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ENUMERATION OF SOME DAVENPORT-SCHINZEL

SEQUENCES

BY

DANIELE GARDY (*) and DOMINIQUE GOUYOU-BEAUCHAMPS (*)

ABSTRACT. - Davenport-Schinzel sequences of order s are words with no subse-
quence a6a6a ... of length s + 2. We give enumerating results for the case s = 2. In
particular, we relate some of these sequences to Catalan and Schroder numbers.

1 Introduction

Davenport-Schinzel sequences are words with forbidden subsequences, which were first
defined by Davenport and Schinzel [l] in connection with the general solution of a
differential equation, and which have found a new field of application in computational
geometry. We indicate here only the most classical application, and refer the interested
reader to the survey paper of Sharir et al. [4] for details. Let /i,..., /" be n countinuous
real functions, such that any two functions intersect in at most s points. The sequence
of indices of functions which form the lower bound of the graphs is a Davenport-Schinzel
sequence of order (n, s}.

We give below the formal definition of Davenport-Schinzel sequences and recall some
previous results, which are all relevant to the maximal length of a sequence. We do
not know of any work counting the number of distinct sequences. We next give a
decomposition of sequences for .s = 2 in Section 2, from which we obtain the function
enumerating sequences according to their length and to the number of distinct letters
they contain. Some consequences are given in Section 3; In particular we show that
sequences on a given number of letters are enumerated by Schroder numbers, and that
sequences of maximal length are enumerated by Catalan numbers. Finally, we indicate
in Section 4 why our method fails in the case s > 3.

"This work was partially supported by PRO Mathematique-Informatique and by Esprit Basic Research
Action No. 3075 (project ALCOM).
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1. 1 Definition

Let 5 be a positive integer, and A an alphabet of size n: A = {ai, . . -a^}. A Davenport-
Schinzel sequence of order (n, s) is a word u; == ui . . . u<: of A+, such that:

. any two consecutive letters are distinct;

. u; has no subsequence u,^ . . --u, ^, (l < t'i < <2 < ... < is+2 < k} on any two
distinct letters a and b, satisfying:

u,, -= u,, = ... =a and U. 4 = ... = b-

We shall denote by DS[s) the set of Davenport-Schinzel sequences, for a fixed 5 and
for all alphabets.

1. 2 Maximal length

A major consequence of the definition is that the number of Davenport-Schinzel se-
quences of order (ra, s) is finite; this number is usually denoted by \s{n). Much work
has been devoted to the estimation of A, (n). We recall here the main results and refer
to [4] for a detailed bibliography:

. s=l: Ai(n) = n.

. s=2: \-s{n) =2n-l.

. s=3: \s[n) is of order 0(no:(n)), with a{n) the functional inverse of the Acker-
mann function. This is more than linear, but a{n) is less than 4 for all purposes.

. s > 4: it is possible to give a bound on \s{n}. As in the case 5 = 3, it Is
theoretically superlinear, but is almost linear for all realistic values of n.

2 Decomposition of a sequence of DS(2)

We first precise the objects we are interested in. In the lower envelope problem we
alluded to in the introduction, the names of the fiinctions (letters) are arbitrary: Our
interest is in the Davenport-Schinzel sequence up to a renaming of the letters. This
seems to be true in general: The object of interest is not a word, but its structure
subjected to a perinutation of the letters.

Let us note that, from a counting point of view, there is not much difference: If Nn, k is
the number of words of Davenport-Schinzel on n letters and of length k, the number of
sequences up to a permutation is a^, k = -^A. Denote by '&(a-, y) the ordinary generating
function of the On. fc, where variable x marks the length of a word, and variable y marks
the size of the alphabet. We have:

^(a;, y)=
^

£. -I

fc,n>l n\
a», ^fcy" -= E ^,.^^.

A, n>l
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Function ̂  is also an exponential generating function of the Nn, k, according to the size
of the alphabet.

Our goal is to find a suitable decomposition of the words of -D5'(2), from which we can
deduce an equation on their generating function. This equation is of degree two, and
can easily be solved. We first simplify the problem by introducing primary words and
obtain a simple result on the generating function of primary words of DS(l), which we
shall need in the sequel. In the sequel, a word has the usual sense, and a sequence is a
v/ord, modulo a permutation of the letters.

2. 1 Primary words

We introduce the notion of a primary word:

A primary word w on an alphabet A of size n is such that all letters of A
appear in w.

The length k of a primary word of DS{2), on an alphabet of size n, belongs to the
intervai [n, 2n - ij. Let M^, k be the number of primary words of DS(2], of length k,
and bn, k =- :^r the number of related sequences. The following relation holds:

^^=E(n)^,..
q=l \9,

We define in a similar way primary sequences. Let ^{x, y) be the generating function
counting primary sequences:

^(^y) - E 'E^^'y" - E E"^,^^.
n>l k=n n>l k=n

We obtain easily:

^(a:, y) = ey^(z, y).

2. 2 Enuineration of primary words of DS{1)

Let gk, n be the number of words of Davenport-Schinzel for s = 1, of length k, and such
that all letters of alphabet A, of size n, appear in the word. We deduce immediately
from the definition of DS(l} that such a word has no repeated letter. This shows that,
if n y= fc: g'^n == 0, and if n = k: (/". " = n!. Define ff(a-, y) == Y. k. n^i9n, kX v^; we have:
9(^y)=E^i2:r'-y"=r^.

2. 3 Decomposition of a word of D S [2]

Let w be a word of DS'(2); w may actually be a word of DS[l), with no repeated
letter. If at least one letter is repeated, we decompose w unambiguously, according to
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the occurrences of the first such letter. Let a be this letter, which is repeated p > 2
times. We have:

w = w-^aw^a- . . WpaWp-^-i.

The word w^ has no repeated letter, and belongs to DS(l}. For i > 2, each w\ is a word
of DS(2), and defines a sub-alphabet A, C A \ {a}. The w, cannot be empty, except
maybe u'i or Wp+i. Moreover, the following condition holds:

For 1< ?<y^p+ 1, A. n A, = 0. (1)

Some letters of alphabet A may not occur in word iy; Let B denote the set of such
letters. We now have a way to partition A, according to the decomposition of w:

A = {a}©Ai ©Az © ...@Ap © Ap+i © B.

A word w is a primary word if and only if 5 = 0. This gives the general decomposition
of-05(2), with condition (l) relative to sub-alphabets:

DS{2) = DS(1} © ( (e © P5(l)) . a . (D5(2) . a)+ . (e @ P5(2)) ). (2)

2. 4 Generating functions

The decomposition given above is valid both on primary and non-primary words. PIow-
ever, if we want to mark the different letters thc<.t appear in a word, and to translate this
decompositlon on generating functions, we must restrict ourselves to primary words. We
recall that x marks the length of a primary word, and y the number of distinct letters
in the word. Equation (2) translates into an equation on function $(. r, y):

^ = g + {l+g)xy
x^

1-x^
(!+$).

Injecting the value of g{x, y), we obtain: £$2 +{xy- l}^ + xy = 0, which is easily
solved:

1 - xy -^{1-xyY -42-2y
<,, (,,, ) = -".,, - --.

3 Consequences

3. 1 Number of words of given length

The number of primary sequences on an alphabet of size ?i, and of length k, is simply
b^^k = [xicyn}^{x, y). We can express it using Catalan numbers  

" 
= ^^[y-r^f

The number of primary sequences of DS(2), of length k on an alphabet of
size n, is:

6". t=c-(^l-l)-
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The number of sequences of D S [2), of length k on n letters, is:

n-l

an, k = ^ C'Arr-n
k- 1

r=0 2n-k-l-2r
i/r!

The number Mn, k of primary words and the number Nn^ of non primary
words of DS (2} satisfy:

M,, fc = n!C^, f, /^1 ^;

Nn,, = nl^C^^[
r=0 \-"

2n -k-l}'
k-1

2n- k - 1- 2r
/r!.

3. 2 Sequences of maximal length

The primary sequences of maximal length are obtained for k = 2n- 1. Their number
is 'l)n, 2n-l = C^-l. It is possible (but we do not give it here) to find a bijection between
these sequences and known combinatorial objects enumerated by Catalan numbers, such
as Dyck words.

3. 3 Sequences on a given number of letters

The total number of primary sequences, for a given size n of alphabet A, is [y"]$(l, y).
We have $(l, y) = (l - y- y/l - 6y + y'2)/2; this can be expressed using the generating
function r(t) of Schroder numbers [3J:

$(l, y)=yr(y) for r{t) = ^ R^tn = (l - t - Vl~oFTt2)/2t.
n

The Schroder words on the alphabet {x, x, y} are given by the language equation:

S =l+ijyS +xSxS.

We give below a bijection C between Schroder words and primary sequences.

. Let w be a word on a single letter: C{iv) = e.

. if ju;! > i, and if the first letter of w is not repeated: C'(au;') = yijC(w').

^ If the nrst !et. t, er of ?y is repeated: let w -- aw^aw-i, for a ^ Wi. C[w} =
xC{wi}xC{ aws).

The follo\ving property can be proved by recurrence on n: Every primary sequence w
on n letters is coded by a 'word C{w) of length 2n - 2.
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3. 4 Average length and number of letters

The average length of a primary sequence on n letters is:

|y"!^. (1-y)
[y"I<&(i, y)

It is easy to obtain an asymptotic equivalent of this expression. We first determine
the singularity of smallest modulus of the function y ^ V^l - 6y + y2, which is yo =

3 - 1\[2 w 0. 17157287... A transfer lemma [2] gives:

[y"i<^(i, y) V yi 4y^ ̂ v^m'

with yi = 3+2^2 (yi is the other singularit. y of the previous function). The numerator
can be studied in the same way, and we obtain:

[y"K(l, y)^-: i - yo

Hence the result:

The average length of a primary sequence on n letters is asymptotically equal

to (1 + ^)n.

The average number of letters in a primary sequence of length k is obtained exactly in
the same way:

The average number of distinct letters in a primary sequence of length k is
asymptotically equal to 2/C/3.

These results also hold for non-primary sequences (informally, the asymptotlc equiva-
lents are determined by the singularity of smallest modulus of the generating function,
and multiplying $ by ey to get ^ adds no singularity).

3. 5 Probability distribution of the length of a sequence or the
number of letters

We have plotted the curve of the probability distribution of the length of a primary
sequence, when the number n of letters is fixed, and the probability distribution of the
number of letters in a primary sequence of fixed length k. Empirically, these distribu-
tions are found to follow a normal law. This can be proved by mathematical technics,
and is a direct consequence of results obtained by M. Soria [5j.
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4 The case s > 3

Our method fails in the case where s is at least equal to 3: We can still decompose w
as in equation (2), but with different conditions on the words w, and the sub-alphabets
they define. In particular, these sub-alphabets are no longer disjolnt: Condition (l) does
not hold, and we cannot translate the decomposition into an equation on the bivariate
generating function.
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