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ON THE INTEGRALITY OF THE WITT POLYNOMIALS

BY

ANDREAS DRESS AND CHRISTIAN SIEBENEICHER1

Consider, for example, the following covariant functors defined on the category
rings of commutative rings with a unit element2 and with values in rings :

A -^ F(A):=A[^]
A ^ F{A):=A[X]/{X2)
A ^ F(A):=AxA
A i-. F(A):==A®zA

These functors share the following property:

If p is a prime number and ifp- A = 0, then p . F(A) = 0,
that is, char A = p ==^ char F(A) = p.

Question: Do all functors from rings to rings share this property?

Answer: No.

The simplest counterexample known to us is based on the well known
fact that every prime number p divides the binomial coefficient ( p 1 for all
integersj   {l,..., p-l}.

Indeed, consider for an arbitrary ring A the subset

A?) ..= {rp(a>&) := (a, ap+p-6) I a, 6e A} C A x A.
lUniversitat Bielefeld, Fakultat fiir Mathematik, Postfach 8640, D 4800 Bielefeld 1.

e-mall: sieben@mathl0. mathematik. uni-bielefeld. de (March 25, 1992)
2In the following all rings will be assumed to be commutative and to have a unit element.

denoted by 1. ----,
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of the cartesian product Ax A and observe that with

(?)':=H?) ^(l. --l»
one has

r-p(0, 0) = (0, 0)eA;, 2),
rp(l, 0) = (1, 1) 6 A?),

as well as

rp(ai, &i)±rp(a2, &2)=

= (ai ± 02, (ai ± a,Y + p(&i ± &2 - E^i(±l)J [ ^
= rp(ai ±a2, fci ± 62 - E^il(±l)J ( ̂ ) . <J . aj2)

ap, -j . a^))

and
rp{ai, bi)-Tp{a2, bt)=^

= (ai . 02, (ai . 02 )p +p-(a? . 62+ 61 . a^+P- &i . 62]
= rp(ai . a2, a^-bt+br a^+p-br 62)

for all 01, 61, 02, 62   A. So the subset A^ is a sub-ring of the product ring
Ax A and the above formulae suggest to define quite formally a new addition
and multiplication, say + and S, on the set A x A by

p-1 / ^ \/

(ai, &i) ̂  (02, 62) := (°i+°2, &i +&2 - E (^ j . arj . aj2)

and
(ai, &i) S (02, 62) := (ai -02, 0? . fc2 +&i . a^+P- &i . ^2),

so that the map

-» A x A (a, &) i-^ rp(a, &)r? : Ax A

becomes a homomorphism from (A x A, +, S) into the product-ring A x A.

Obviously, if A has no p-torsion, the homomorphism r? maps (A x A, +, °) iso-
morpically onto Af\ which establishes in particular that (Ax A, +, S) is indeed a
ring for such A. But even if A has p-torslon, in which case the map r-p is no more
injective, (A x A, +, S) is a ring. This can be verified either by direct compu-
tation or by using a surjective homomorphism from some appropriate p-torsion
free ring, e. g. some polynomial ring over Z, onto the ring A.
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In other words, the above construction defines a functor

W^^ : rings -4 rings

A^WC/A):=(AXA, ^, §)
(h-. A-^A')^ (W^(/t) -. AxA-^A'xA' (a, 6) ̂  (A(a), A(6)))

for which there exists a canonical natural transformation

$:Wcp -* id x id
^A) : Wc, (A) -^ Ax A : (a, 6) ̂  rp(a, 6).

This functor provides a counter-example for the assumption made above, i.e. if
A is a ring for which p. A = 0, then p . WC^(A) ̂  0:
Indeed the calculation

rp(po (a, 6)) = p-r^a, b)
= (pa, pap+p2 6)

= »'p(pa, (l-PP-l)ap4-p6)

shows that

P°(l>0)=(p, l-pp-1)
holds at least if A has no p-torsion, and therefore, as above, this identity must
hold for all rings A.

Hence if char A = p, then for the unit element (1, 0) of WC^(A) one has

P°(l, 0)=(0, l)/(0, 0).

More generally, E. WlTT observed that for every ring A the subset

{(ai, "?+2a2,..., S;ri-^/',... )|ai, a2,...   A}
d\n

of the infinite product ring AN, N = {1, 2, 3,... } constitutes a sub-ring of AN
and that, as above, this allows to construct a functor

W : rings -^ rings

which is uniquely determined by the following properties:

. W(A) = AN

. W{h:A-. A')=hN : (ai, a2,... )^(/i(ai), /i(a2),...)
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. for every n £ N one has a natural transformation

$n:W
$»(A): W(A) -. A

id

(ai, a2,...) Ed-a^
d\n

n/d

To understand these constructions from a structural rather than a purely com-
putational point of view, consider even more generally a pro-finite group G and
let 0{G) denote the set of open subgroups of G. For every ring A, one considers
the ring

^0(G)/~ ^ ^ ; 0(^) _ A | /(£/) = /(V) if t/ ̂  V}
of all functions / : 0(G) -^ A which are constant on G-conjugacy classes. Then
the subset of all those maps g : 0{G) -^ A for which there exists some /  
A°(G)/~ such that

g{U-) = S/#Fi^(G/^) . /(^)(w:t7)
weO(G)

(where the symbol ̂ ' is meant to indicate that for each conjugacy class of open
subgroups W oiG exactly one summand has to be taken and with {W : U) .=
(G : U}1{G : W)3) can be shown to be a sub-ring of AO(GV~. As above, this
allows to construct an associated functor WG from rings to rings described in

Theorem 1:

Let G be a pro-finite group and let 0{G) denote the set of open sub-groups of
G. Then there exists a unique functor WG : rings -> rings with the following
properties:

. Wc(A) := A°(G)/~,

. for every ring homomorphism h: A-^ A' one has

Wc(/i): Wo(A)-. Wc(A') : f^h. f,

. for every open subgroup U G 0{G) one has a natural transformation

$t7 : We -> id,

defined by

$y(A): Wc(A) -. A : /^ S'#Fix^(G/v) . f^}(v''u}-
V^O(G)

3which is an integer whenever Y\. \. u(GIW) is non empty
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Remarks:

y^ .vv.itt's theorem Presents the special case where G is the pro-finite completion
C of the infinite cyclic group C.

^] T-he funct01' WCp considered in our first example is precisely the functor
wCp for G the cyclic group Cp with p elements.

Further results concerning this construction are:

Theorem 2:

. 
^p. ?hefinite field with p elements> one has pn . Wc(Fp) = 0 if and only if

p- #Gp divides pn, where Gp denotes a p-Sylow subgroup otG. In particular, if

Gp is infinite, one has p" . Wo(Fp) ̂  0 for all n 6 N.
Theorem 3:

There exists a canonical isomorphism from Wc(Z) onto the (completed) Burnside
ring4 n(G'). It has the following property: If for every positive integer g 6 N
and for every U 6 0{G} one denotes by C°(U, q)} the [/-set of all continuous

maps from y^nto the discrete set {1, ..., q}5 and if mdg(C7°(^, g)) denotes the
almost finite (7-set induced from it, 6 then the canonical isomorphism maps every
/   W^(Z) with f(U} > 0 for all U   0{G) onto the disjoint union

[/]:= U'^(^°(^/(^))),
U^.O{G)

taken over all conjugacy classes in 0(G).
Remark:

Using this isomorphism the above formula in Theorem 1 for the natural trans-
formation $[/(A) has a rather natural interpretation:
for any / e Wo(Z) as in Theorem 3 the number of [7-invariant elements
m the almost finite G-set [f] is precisely E^go^) #Fixu(G/V) . f{V)(v:u).
In °^her. words' using the identification WG(Z) = n(G'), the homomorphism
$t/(Z) :WG(Z) -^ Z coincides with the homomorphism y : n((7) -» Z, induced
by associating to each almost finite G-set the number of its C/-invariant elements.

'that is the Grothendieck ring of those discrete G-spaces-called almost finite G-sets-
where for every open subgroup U 6 0(G) there are only finitely many points which are mvariant

u.

C°(U, q)) is easily seen to be an almost finite [/-set.
6TFOr aUnalmost. finlte u,~set x we denote_b^mdg(^) the almost finite G-set induced by

^ is the by definition the set of [/-orbits (g^x) in the cartesian product G x X"re-lative to
the ̂ ree^[/-action ^ x (G-x ̂ ) -. Gx X defined by (u, (y, .c)) ̂  (gnz\ux) where of co'ur^
9r(92, x):=(gig-s, x).
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Theorem 4:

1. For every open subgroup U G 0(G} there are natural transformations

. FU-. WG

. Vu-. ^u

WL,

WG

where for every ring A

. the map F[/(A) : Wc(A) ^ W[/(A) is a ring homomorphism,

. the map Vu{A) : Wy(A) -^ Wc(A) is an additive homomorphism.

2. Using the identification from Theorem 3 F[/(Z) : wc(Z) -^_Wu(Z)^coin-
rides with the restriction map resg : n(G) -^ n(i7) and Vc^Z) : Wt/(Z)
Wc(Z) coincides with the induction map ind^ : n(?7) -> Q(G').

3. The standard identities relating restriction and induction hold more gener-
ally for F and V, e.g. for any ring A and any x 6 Wc(A) and y £ W[/(A)
one has x . Vu{A)(y)= Vu{A){Fu{A){x} . y) (Frobenius reciprocity) and for
U^Ut G 0{G) and a; 6 Wu;(A) one can compute Fc7, (A)(yt/, (A)(a;))  
Wu^A) according to an appropriate variant of the Mackey sub-group for-
mula.

Remark:
In case G = C, the natural transformations F and V specialize to the well known
Frobenius and Verschiebung maps defined for universal Witt vectors. Moreover,
the well known identities relating the Frobenius and Verschiebung maps follow
from the third assertion of Theorem 4 in this particular case.

To prove Witt's theorem as well as Theorems 1 to 4 one needs to show that
certain rational numbers-like e. g. i- ( p )-are indeed integers. In the case

If p
p\»

this, of course, can be shown by direct computation, but it can also be

shown without any computation by realizing that ^ is the number of orbits

cp \ of its subsetsof the action of the cyclic group Cp of order p on the set

of cardinal! ty j.

It is this way of using group actions to prove integrality results of this type which
is fundamental for the proof of our theorems and which-first of all-suggested
that a rather general variant of Witt's construction should exist, based on the
equi variant combinatorics of arbitrary rather than of cy die pro-finite groups,
only.
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