A NEW PROOF FOR A TERMINATING "STRANGE" HYPERGEOMETRIC EVALUATION OF GASPER AND RAHMAN CONUECTURED BY GOSPER

CHU Wenchang

Institute of Systems Science
Academia Sinica, Beijing 100080

In a letter to Richard Askey, Bill Gosper (1977) conjectured a number of the "myster ious-looking hypergeometric evaluations". All of these except for one identity with more than one parameter were proved by Gessel and Stanton (1982). The terminating and non-terminating versions of this identity were respectively confirmed through the computer certification by Ekhad (1990) and by Gasper \& Rahman (1990), in which the q-analogue of Gosper's conjecture was established either.

As known, inverse series relations are partially responsible for the proliferation of combinatorial identities. For the first time to display the talent of inversion technique, we take the original Gosper conjecture as one example and present a new proof here. As the whole technique consists of only the transformations between hypergeometric series and inverse relations, this approch is simpler, shorter and more accessible.

[^0]As the preliminary statement, recall a pair of inverse ser ies relations

$$
\begin{align*}
& f(n)=\sum_{k=0}^{n}(-1)^{k}\left(\sum_{k}^{n}\right)(a+\lambda k)_{n}(b-\lambda k)_{n} \frac{\lambda^{-1}(a-b)+2 k}{\left(\lambda^{-1}(a-b)+n\right)_{k+1}} g(k) \tag{1}\\
& g(n)=\sum_{k=0}^{n}(-1)^{k}\left(\sum_{k}^{n}\right) \frac{a+\lambda k+k}{(a+\lambda n)_{k+1}} \frac{b-\lambda k+k}{(b-\lambda n)_{k+1}}(\lambda-1(a-b)+k)_{n} f(k) \tag{2}
\end{align*}
$$

which follow from the suitable limiting process in the bibasic inversions due to Bressoud (1988) and Oasper (1989), or directly from the equivalent orthogonality in the special case $C=-n$ of Gasper's (1989) formula

$$
\begin{gather*}
{ }_{6} F_{5}\left[\begin{array}{ccc}
C, & A, & 1+A /(1+\lambda), \\
1+A-\lambda C, A /(1+\lambda), 1+B+\lambda C, B /(1-\lambda), 1+(A-B) / \lambda
\end{array}\right] \\
=\frac{\Gamma(1+(A-B) / \lambda) \Gamma(1+A-\lambda C) \Gamma(1+B+\lambda C)}{\Gamma(1+A) \Gamma(1+B) \Gamma(1+C) \Gamma(1-C+(A-B) / \lambda)} . \tag{3}
\end{gather*}
$$

THEOREM Gosper's conjecture is true i.e

$$
\left.\begin{array}{r}
? F_{B}\left[\begin{array}{rrr}
a, 1+a / 2, & a+1 / 2, & b,
\end{array} 1-b, \quad n+(2 a+1) / 3,\right. \\
a / 2,
\end{array} \begin{array}{r}
1 / 2, \quad(2 a-b+3) / 3,(2 a+b+2) / 3,3 n+2 a+1, \tag{4}\\
-3 n
\end{array}\right]
$$

$$
\begin{gather*}
\left.\sum_{k=0}^{n}(-1)^{k} \sum_{k}^{n}\right) \frac{4 k+2 a}{(3 n+2 a)_{k+1}} \frac{-2 k-1}{(-3 n-1)_{k+1}}(k+(2 a+1) / 3)_{n} \frac{(a)_{k}(a+1 / 2)_{k}(b)_{k}(1-b)_{k}}{(3 / 2)_{k}((2 a-b+3) / 3)_{k}((2 a+b+2) / 3)_{k}} \\
=\frac{(2 a)_{3 n}(1)_{n}((1+b) / 3)_{n}((2-b) / 3)_{n}}{(2)_{3 n}((3+2 a-b) / 3)_{n}((2+2 a+b) / 3)_{n}} \tag{5}
\end{gather*}
$$

which could be telescoped in (2) and yields the dual relation from (1)

$$
\begin{align*}
\left.\sum_{k=0}^{n}(-1)^{k} i_{k}^{\prime \prime}\right)(2 a+3 k)_{n}(-1-3 k)_{n} & \frac{2 k+(2 a+1) / 3}{(n+(2 a+1) / 3)_{k+1}} \frac{(1)_{k}((1+b) / 3)_{k}((2-b) / 3)_{k}}{((3+2 a-b) / 3)_{k}((2+2 a+b) / 3)_{k}} \frac{(2 a)_{3 k}}{(2)_{3 h}} \\
& =\frac{(a)_{n}(a+1 / 2)_{n}(b)_{n}(1-b)_{n}}{(3 / 2)_{n}((2 a-b+3) / 3)_{n}((2 a+b+2) / 3)_{n}} . \tag{6}
\end{align*}
$$

Noting that

$$
(-1-3 k)_{n}=(-1) k(-1-2 n)_{3 n-3 k}(2)_{3 k} /(2)_{2 n}
$$

arid

$$
(2 a+3 k)_{n}=(-1) \operatorname{modh}(2 a)_{4 n} /\left\{(2 a)_{3 k}(-1-2 a-4 n)_{3 n-3 k}\right\},
$$

we ran reformulate (6) as a verv well-pnised ser ies

$$
\left.\begin{array}{c}
F_{8}\left[\begin{array}{cccc}
-2 n-(2 a+1) / 3,-n-(2 a-5) / 6, & -(1+2 n) / 3, & -2 n / 3, & -(2 n-1) / 3, \\
-n-(2 a-b) / 3, & -n-(2 a+b-1) / 3 \\
-n-(2 a+1) / 6, & (3-2 a-4 n) / 3, & (2-2 a-4 n) / 3,(1-2 a-4 n) / 3, & -n+(2-b) / 3,
\end{array}-n+(1+b) / 3\right.
\end{array}\right]
$$

which is one very special case of the Dougall-Dixon theorem. This confirms the truth of (4).

One profound fact hidden behind this example is that the inverse ser ies relations could be compared to the "black bux". The operation demonstrated above is just like the "input-output" process which should be expected to nave the high potentiai for creating combinatorial identities. The author of the present paper is currently doveloping a project along this direction which would convince a remarkable fact that almost all terminating riyper yeurietr ic identities (e.g. those cover ed by the works due to Andrews [1979], Gasper \& Rahman [1990] and Gessel \& stantnn!1982,1983!) are the dual relations of only three hypergeometric formulae named after Chis-Yandermoride-Gauss, Pfaff-Saslschutz and Dougall-Dixon-Kummer, as long as one generalized version of reciprocal pair (1) and (2), and its a-analoque (which contain the inverse pair due to Gould and Hsu [1973] and Car!itz' q-analogue [9973] as special cases) are accepted in advance. Its extensive exhibition will appear in the for thcoming paper.

REFERENCES

1 S. E Andrews, Connection coefficient problems and partitions, Proc. Symposia in Pure Math. 34 (1979), 1-24.

20 M Bressnud, The Bailey lattine: an introduction, 57-67 in Ramanujan Revisited (G. E. Andrews et di. eds), Acadernic Press, New Yurk, 1988.

3 L. Carlitz, Some inverse relations, Duke Math. J. 40(1973), 893-901.
4 W. C. Chu, Inversion techniques and combinatorial identities, in preparation.
5 S. D. Ekhad, A short proof of a terminating "strange" hypergeometric summation formula of Gasper and Rahmạn, Preprint, 1990

6 G. Gasper, Summation, transformation and expansion formulas for bibasic ser ies, Trans. Amer. Math. S0c.312:1 (1989), 257-277.
? G. Gasper \& M. Rahman, An indefinite bibasic summation formula and some quadratic, cubic and quartic summations and transformation formuias, Canad. Math. J.17:1 (1990), 1-27.

8 Iragessel \& D Stanton, Stranne evaluations of hypergeometric series, SIAM J. Math. Anal. 13(1982), 295-300.
y Iragessel * U. Stanton, Appications of q-Ladrange inversion to basic hypergeometric series, Trans. Amer. Math. Sư.277.1(1983), 173-201.
$10 \mathrm{H.W.G}$ Gouid \& L. C. Hsu, Some new inverse ser ies relations, Duke Math. J.40(1973), 885-891.
110 H Greme \& 0 E Knuth, Mathematins for the Analysis of Algorithms, Birkerhauser, 1981
!2 '. Piordan, Combinatorial Identities, John-Wiley, New York, 1968.
(J in. S. Wilf \& D. Zeilterger, Rational functions certify combinatorial identities, U. of Amer, Math. $5003: 1(1990), 147-158$.

[^0]: *Partially supported by Italian Consiglio Nazionale Delle Ricerche while the author was a visiting professor of CNR (January - March, 1991)

