
The use of Schubert polynomials in SYMCHAR

A. Kohnert

September 30, 1991

1 Introduction

SYMCHAR is a collection of C routines, which allows to compute with symmetric
groups, multivariate polynomials, representations, characters, symmetric polynomials,
wreath products and many other related structures. The routines are written in stan-
dard C, so that there is no problem to use it on any machine, which has a C compiler.
This was sucessfully checked for IBM-DOS, Atari-DOS and many different UNIX-
machines. The code was written in Bayreuth, Paris and Aberystwyth. The program is
public domain, and you can get a copy together with documentation files if you send
a 3, 5" HD-discette to the author.

Schubert polynomials are a generalization of Schur polynomials, and they are used
inside SYMCHAR for the multiplication of Schur functions or for the decomposition of
skew Schur functions into Schur functions. Schubert polynomials where introduced by
Lascoux and Schutzenberger in several papers, e.g. [LSl]. Schubert polynomials are
labeled by permutations, in spite of partitions, which label Schur functions. We will
see how we can characterize the permutations which label Schur polynomials.

2 Schubert polynomials

Schubert polynomials are multivariate polynomials, which are defined using a difFer-
ential operator 9,. Let An := {ai,..., an} be an alphabet of n commuting letters and
/ Z [An] an arbitrary polynomied. We define the operation of the elementary trans-
positions (T, := (?", t + 1) on /. /<T* := /(ai, ..., a, -i, a;+i, a;, a,-+2,..). Now we are able to
introduce the operator 3, by

. supported by PROCOPE and ARC

65

9,{f) := /-/'.
a. - a<+i

The operator 9, is a symmetrizing operator, as after the application of 3, the poly-
nomial is symmetric in a, and a,+i. Now we are in the position to define Schubert
polynomials: We do it inductively according to the reduced length of the permutations
TT, which label the polynomials. Let T 5n ajid /(n-) the reduced length (i. e. number
of inversions). Define the Schubert polynomial X, inductively:

1. For the maxima! reduced length l(v) = (^) we put

X^(ai,..., an) := a^-la^-2... an-i

2. If l(v) =: k is not maximal, TT =: TO-,, /(r) = fc + 1, then

X»(ai,..., an) := 9i(Xr(ai, ..., On))

This definition works, as we have

9, 3,+l^i = ^t+l^^i+1

8, 8, = Q, 9, h"-j|>l

There is a second method of labeling Schubert polynomials. We define a bijection
L between the permutations of Sn and certain elements of IN . Let ff 5n given in
the list notation, i.e. w, is the image of i under TT. We define

Z(7T). := JO- > Z|7T, < 7T, }|

i.e. the number of entries to the right of TT,-, which are smaller. The image L{v) is
called the Lehmer code of the permutation v. L is a, bijection between Sn and the
elements / IN" with /, < n - i. The computation of the bijection is clear from an
example:

£([5, 6, 3, 1, 2, 8, 4, 7]) =4, 4, 1, 0, 0, 2, 0,0

L-l(2, 3, 0, l, 2, 0, 0)=[3, 5, l, 4, 7, 5, 6]

If we use this labeling instead of the permutations we write

YI := XL-I(I),

66

where / is a Lehmer code. Now we have the following property: Let I =0 <!}. <:
/2... ^ ^, 0,..., 0 e M" be a Lehmer code. Then

Yi=S^.^(Ak)

where 5'/,,..., 7,, (Afc) is the Schur polynomial labeled by the partition /i,..., /<; in the
alphabet of k letters. If we look at the following picture we will see, that for example
^2413 = ^1200 is the Schur polynomial S^(A'i).

All Schubert polynomials, labeled by permutations of the 84.

321, a3b2c

3421, a262c
,
4312, a3&2

2341,

>4132, a36+a3c

4123, a3

Myw^c
ac+ be

U23, a2+ab+b2

'1324, a+6

21)13, a2+a6+

'1243, a+6+c

1234,1

67

3 Monks Rule

This is the rule for the multiplication of Schubert polynomials by a single variable.
The general case is unknown. This means, there is no general rule known for the
multiplication of two arbitrary Schubert polynomials (like the Littlewood Richardson
rule for Schur functions).

The rule:

akX^ = ^ 5^n(j" - k}Xp
p=^(j, k), l(p)=l(v)-{-l

An example:

"5^13627458 = -^13672458 - -^13726458 + ̂ 13628457

To generate all the permutations on the right side of the equation, fix the number Vk
(in the example 7) and now look to left of TT^ which numbers Vj are smaller with no TT(
between n-j and v-k- (in the example these are the numbers 2 and 6) These pairs TTj, TT^
are exchanged giving a permutation on the right side with negative sign. Then look to
the right of ̂ k searching for Vj bigger with no TT(in between. The exchanges of these
pairs give the permutations with positve sign. (in the example the number 8) Proofs
may be found in [Ml] where it was proofen in the context of algebraic geometry, or in
[Kl] where it was proofen in the context of Schubert polynomials.

4 Transition algorithm

In general a Schubert polynomial X^ is not symmetric, but in the case TT, < 7r,+i the
polynomial is symmetric in a, and a.+i. This is clear from the definition. Now let X^
be symmetric in the first / variables, the transition algorithm is an algorithm which
decomposes the symmetric part of the Schubert polynomial X^ (the polynomial X^,
where a;+i, a;+2) ... are s®t to zero) into Schur polynomials.

one step of the algorithm:

0. if only one decrease in TT stop, Xv is Schur polynomial

X^, k is the index of the last decrease in TT, TT^ > Wk+i <

1. exchange Tk and the biggest TT; with I > k, TTi <Tk

2. call the result TT

68

3. exchange TT^ with all ̂ with / < k

such that the reduced length is increased by one.

4. call the generated permutations Tl, r2,.....

one step is shortly described: input v, output r1,...

Example:

13628457 -» (fc = 5)13627458 exchange 7 with 2 and 6,

giving 13726458 and 13672458.

So the input was one permutation, the output are two permutations.

To see that, we used the formula, which is a special case of the Monk rule:

Ofc^lT' = ^ - ^ ̂ T»
t

k choosen as above. We look look on the syinmetric part, where ajk becomes zero so
we have the following decomposition

.^V =^_, ̂ T'
t

and if we have only Schur polynomials on the right side, we have a decomposition of
the symmetric part into a sum of Schur polynomials.

The single step is applied to all newly generated permutations until the algorithm
stops. So we generate a tree, on its root we have the input permutation, on the
leaves there are permutations, which labels Schubert polynomials, which are Schur
polynomials. So you may substitute the permutations on the leaves by the partitions.
A further useful property is the invariance of the generated tree under the embedding
Sn -» .S'n+l, 7T t-» [l, 7r]. So if we increase the alphabet of the Schubert polynomial, the
decomposition of the now bigger symmetric part into Schur polynomials is still valid.

This algorithm was introduced in [LS1], In the original paper it was shown, that
you can stop with permutations, which are socalled vexillary, but for computational
reasons, it is easier to generate new permutations until you reach the Schur polynomials.

The whole algorithm is shortly described: input permutation v, output partitions
A1,... The algorithm will become clear, when we look on the examples in the two
following special cases of the transition algorithm.

69

5 Useful applications of the transition algorithm

We consider two special cases of the transition algorithm, this means we look on special
permutations as input of the algorithm.

5. 1 Multiplication of Schur functions

We have two partitions: I =(0<: h ^ .. <; Ik) and J=(0^ Ji ̂ ... ^ Ji) labeling
two Schur functions Sj and Sj. To compute the expansion of the product 5'/ x Sj we
build the Schubert polynomial

y:=yO, 7, 0,..., 0, J, 0,...
Ik timea

Now the transition algorithm starting from Y gives ECK-'S'A-, and we have

SixSjr\Ak=YDAk= Y. CKSK n Afc

As the algorithm is invariant under the embedding of Sn into 5'n+i the decomposition
is independent from the size of the alphabet Afc, so we have really the decomposition
of the product of two Schur functions. This algorithm was first introduced in a paper
of Ldscoux and Schutzenberger [LS1]. This method has been implemented and is used
in SYMCHAR for the multiplication of two Schur functions. The algorithm becomes
clear, when we look at the following example: (see end of article)

5. 2 Decomposition of Skew Schur functions

We have a skewpartition 7=(0< /i < .. < Jfc)/J =(0 < Ji ̂ ... < Jk} labeling the
skew Schur function 5//j. In order to decompose into a sum of Schur functions, we
build the following Schubert polynomial:

y:=y 0,.., 0 ... Ik-i-Jk-i , 0.. 0, h-Jk^ , 0,...
(leading zeros position t+k-l+Jk-i position l+k+J,,

The transition starting from Y gives ECA--S'A-, and we have

Siu nA< = rn A(= Sc^5/<n A'

The same argument as in the case of the product of Schur functions, shows that we
have a decomposition of skew Schur functions. This algorithm was presented in [K2J.
Again we look on an example: (see end of article)

70

6 Implementation

The algorithm has been implemented in the system SYMCHAR. It is written in stan-
dard C. To implement the generation of the tree we use a stack, of permutations. If
the top level permutation is one which labels a Schur polynomial, it is written to the
output, if not, the top level permutation is substituted by the permutations, which are
generated in one step of the algorithm. The run time of this algorithm depends heavily
on the structure which is used to store the result, if we use a tree structure for the
result (= list of partitions with coefficeat) we get nice run times. These are listed on
the last table.

The run times where taken on a HP9000-425, runing UNIX Version 7. 0.5, the files
where compiled using the optimizer. As an example we used the decomposition of skew
Schur functions.

degree of number of parts run time
result in result (sec.)
11 283 0.1
13 1833 0.5
15 13561 4.7
17 112745 46.6
19 1039929 658.8

skewpartition

123456/1234
1234567/12345
12345678/123456
123456789/1234567
12345678910/12345678

References

[Kl] Kohnert A., Die computerunterstutzte Berechnuug van Littlewood-Richardson
Koeffizienten mit Hilfe van Schubertpolynomen, Diplomarbeit Bayreuth 1987

[K2] Kohnert A., Skew Schur functions and Schubert polynomials, preprint 1991

[LS1] Lascoux A. & Schutzenberger M. P., Schubert Polnomials and the Littlewood
Richardson Rule, Letters in Math. Physics 10 (1985) 111-124

[Ml] Monk D., The Geometry of Flag Manifolds, Proc. London Math. Soc. (3)9(1959)
253-286

Adress of the author:

Axel Kohnert, Lehrstuhl Mathematik II, Universitat Bayreuth,
Postfach 101251, D-W8580 Bayreuth

e-mail: axel@btm2x2. mat. uni-bayreuth. de

71

Example for sec. 5. 1 : decomposition of Skew Schur function 5'i33/i2

/

[
12537468
12536478

I

12437586
12437568

i

i

I
12437658
12437568

I

Code : 00102010

/

i
12635478
12634578

[

i

I
12643578
12634578

I

I

i
13624578 Code: 01300000

=5i3

And we have 5'i33/i2 = .S'liz + S^ + 5'i3.

\

I
12457368
= .S'ii2

\

i
12563478 Code: 00220000

= .S'22

Code: 00112000

72

Example for sec. 5. 2 : decomposition of Schur function product S^ x 83

135249678 Corfe : 012003000
135248679

I

/

[
138245679

=5is

\

I
135284679
135274689

I

/

i
137254689
137245689

I

\

I
135724689

= 5'i23

y

I
147235689

= 5s4

\

i
137425689
137245689

I

i

I
237145689

= .S'114

So we get: 5i2 x 83= ̂ 24 + S^ + S^s + Sis

73

