remark. - The degree of ̂ (T, 93) is

^(, )+T(.)-l^n-T(o)+l _ qn-TW) = ^ qc(9\qn - g"-1)
se\~-it sex~tt

which is easily seen to be equal to ^(gA; - qtl')qn~\ in agreement with
(7. 13). 1=1

In the formula (7. 23) the flag W is fixed and the sum is over tableaux T.
Since S), /^(V) is G'£(y)-invariant, and since the number of flags 93 in V
is congruent to 1 module q, we may sum over all flags as well :

(7. 23') ^/, (v)=(-i)'A-'t'E^T^)'
T.V

It seems plausible that (when ̂  = 0) there should be another expression
for S\{V) as a sum over flags, namely

(7. 24?) 5,(y)=(-l)IAI^V'(To^)
v

where To is the tableau defined by To(i, j) = i for all (z, j) 6 A. For this
tableau we have

^(TO, (»)= n ^-1^(^)
(', j)e>

=(-i)IAIn^. (^-i/^).
i>l

The formula (7. 24?) is true for example when A = (lr) (1 ̂  r < n) and
in some other cases; but I do not know whether it is true generally. It
would be enough to show that, if /(A) < n,

(7. 25?) ^(^)=E^y/L)

summed over all lines (i. e., 1-dimensional subspaces) L in V.

Finally, we shall indicate an analogue of the dual Cauchy formula
(0. 11'). Let V (resp. W) be the F-vector space spanned by a-i, ... , x^
(resp/yi, ... , 't/m), the x's and y's being independent indeterminates
over F. Let

7r(y, TV)= n(^)+7r(M))
L,M
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where the product on the right is over all lines LinV and M in W. Then
we have (with the notation of (0. 11'))

(7. 26) ^V, W)=^S^V)S^. (W).

Proof. - Consider the quotient

A6^. {x, y) / As^x)As^{y)
which by (7. 4) is equal to the product

JJ (u+u;)= J] (^-l-w»-1)
"6vo
wew
w^O

w^Vo
wew-o

(1)= n (7T(2. ) - TT(M))
L,M

(product over lines L < V and M < W). On the other heind, by Laplace
expansion of the determinant Ae^^. ^(x, y), we obtain

A^^y)= ^ (-l)"IA, +^(^)A^^(t/). (2)
AC(m")

From (1) and (2) it follows that

n (TT(L) - TT(M)) = ^ (-l)IAI^(y)^(^).
L, M \C(mn)

Finally, to get rid of the minus signs, replace each yj by u^yj, where u lies
in an extension field of F and satisfies a?9-l = -1. []

8 th Variation : flagged Schur functions

Let a;i, 3*2, ... be independent variables. For all positive integers a,
b, r define hr(a, b) (resp. Cr(a, 6)) to be the complete (resp. elementary)
symmetric function of degree r in the variables a;a, Xa+ii ... , a-5 ifa ^&,
and to be zero if a > 6; also define ho(a, 6) = eo(a, 6) = 1 for all a, b, and
hr(a, b) = Cr(a, 6) = 0 for all a, 6 when r < 0.

Let A, // be partitions of length ^ n and let a = (ai,..., an),
b = (&i,... , &n) be sequences of positive integers. The row-flagged Schur
function s\/^(a, b) with row flags a, b is defined [W] to be

(8. 1) 5A/^(a, &) = det^A.-^, -,+j("j, 6'))i<,, j<n
It is zero unless A D /i, which we assume henceforth.
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Let m > Ai (so that // C A C (m")) and let a' = (a'i,... , a'^),
y ^ ^'^ ^ y^ be sequences of positive integers. The notion dual to (8. 1)
is that of the column-flagged Schur function s'^^a', b'Y with column flags
(a', 6') :
(8. 1') ^A//"^') = det(e^-^. -,+, (^., &', ))^. ^<^
where A', ̂ ' are the partitions conjugate to A, ̂  respectively.

With mild restrictions on the flags these Schur functions can be ex-
pressed as sums over tableaux :

(8. 2) Suppose that a, ̂  a,+i and &, < 6,+i whenever ̂ , < A,+i (i-e. ^the
sequences a, b are increasing on each connected component of A - /^). Then

s\/^b)=^xT
T

summed over column-strict tableaux T of shape X - p, such that a, <:
T(iJ) < bi for all (i, j) 6 A - ^ where as usual XT = H a-T(a).

36A-/1

(8. 2') Suppose that a', - ^\ < a'^ - ^ + 1 and b\ - X', <, &',+i - \\^ +1
whenever p. ', < A,+i. Then

^("'^')=Ea;T
T

summed over column-strict tableaux T of shape \ - p such that a^ <.
T(iJ)<bl, forall(iJ)e\-^.

Both these results are proved in [W].

In general (i. e., for arbitrary choices of the flags a b) the row
flagged Schur function SA/^(a, &) will not be equal to any column-flagged
5' / (a', &/). However, there is the following duality theorem :

(8. 3) Let X, ̂  be partitions such that ̂  C A C (mn) and let a, /? be positive
iniegers such that a > m and ̂  - a>_m. Let

a, =a+z-/^. -l, bi=l3+i-\i (1 <^'< "),
a'^=a+ ̂ -j +1, b', =P+ \', -j (1 ̂  J ^ m).

^en^/^(a, &)=^(a', 6').
This is a particular case of (9. 6') in the next section; alternatively, it

is not hard to verify that with these choices of a, 6, a', 6' a coluinn-strict
tableau T of shape X - fi satisfies the row restrictions of (8. 2) if and only
if it satisfies the column restrictions of (8. 2 ).

Our notation here differs from that of [W].
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9th Variation

In this, our last variation, let hry (r > 1, 5   Z) be independent
indeterminates over Z. Also, for convenience, define ho, = 1 and hrs = 0
for r < 0 and all s 6 Z. Define an automorphism of the ring R generated by
the hrs by ip(hrs) = hr, a+i for all r, s. Thus hrs = y3 hr, where hr = hro,
and we shall generally use this alternative notation.

Now define, for any two partitions A, ̂  of length <. n,

(9.1) ., /, = det(^-^l^.. _,, _.+, )^^.^
and in particular (p, = 0)

(9. 1') s, =det{^+lh^^)^^
As in the case of ordinary Schur functions ([Mi], Chap. I, § 5) we have

(9. 2) s\/^ = 0 unless A D ^.

The Schur functions defined by (9. 1) include as special cases Vari-
ations 4, 5, 6, 7 and 8 (in part). Namely for Variation 4 we specialize
krs = Wr{z - s) ; for Variation 5, hrs = Wr(oc; 2- - 5); for Variation 6,
hrs = hr(x | rsa) ; for Variation 7, hra = y9 Hr(y); and for Variation 8,
hrs = hr(a +r + s -I, ? +s).

From (9. 1') it follows that

hr = S(^) (r > 0)
and we define

Cr = 5(ir)

for all r ^ 0, and Cr =0for r < 0.

(9. 3) Let I be any interval in Z. Then the matrices

H=H, =(^h^)^
£1=^=((-ir^-S-. ),,^

are inverses of each other.

Proof. - Both H and E are upper unitriangular, hence so also are HE
and EH. Hence it is enough to show that the (?", k~) element of HE is zero
whenever i, k G. I and i < fc, i.e., that

^^-^. (/., -, )(-l)fc-^-^., _, )=0
}

or equivalently that

^yl+l-^(^-. )(-l)*-V-^efc-, ) = 0.
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If we put k-i =r > Q, this is equivalent to

(1)

Now by definition

^(-1)^1-^^, )^(^, )=0.
j=0

er = det(^l-J(Ai_, +, )) ^', }<r

and expansion of this determinant along the top row gives (1), as re-
quired. Q

Let A, p, be partitions such that A D ^(, and let ^ = A-/^. The function
sg == s\/^ depends not only on the skew shape 0 but also on its location
in the lattice plane. For each (p, g)   Z2 let Tp^q denote the translation
(ii j] f~^ (! +PiJ + ?). Then it follows immediately from (9. 1) that

-1

and hence that

(9. 4)

.Sro. i(<9) = ^C, . sn, oW = y '.§(>

Sr^(ff) = y9 ~PSff.

In particular, SQ is invariant under diagonal translation (p = q).

Next let 0 be the result of rotating 0 through 180° about a point on the
main diagonal. Then we have

(9. 5) Sff = CSg

where e is the involution defined by y9 hr \-> <pl~r~shr.

Proof. - We may assume that A, // are both contained in the square
(nn). Let A, ju be their respective complements in this square, so that
\i = n - An+i-i, ?i = " - P-n+i-i- Then we may take 0 =/,<- A, so that

^=det(^i-t+l/^_^^, ^,)
e --\T -^. -A, +i+j.

which is easily seen to be equal to det(y>t-A'/iA, -^-i+j) = £s\/^. \\

Let 0' = \' - p, ' be the reflection of 0 in the main diagonal. Then we
have

(9. 6) so' = wse
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where w is the involution defined by y3 hr *-* y~ser for all r, 5. Equiva-
lently,

(9. 6') ^=det(^^-l^_^_. ^).

Proof. - Since the matrices Jf, E (over an appropriate interval of Z)
are unitriangular we have det ft = det£; = 1; and since by (9. 3) they
are inverses of each other, it follows that each minor of H is equal to the
complementary cofactor of the transpose of E. This leads to (9. 6'), exactly
as in the case of classical Schur functions ([Mi], Ch. I, (2. 9)). Q'

All the other determinant formulas for Schur functions have their
analogues in the present context, and the proofs are essentially the same.
First, if A = (ai,... , Q-r|^i,... , /3r) in Frobenius notation, we have

(!'-7) ^=<iet(<«.. lft))l<,,, <..
Proof {cf. [Mi], Ch. I, §3, Ex. 9). - If a, 6 ^ 0, so that fa|&) =

(a + 1, 16), the definition (9. 1') gives'
b

s(a\b) - ^(-l)'y-'(^+. +l)^-t-l(c6_;)
t=0

on expansion of the determinant along the top row. If a < 0 (but 6 > 0)
we define S(a\b) by this formula : this definition gives S(a\b) = 0 except
when a= -1 -fc, in which S(a\b) = (-1)6.

Suppose that /(A) < n and consider the n x n matrices A, B where

A.y = <^1-J(^.. -,+, ), B, fc= (-iy-l^'(6^_, _, ).

We have_then (AB). fc = 6(A, _, |n_fc) forl < ?, fc ̂  n; and since detA = s^
and detB = 1, it follows that

s^=det^(>. -i\n-k)), ^^

which reduces to det(5(<,, |^. )) exactly as in loc. cit. Q

Next we consider the generalization of (9.7) to skew functions S), /^. Let
A = (ai,... , ar|/?i,... , /?^) as before, and let p, = (71,... , 7, |£i,... £, ).
Then we have

(9. 8) ^=(-l). det(^ f)
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where A = (^(a, |^, ))i<. j<^ B = (^+l/l«.-7, )i<. <r, i<j^'
C'= (y-£'-le^-». )i<i^, i^-^-

The proof of (9. 8) is the same as that of Lascoux and Pragacz [LPi]
for classical Schur functions. (Observe that ^^+l/t^.. _^ = 5<».,, where
0ij = (a, 10) - (7j|0), and Ukewise that y~e'~l<
^, =(0|^)-(0|^).)

Finally we have, with the notation of (0. 5)

-£, -1 e^, -,. = 6y,,, where

(9. 9) s>=det{s[^\ft, })l<i, j<r

exactly as in the classical case. Again, the proof is the same as in [LPs] :
indeed, both proofs given there apply in the present context and we
therefore omit the details. There is also a "skew" version of (9. 9) in
[LP2] which is likewise valid in the present context : but it is rather
complicated to state in full generality, and we shall therefore leave its
precise formulation to the conscientious reader.
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