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ENUMERATION OF SKEW FERRERS DIAGRAMS

BY

MARIE-PIERRE DELEST (*) and JEAN-MARC FEDOU (*)

ABSTRACT. - In this paper we show that the generating function for the skew
Ferrers diagrams according to the paremeters width and area is the quotient of new
basic Bessel functions.

Introduction.

Ferrers diagrams, related to the well known partitions of an integer have been

extensively studied, see for instance the works of Andrews [3]. A partition of an integer
n is an increasing sequence ofintegers, n^n^,...,^ such that ni+nz+.-. +nfc = n. The

geometric figure formed by the k columns having respectively n^, n^,..., n^ cells (see

figure 1) is called Ferrers diagram associated to the panition (n^n^,..., ^) of n. Filling

Ferrers diagrams with numbers gives plane partitions which are related with

representations of the symmetric group [13]. The Young tableaux are examples of such

plane partitions and are of a great interest for the computation of the Schur functions.

The literature on these subjects is plentiful.

The difference between two Ferrers diagrams is called a skew Ferrers diagram.

Thus a skew Ferrers diagram is defined by two increasing sequences of integers,
ni,n2,...,nkandpi,p2,...,Pk such that, for every 1 <i < k, n; < pi (see figure 2). If the

skew Ferrers diagrams have no cut point and are connected then they are a particular case

of polyominoes, the so-called parallelogram polyominoes.

Unit squares with vertices at integer points in the cartesian plane are called cells.
A polyomino is a finite connected union of cells such that the interior is also connected.

Polyominoes are defined up to translation. The perimeter of a polyomino is the length of

its border, its area is the number of cells which compound it. For example, the skew

Ferrers diagram showed in figure 2 is defined by the two sequences (2, 4, 4, 4, 4) and

(1, 1, 3). It is also a parallelogram polyomino having perimeter 18 and area 13.

(*) This work is partially supported by the PRO mathematique et Informatique.
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Figure 1. Ferrers diagram corresponding to the sequence (1, 2, 2, 2, 4, 4)

Counting polyominoes according to the area or perimeter is a major unsolved

problem in combinatorics. See for review [18], [20]. The problem is also well known in

statistical physics. Usually, Physicits consider animals instead of polyominoes, an

equivalent object obtained by taking the center of each elementary cell. They attempt to

find some relations for the number an of animals having an area or a perimeter n. For

results on this subjects the reader would see [23].

A column (resp. a row) is the intersection of the polyomino with an infinite

vertical (resp. horizontal) unit strip. A polyomino is said to be convex when all its

columns and rows are connex. Recently, convex polyominoes have been enumerated

according to the perimeter [8]. The enumeration according to the area is still an open

problem.

A parallelogram polyomino is a convex polyomino bordered by two

nonintersecting paths having only North and East steps (see figure 2). Parallelogram

polyominoes are well known in Combinatorics (see Polya [18], Gessel [14]). The
number p2n+2 °f such polyominoes having perimeter 2n+2 is the Catalan number C^,

 

" =^-
'n~ nTT

2n
n

The enumeration of the polyomino parallelograms according to the area has been

studied by Gessel in [14], as an application of a q-analog of the Lagrange inversion

fomiula but no explicit formula is given.

Here we were interested in the relations between perimeter, number of columns

and area in such a polyomino. The reason is that if we want to enumerate convex

polyominoes according to the area (which is an open problem) then we must first know

some distributions for parallelogram polyominoes (for more explanations see [8]). As

shown in section 2, it is easy to give functional equations for their generating function

using what we call a q-analog of an algebraic grammar. When A. M. Garsia was visiting

in Bordeaux during September 1989, we were stopped at this point. Then we made with

him some computations using Macsyma which led us to see some sequences, related to

the zeroes of Bessel functions [I], in the handbook oflnteger Sequences ofN.J. Sloane.
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We shall show in section 2, that the enumeration of parallelogram polyominoes is
intimately connected with the power sums of the zeroes of some q-analogues of Bessel
functions. These Bessel functions are different from those defined by Ismail [15] and
Jackson [16] and appear to be new. They are introduced in section 3 and some of their
properties are given in section 4.

The subject is so rich that it leads us to several combinatorial interpretations for
these functions. These can be made in terms of weight enumerators of trees, multichains

in Dyck paths, mulriwalks in a trees [12]. This not widstanding, further work needs still
to be done. Some open questions are given in the conclusion.

Figure 2. A parallelogram polyomino having area 13 and perimeter 20.

l.DEFINITIONS AND NOTATIONS

A path is a sequence of points in the quarter of plane INx M. A step of a path is
a couple of two consecutive points in the path. A Dyckpath is a path w = (so, Si,..., S2n)
such that SQ = (0, 0), s^ = (2n, 0), having only steps North-East
(s-(x, y), s^i=(x+l, y+l)) or South-East (s, =(x, y), Si+i=(x+l, y-l)). A peak (resp.
trough ) is a point s, such that the step (s^^s;) is North-East (resp. South-East ) and the
step (s;, Si+i) is South-East (resp. North-East). The height h(s, ) of a point s; is its
ordinate.

A Dyck word is a word we {x, x}* satisfying both conditions:
(i) lw|^|w|_

x- x ,
(ii) for every factorization w = uv, |u|.. > lul .

x ~ x

Classically, a Dyck path having length 2n is coded by a Dyck word of length 2n,
w=xi--- X2n: each Nonh-East (resp. South-East ) step (s;_i, s;) corresponds to the
letter x; = x (resp. x, = x ). The peaks (resp. troughs) of a Dyck path correspond with
the factors x x (resp x x) of the associated Dyck word. We denote by D^ the set of the
Dyck words having length 2n.

Example. The Dyck path showed figure 3 is coded by the following Dyck word from
Dg

W= XXXXXXXXXXXX XX X X.
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M.P. Delest and X.G. Viennot give in [8] a bijection [a between the parallelogram

polyominoes having perimeter 2n+2 and the Dyck words having length 2n. A
parallelogram polyomino P can be defined by the two sequences of integers (a^,..., a )

and (b^,..., b^. i), where a^ is the number of cells belonging to the ith column and
(b,+l) the number of cells adjacent to the column! and i+l.The Dyck word p.(P) is the

Dyck word having n peaks, whose heights (resp. troughs) are a^,..., a^ (resp. b^,...,

bn. i). They deduce the following

p.

0-°V°'
-°' w\

'0.
.

0.

CL jQL J3

Figure 3. A Dyck path ofDg

Proposition 1. The map [i transforms a parallelogram polyomino having perimeter

2p+2, n columns and area k into a Dyck word having length 2p, n peaks and such that

the sum of the height of the peaks is k.

Example. The parallelogram polyomino showed figure 2 is defined by the two

sequences (2, 4,3, 3, 1) and (1, 2, 2,0) and corresponds to the Dyck path showed figure 3.

On the other hand, Bessel functions are present in Analysis where they are

particulary usefull for the resolution of differential equations. There is a lot of works on
these functions, see for instance [23] ou [9]. We recall here their classical definition and

also a result by Carlitz [6] about the quotient of such functions.

Bessel functions are defined for v>-l, by

^ (-"'(I'1)2""
Jv(x)=so niHv+n+l) '

All the zeroes of Jy(x) are real. Let jy ̂  be the kth positive zero of Jy(x). The symetric

function,

^n<v) =S Ov, k)-2n '
k=l

is rational in v for any positive integer v.
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Rayleigh [19], Airey [I], and others have used this result for the computation of
the first zeroes of the Bessel functions. The functions (?2n were known by Jacobi in

1849, as coefficients of the meromorphic functions,

Jv. l(x) ^ _ , ",
2T(x)-=J, °2n(v)x 2n-l

k

1

2

3

4

5

6

The first values of

°2n (v) = 2

2 11 38 946 4580 202738

5 14 1026 4324 311387

362 1316 185430

42 132 53752

7640

429

Figure 4. coefficients a^(n) for T\<&

-2n On (V)
^n(v) '

are given by Carlitz in [6]. Let LxJ be the integer part of x. Then,

^n(v) = D (k+V)L J ,
k=l

and0n(v) = ao(n) +a^v+ ... + &^ vd is a polynomial of degree

d = l-n+i[tj.
i=2

The values of the first coefficients are given in figure 4.

Remark. In this array the Catalan numbers appear. An explanation of this fact is given
in [12].

2. ENUMERATION OF PARALLELOGRAM POLYOMINOES

In this paragraph, we use the bijection |LI between parallelogram polyominoes and

Dyck words described in section 1. We apply a method due to Schutzenberger [21] in
order to get first the generating function of Dyck words according to the parameters
length and number of peaks. A particular "reading" of the derivation rules of the Dyck
grammar allows us to get the third parameter, sum of the height of the peaks. This
method will be described in [7]. We deduce ihe generating function,
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<f<t)=^>qktn-
where a^^ is the number of parallelogram polyminoes having n columns and area k, and

we show some recurrence on ak,n.

Proposition 2. The number ofDyck words having length 2n and k peaks, is

^)^)-

This is a classical property related with the Narayana numbers (see for instance [17]).

Proof. Let D' be the set of the words written over the alphabet {x, x, t}, obtained by

subsdtuing each factor xtx to the factor xx in the nonempty Dyck words. We say that

we "mark" each peak with the letter t. This language is solution of the following

equation,

D'= xtx + xtxD'+ xD'x + xD'xD'.

Let

d(t, x) = ^ a^ xn tk ,
n,k20

where an,k is the number of Dyck words having length 2n and k peaks. Commuting the

variables in the equation of D' gives the following equation,
d(t, x) = xt + xt d(t, x) + xd(t, x) + x d(t, x)2,

At last, the Lagrange inversion fonnula proves proposition 2.

Proposition 3. Let if(t) be the generating function of the Dyck words according to

the number of peaks and the sum of the height the peaks . Then qf(t) satisties the

following functional equation,

qf(t) = qt + qt qf(t) + qf(qt) + qf(t) qf(qt).

Preuve. The method used is described in [7]. It deals with the more general problem of

getting the generating function of some combinatorial objects according to two
parameters, for instance perimeter and area. More details can be found in [7] and [11].
We just recall here the principle of the method which is divided in four steps.

(1) We code the studied objects by the words of an algebraic language L so that

the perimeter can be directly read on the length of the words. This is the classical

methodology of Schutzenberger [21]. Commuting the variables in the algebraic system,

one obtains from a grammar G of L gives the generating function accorting to the

penmeter.
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(2) For each word w of L, we consider the monomial (p(w) = qk where k is the
area of the object coded by w. The idea is to define recursively the function (p from the

derivation rules of the grammar G in order to construct the q-analog qL of the language
L. It is the set of words (q;w) obtained by applying the recursive definition of (p to w.

(3) We consider the formal series

qS = S (w;q),
we L

which satisfies a q-analog of the system of algebraic equation satisfied by

S=^ w.
W e L

(4) Commuting the variables, we get a functional equation satisfied by the
generadng function,

^°_£^'n1k.
n,k=0

where a^^ is the number of studied objects having perimeter n and area q.

Let g be the map which associates to each word from D' the monomial qk where
k is the sum of the height of the peaks of w. The following recursive relations allow us to

construct the q-analog iD'of the language D' which is the set of the words (w;q) when w
describes D'.

(xtx ;q) = xqtx ,

(xtx u;q)= xqtx (u;q) for every word u in D',

(xux;q) = xq lult (u;q)x, for every word u in D',

(xux v;q) = x q lul((u;q) x (v;q)), for u and v words in D' (see figure 5).

Let us consider the fonnal series IS,

qS - I (u;q).
ueD'

The image ofqS by the morphism ^ sending t on t, and x,x on 1, is the function qf(t),

qf(t)=S g(u) /(u) .
ueD'

So the generating function of the Dyck words according to the parameters number of
peaks and sum of the height of these peaks, which is also the generating function of the
skew Ferrers diagrams or parallelogram polyominoes according to the parameters
number of columns and area, is exactly the function qf(t). Applying the recursive
definition of the function g gives
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that is,

Let,

number of peaks

Figure 5. The equality (xuxv;q) = x q 
lull (u;q) x(v;q).

('f(t) = qt + qt^ g(u) x(u) + S q t g(u) (g(v)+l)x(u)x(v) ,
ueD' u,veD'

qf(t) = qt + qt qf(t) + qf(t) + qf(t) qf(qt).

qf(t)=Sa, (q)t",
n=l

We denote for short an(q) by a^. The functional equadon gives,

ai=q+qai,

and, if n >1,
n-1

a^ -qna, + qa^ + j a^qK a^ ,

thus, setting

,"_ »n<"
a" = ~--^T '

d-qr
we have a^ = 1 and for every n, n>l,

n-1

(l-qn)c^ = (l-q)'a^ + ^ (l-q)qK a, a^ ,
k=l

n-2

[n] a, = (1-q) a.^ + q a,a^ + qn-1 a^a^ + S^qkockan-k .
which is

a. =-1-
a2=l2l
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and for every n, n^3,

[n]a^(l+qn-l)a^^Iqka, a^.

Let us denote by jo(t) the formal power series

Jo(t)=Santn-
n=l

Finaly, we get

fo(-^qL2) = (l-q) ̂ (t) -
(1-q)'

which gives the following

Theorem 4. The generating function qf(t) of the Dyck words according to the
parameters sum of the height of the peaks and number of peaks is (1-q) Jo(qt / (1-q)2),
where the coefficients o/Jo satisfy

[n]a^ = (l+qn-l)a^ +'Sqka^a^ .

We show in the next section that the function Jo can be expressed using Bessel
functions. For explaning the introduction of the function fy, we must say that first, we
computed (using Macsyma) the first values of an , then we read the Sloane and after

some others computations, we introduced this function.

3. NEW BASIC BESSEL FUNCTIONS

Let us first recall some technics of q-calculus. The q-analog of an integer n is the
polynomial

[n] = 1 +q+q2 +...+q"-l,

and the q-analog of n factorial is

[n]!=nm.
i=l

The q-derivative of a function f(x) is defined by

Dq(f(x:

This q-derivative coincides with the usual one when q-> 1.

D, (f(x))=f<^.

Fvomnlp n <^n) = [n] x" 1
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Classical formulas of derivation are easily extended to the q-derivation. For
instance, if u and v are two functions,

Dq(u+v)= Dq(u)+Dq(v),
Dq(uv) (x) = D^(u)(x). v(x) + u(qx). Dq(v)(x),
DJ ̂  ̂  - - t)a(u)(x).
^yJW- - u(x)u(qx)-

The reader will find in [2], [4], [10] the q-analogs of classical functions and their

properties.

Here, we will use a slightly different form of the Bessel functions. This form is

close from the one used by some combinatorists (see for instance [5]).

Definition 1. For any integer v, let I^(z) be the function defined by ,

tn,, n+v(-l)"xn
'«-^nTOHV)T

Remark. One gets Jy from ly by changing the variable x in z using,

Jv(z)=(|-)'VIv(f),
The functions Iy satisfy a similar property to the Carlitz's one for Jy, that is

Property 6

Iv. l (x) , f ^(V) ,n
Iy (x) ^ ^(v)

The usual q-analog of the Bessel function would be
tn ,. IH-V00 (-

ql.. (\} = V (-'1J x"
lvw =2^ rmsrn+vi! '^ [n]! [n+vj!

where each occurence of a factorial has been replaced by its q-analog. Here, we need a

slightly different definition, which is
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Definition 7. Let I^(x) 6e the q-analog of the Bessel function \,
ln+v1

.
("-)-£(-l?nql2 ;x v

^vw=^ [n]!ln+v]! .

We define (py(x) by,

,

fx) = ^^(x)
(pvw = -^o-'

3 PROPERTIES OF THE FUNCTIONS (p^(x)

In this paragraph, we first give formulas about q-derivatives of the functions
qly(x) in order to get a q-differential equation satisfied by (po (x). Then we show the q-
analog of property 6 in the particular case when v = 0.

Theorem 8. The function (po(x) satisfies the following q-differential equation,

Dq(<Po(x)) = 1 + (l-q)<Po<x) + ^ (Po(x) (PO^X) .

Proof. This theorem comes from the formulas for the q-derivative of the functions
qly(x), combined with the formulas of q-derivadon. Indeed,

^ r-i^n^
D^W)=l<SD^)-

. f w°^ ^
^ [n-1]! [n]! " '

=-^AW-
When v > 0, we similarly get,

f n+v-1

D^W=IS^VW IM-V-1

So we have,

Dq^vW) = ^., (qx) ,
= qlv-l(x) + (qX -x)Dq(q[^, (x)) .

In particular,
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Dq(^(x)) = ^(x)-(q-I) ql^(x).

Finaly, using q-derivation formulas we get,

D^A00. . qlo(x)-(q-l)qli(x) _^ j_j^q^00
'qv qlo(x) / AW ' x A^AW '

and theorem 8 follows. We conjecture the following property,

Proposition 9. The functions ^pv(x) is given by

, f^n]M^(pv(x)=:^t7 Tj(vyx "'

where [TCn](v) is the natural q-analog of K

["n](v)=n[k+V]L
k=l

and [^>](v) is a polynomial in the variables q and v and with positive coefficients.

Definition 10. We denote by X^ the natural q-analog of 71^(0) which is the

polynomial [7ln](0), that is,

^1
n I il

^n=n[i]LlJ.
i=l

Remark. The polynomials ^ satisfy the following equalities,

and,

^n= n ([n/j]!)J ,
J=l

ifn>l, ^= ^ HCd] .
d /n

The first values of ̂  are 1, [2], [2][3], [2]2 [3][4],..

Definition 11. For every integers n>l and i <n, define the q-binomial of shape 'X.

as,

Fn1
i"i =J^
lljl~^-,'
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It is possible to construct some posets (binomial in the Stanley's sense [22]) such that the
number of maximal chains of length n is ^. We obtain sets which are too eccentric to
be analyzed.

Lemme 12. For every integers n>2 and 1 ^ i < n-1.

^["1
T"TLiJ?i'

is a polynomial with integer coefficients.

This lemma is a direct consequence of a basic property of the integer part. The
definition of ^ gives,

^["1. ^n^'ltJ^.
M~LiJ^ = M'Kilnr " ' L~J .

Let n be a strictly positive integer and i, j two integers less than n. Let

^. ^ and c= 1
We have both inequalities

jb<i <j(b+l)andjc < n-i <j(c+l).
Thus we have,

j(b+c) < n <j(b+c) + 2 and a-b-c > 0.

Ifj=n, then b=c=0 the equality is trivial. Then we can prove the following

Proposition 13. Jo(x) = <Po(x) .

Proof. Let

(Po(x) = Z a^x" ,
n=l

where c^ depends on q. The equality of theorem 4 can be written in,

^ [n] a, x"-1 = 1 - ^ (q-l)a^xn + Sa^, qJxl+J-l .
n=l n=l i,j=l

We have a^ = 1 and for every n, n>l,

[n+l]a^ =(l-q)^+^^a, a^, qk.
k=l

63



Pl= 1,
?2 = 1-

P3 = 1 + q2,

(34= l+q+2q2 +3q3 +2q4 + q5 + q6,

(35= 1 +q +3 q2 + 5q3 + 6q4+6q5 +6 q6 + 5 q7+ 3 q8+ q9 + qio.

Figure 6. The polynomials Pn (q).

Expanding gives

a2=T2]
and for evey n, n>2,

n-1

[n+l]a^ = (l+qn)a, + S^a,a^^qK .

Using this last equality, we easily conclude.

Remark we have

a^ = 1,

a2°[t]
and the above equality is enough to define the function (pg by recursion.

Theorem 14. Property 9 holds for v =0.

Proof. The following proof is made using calculus. A more elegant combinatorial

proof using valued trees is given in [12]. Let
= -&"

.n ~ ~^~ '
^n

we have

Pl=l, P2=l>
and for every integer n>2,

^,, n_l 1 I "+1
P^ =(l+qn)T^TT^±l-+ST^ ^ PkPn-k. l qk '^i --'^-[n+l] ^ '^[n+ll

Using definition 10 and lema 12, an induction gives the proof of theorem 14.
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Conclusions.

(1) The method we used here seems to be a powerfull generalisation of the
Schutzenberger methodology. In particular, it can be used even when the expected
generating function is not algebraic.

(2) We showed that the generating functions Bn(q) of skew Ferrers diagrams having a
fixed number n of rows according to the area are rationnal. These functions have others

interesting combinatorial interpretations. In [12], it is shown that they are first related to
the Ehrhart theory about the enumeration of points with integer coordinates in a convex
polytop. This allows to describe these functions by the mean of valued binary trees. On
the other hand, these functions appear also in the enumeration of some multichains of

the cartesian plane.

(3) The main open problem about this work is to find a combinatorial interpretation of
numerators and denominators of the functions a^.

Aknowledgment. We are very grateful to Adriano Garsia from the University of
California at San Diego for initiating us in the q-calculus technics. His help and infectious
enthousiasm have been precious all through this work.
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