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R. G. Bland and M. Las Vergnas have introduced oriented matroids which can be viewed as an
abstraction of matroids representable over an ordered field. Analogously, we define valuated ma-
troids as an abstraction of matroids which are representable over some field with a non archimedian
valuation.

1. Definition:
A valuated matroid M^ of rank m consists of a set E together with a map
u : Em -R+U {0} satisfying
(VO) There exist ei,..., m C E with v(ei,. .., e^) / 0;
(VI) For all ei,..., em G £ and all permutations TT G S^ we have

L'(e.r(i),..., e^(m)) = v(ei,.. ., e^).
Moreover, we have v(ei,... , e^) = 0, if e, = e, for some i, j with i ^ j.

(V2) For eo,... , em, /2,... Jm 6 £ there exists some i with 1^ i ^ mand

v(ei,..., e^). u(eo, /2,. -., /m) ^ v(eo,.. . /e., -. . ̂ n, ) . r(e,, /s,.... /m) .

B, := {{ei,..., e^} I u(ei,..., en, )^0} is called the set of bases of M^ v is called a valuation.
Remarks;

i) If u : Em - R+ U{0} is a valuation, then in view of (VI) we write
u({ei,. . ., em}) = v(ei,... , Cm) for pairwise distinct ei,. .., em G £.

ii) If M is a matroid defined on £ with B as its set of bases, then any valuation v : Em - R+U {0}
with u(5) / 0 if and only if 5 is a base of M is called a valuation of M.

2. Example:
Assume p is a prime number and consider the p-adic valuation Up :Q-^ Q+ U {0} given by

vp(0):= 0,
up(i-pn ):=p-nfomez, /, fc6Z\p-z.

If £ is a spanning subset of Qm, then the Grassmann-Plucker identities

m

^(-1)'. det (eo,..., ^,,..., em)' de< (e,, /2,... ,/m) = 0 for CQ,. .. ,em, /2,... Jni   £'
1=0

imply that v := Vp o det : £m ̂  Q+U {0} is a valuation. The underlying combinatorial geometry
is induced by linear (in)dependence.
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v(ei,.. ;, e^):= <j ^

3. Definition and Lemma:

i) Assume o- 6 R+ and M isa matroid with B as its set of bases. Then
v:Em ~. R+u {0} defined by

a for {ei,..., e^} G ^
otherwise

is a valuation of M; all these valuations are called trivial.

ii) For ae R+, a map ??: £ -^R+ and any map v : Em -^R+\J {0} we define a new
w = v[a, r]]-. Em ^R+U {0} by

m

w(ei,. .., em) := o' . JJ ??(e, ) . v(ei,. .., e^).
1=1

If t; is a valuation, then w is also a valuation and v and w are called projectively equivalent.
In case a = 1 we write also v[l, r]] = v^.

iii) A valuation w : Em -^ R+U{0) ofamatroid M is called essentially trivial, if w is project! vely
equivalent to some trivial valuation.

iv) A matroid M is called rigid, if every valuation of M is essentially trivial.
4. Example:
The uniform matroid (,2, 4 of rank 2 with 4 elements is not rigid.
5. By applying the theory of the Tutte group of a matroid one proves
Theorem:

All binary matroids and all finite projective spaces of dimension at least two are rigid.
6. A Variation of the Greedy Algorithm:
Assume E is & finite set and v : (^) ^R+u {0} is a function defined on the m-subsets of E with
V<'B) >oforsome B e (^)- To find some B   (^) with a large v-value one may proceed according
to the following greedy algorithm.

Step 0 : Choose some ei,..., Cm 6 £ with v({ei,... , e^}) > 0.
Step k(l <, k ^m): Assume that Xi,..., Xk-i are determined and choose some Xk C E such

that

v({xi,.. ., Xk-i, Xk, ek+i,.. ., e^}) ^ v({a;i,..., a;fc_i, 2;, efc+i,... , e^})
for all a-e £ \ {a;i,... , a:fc_i, efc+i,... , e^}.

We say that this algorithm works for v, if for all d,... , e^ £ £ as above and all permitted choices
of the a-i,..., 2;^ one has v({a-i,... , a;^}) > v( 5) for all 5 £ (£).
Theorem:

Assume E is finite, m <#E and v : (£) -» R+ U {0} is some map with v((E)~) ^ {0}. Then v
defines a valuation v : Em ̂ R+U {0}"if and only'if'the Greedy Algorithm''work's for''^ for all
maps r] : E -^R+.
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