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ABSTRACT. - We establish upper and lower bounds for so called Kanamori- McAloon Func-
tions which were studied in [KM 87] by model theoretic reasoning. The bounds we present fit
into the hierarchy concept introduced in [Wa 72].

1. Introduction: Undecidable Properties

Godel in his famous paper [Go 31] was the first to prove the existence of cer-

tain statements formalizable in Peano arithmetic PA, which are neither povable

nor refutable from the axioms of PA but nevertheless true. Especially he was able

to show that the formalized version of PA'S consistency itself remains undecid-

able if PA happens to be consistent at all. The proof was completed by Gentzen

[Ge 36] in 1936, when he showed the latter condition to be valid if one is only

willing to accept transfinite induction up to £o as a meaningfuU mathematical

statement. From a combinatorial point of view the situation still remained unsat-

isfactory, because the formalized consistency-predicate involved all the coding of
the formal language under consideration. A breakthrough was obtained by Paris

and Harrington [PH 77] in 1977, when they came up with a purely combinato-

rial Ramsey-type statement featuring the nice properties of undecidability as well

as validity. They essentially showed this statement to be equivalent to PA'S con-

stistency using strong model-theoretic methods. Later on Ketonen and Solovay

[KS 81] succeeded in stripping the proof of its proof-theoretic garments by giving
recursive lower and upper bounds for the related combinatorial functions, which

PA failed to prove total. In defining such functions the afore mentioned results

suggest, that one has to refer to ordinals at least up to £o in one way or another.

Although Paris and Hamngton were the first to obtain undecidable combina-
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torial statements the combinatorlal proof given by Ketonen and Solovay still was

technically involved. Kanamori and Me Aloon [KM 87] owe the credit of skipping
the inessentials and it is mainly the aim of this talk to sketch the construction of

lower and upper bounds for the combinatorial functions they invented. Because
the more sophisticated proofs are technically involved we restrict ourselves to give
the reader an overview of the results in the next section and return to a "sketch

of proof" in section 4.

2. Growth rates of certain combinatorial functions

1. In order to present our results we list the functions under consideration first.

(PH) Let fc, r G a;\{0} be given. Then

there exists a least n = PH{r, k) £ a;\{0} such that for all A: ̂  '^
r there exists LCn, minL < |L|, k< \L\ satisfying A f L is constant.

(KM) Let fc, m £ a;\{0} be given. Then
there exists a least n = KM{id, m, k} =: KM{m, k) G a;\{0} such that

n -^ (m)^_^^,
with -^ denoting the usual arrow notation, which requires A to depend
on minimum elements only if restricted to (^) for some M C n satisfying

|M] = m and considering only A: (^ ) -^c^ with A(A) £ ^d(mmA) U
{0} (id-regressive colorings). Let KM(m~) := JCM(m, 2).

(KM*) Same statement as in (KM), where id is replaced by an increasing function
fk-. u ->u^d KM{id, m, k) by KM{fk, m, k) =: KM\m, k}. More
precisely, if T, {n) = n+ 1 and ̂ +i(n) = (n + l)Tt(n)Jfc is defined for
A. >3 by A :=(n+ l)fc-2Tfc-2(") . Tfc-3(n) . ... . Ti(n).

(KS) Let fc, m G a;\{0} and A be an ordinal. Then
there exists a least n = KSx{m, k) £ ^\{0} such that for all A : [ '^

Xxu with A(^, y) £ ^(Afc,. r)xa; there exists Me ( ̂  ) such that for
alia: <y< 2; inM we have :

l)A(3;, y)=A(x, z).
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2) a < a' for A(a;, y) = (a, /) , A(y, z) = (a', /').

We would like to hint at the difference in the first two statements. The con-

cept of relative largeness (mm L <, |L|) in (PH) is replaced by minimum
homogeneity in (KM) and id- regressive colorings are considered rather than

finite colorings.

Some comments are also necessary in order to understand the meaning of
the last statement. A fixed initial segment A + 1 of the second number class

has been chosen together with an assignment Q;[. ] :a; -^ o; , oc[n} < a of a

fundamental sequence for each a: G A+ 1 satisfying:

a[n] < a[n + 1]; jima[n} = a, for a a limit; (a + l)[n] = a; 0[n] = 0 for each

n.

For k eu define \k := \[k] .

The set of predecessors of a, N(a, .r), (cr G A + 1, -c G a;) is defined by

N(a, x) .. ={a[x}[x]... [x}\i^Lj}
i-ttmes

At first sight the definition of KS\{k, m) seems to be slightly artificial but it

proves to be useful in order to discard ordinal notions occuring in lower bound

estimations. Because of 1) the second condition in (KS) simply requires A to be
increasing with respect to its first coordinate on M.

2. The sample functions we want to compare with rely on the chosen initial

segment as well as the fundamental sequence assignment and occur already
in similar form in [Wa 72]:

Fo(n) = n + 1

Fa+i(") = Fw{n), the n-th iterate of F^

-Fa(") = -Fa[n](n);o' a limit ordinal.

Some further requirements of the assignment a[.] as the Bachmann property [Ba
67] should be met to assure certain monotonicity properties of the functions Fa.

165



Wolfgang Thumser

The growth rate of these functions is beyond comprehension. J?s(n) for example
,

2 2"
dominates the n-two's tower 22 , -FL+i dwarfs the A ckermann-function and, as

Spencer remarked, in the naming-large-number-game F^y+^Q) should win against

any non-loglcian. (The indices always indicate, that a certain assignment of funda-

mental sequences has been chosen, where in the case of the ordinal Co use is made

of the Cantor Normal Form theorem:

^+---+^[k]=
tjai -I- ... -)- u;^"-l . & ifctn is a successor ordinal
u^1 +... + u^n[k\ if an is a limit ordinal

(i/

t^k .. =: £o[k] := yw
k-times

3. Presentation of results

3. 1 Lower bounds

Let us consider the function KM(m} first. It turns out that KM(m} fails to be

primitive recursive, which WELS already observed by [KM 87] and can also be seen

from our result in [PTV 89]:

KM(Ram(2, m + 3, k)) ^ Ffc(m), where

Ram{l, m, r) := least n : n -» (m)^.,

because Ram[l, m, r) happens to be primitive recursive. Generally it can be shown

that

KM*(Ram{2 + m, 2m + 3, 2m), 2 + m) > F^{m)

(for details see [PTV 89]). By relating the functions KM(m, k) and J<M*(m, fc)

similar bounds may be obtained for KM(m, k) thereby establishing the above

mentioned undecidability results.

One can see from the proof given by Ketonen aiid Solovay [KS 81], that KM. * (m, m)

serves also as a lower bound for PJf(m, k):

Pff(312 + 24m, 3+2 . m) > KM^m, m)
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As already mentioned the function KS plays a crucial role in the lower bound

estimations and therefore deserves special attention. Under certain assignment

conditions for fundamental-sequences (i. e. Bachmann's property) we obtain for
the general case:

KS\(m + 3, A;) ̂  F\^ (m), which implies

KSx{m+3, m)^F^m).

We want to conclude this section with the remark that by going beyond £o (Fr,, or
even higher) KS grows so fast that even Feferman's system of predicative analysis

fails to prove its totality (for details see again [PTV 89]).

3. 2 Upper bounds

While J. Ketonen and R. Solovay come up with estimations for Paris- Harring-
ton functions, most of the Investigations concerning upper bounds for Kanamori-

McAloon functions is based on the work in [Th 89]), where a thorough analysis of

the above mentioned functions as well as regressive colorings of singletons is given.

The easiest case was already treated in [PV 89], where it is shown that:

KM(m) <F^_i(3) <F, (m)

Generally one obtains for /s-element subsets:

KM"{m, k}<F^}{g{m-^\

where the priinitive recursive function g depends on the function fk introduced

earlier. A similar bound can be given for the function KM{m, k) itself.

If we replace the requirement of minimum homogeneity occuring implicitely in the

statement {KM) by the stronger condition of minimum-ascendency

(mzn(A) ^ mzn(B) ^ A(A) ^ A(B)) and reserve the notation KM^m) :=
Js. M*(m, 2) for this case we obtain:

KM^m) < F^(m),
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which shows that increasing the ordinal to ̂  (as follows from the proof given by

Kanamori and McAloon (see [KM 87])) in order to satisfy the ascending condition
is not really necessary.

As far as KS\ is concerned it is possible for the cases A^LJ and A =£0 to obtain

upper bounds as well (see [Th 89]) e. g.:

^(fc2 -m)>X^(m, fc),

which proves the lower bounds to be not too bad.

If A = £o we obtain generally

KS^m, k)^F^g(m))

for a certain primitive reciu-sive function g.

In order to state our results for regressive colorings of singletons let us introduce

the following notation:

Let KS{\, m) be the smallest n G a;\ {0} such that for all A : [l, n] -^ A, ̂ {x) G
N{X, x) there exists M C [l, n] , |M| = m such that A f M is increasing. We
then have

KS{uk, m)<:F^(g{m)).

The general case is also investigated in [Th 89], where upper bounds could be
obtained by A- recursion. We conclude with the remark that sharp upper bounds
are available only in case A = a; at the time being.

4. Selection of Proofs

This section Is devoted to a sketch of those ideas mainly responsible for the results

we obtained.

4. 1. The Tree Argument

We need some notation first. Unless otherwise stated we adopt the following con-

ventions:
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Natural numbers as well as ordinals are always identified with the set of their

predecessors and denoted by latin and greek letters respectively. Let u be the first

infinite ordinal and N = a;\ {0}. For any set A and fc £ a; let (^) denote the set
of all ̂ -element subsets of A and [k} :=={!,..., k}. Depending on context 2A will

either stand for the set {/ |/ : A -^ 2 } or for the powerset P(^A). Sometimes Q
and 2" will also be used to denote the natural numbers themselves but the meaning

should always be clear from the context. Sets will. be listed in ascending order and

for P / 0, where [P| < oo let P° :== P \ {maxP} and PQ := P \ {minP}. Given

A C LU and f, g : A - > A we define /(") : A -> Afor n e u recursively by

/(°) := zd, y(n+l) := /(") o /, where (/ o g){x) := /(^(. r)).

Although we prefer the latter notation we sometimes feel free to use fgx in-

stead of f{g{x}} if formulas become more readable and no confusion is to be

expected. Regarding n as the set of its predecessors will never have us /(n) to

mean {/(a;)|a; e n}, A function F :u> -^ u}is called increasing whenever x < y
implies F(x) < F(y) for all x, y ^ LJ.

Definition 4. 1: Let F : LL> - > u be an increasing function . Call a coloring

a;

A:^J-U
F-regressive if A(A) G F(mmA)U{0) for all A G (^). Ais called min-homogeneous

onMC^ifforall. A, BG (^):

minA = mm B implies A(A) = A(B).

A is called min-ascending on M Cu if for all A, B   (^):

minA < mm B implies A(A) < A(B).

Obviously the second condition implies the first.

For the following digression on the Erdos-Rado canonization theorem (see [ER
50]) we imlore the advanced readers foregiveness but think it helpful in order to

understand how compactness arguments work in general.
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A coloring A : ('^) -> LJ is called canonical for some 5" C LJ and fc   u whenever

there exists V C k such that for all a;, 6, C 5', where z   fc we have

A({ao,... , afc-i}) = A({&o,... , 6fc-i}) if and only if

a, == 6, for all i G 1/.

If V happens to be empty the second condition becomes vacuously true and the

coloring has to be constant; otherwise it depends only on the pattern induced by

V on k. The important thing to note is the equivalence in the characterization of

being canonical.

We are now ready to state the canonization theorem in two different forms:

Theorem: i) For every A; £ LJ and all colorings A : (^) -». <jj there exists
RC u> satisfying \R\ = ex), which is canonically colored under A.

a

ii) For every fc, m £ d; there exists n G c^ such that for every coloring

A : (^) -» uj there exists R C, n satisfying \R\ = m, which is

canonically colored under A.

Proof: We do not intend to prove i), but show how i) implies ii) because this

is exactly the point where compactness comes into play. Given fc, m   a.' we call

a coloring A : (^) -> a/ bad if it does not satisfy the requirements imposed

under 11). W. l. o. g. we may assume that A(A) < |(^)| for otherwise we could

easily produce such a coloring having the same pattern. Arguing by contradiction

allows us toto fix A-, m 6 c<; and to obtain at least one bad coloring A : (^) ->. a;

for each n £ c^. So the set of all bad colorings is certainly infinite. We identify a

coloring with its set of pairs and order the family of all bad colorings by inclusion.

The order is generating an infinite tree T, which is finetely branching, because the

number of bad colorings A : (^) -> c^, where n is fixed, is finite. Konlgs lemma

assures us about the existence of an infinite path

A^CA m+1
c
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of bad colorings A, : (^) -> cj, where i ^ m and we may consider A := J A,
i>m

in order to contradict the nonexistance of bad k- element colorings of cj : \i R =

{ri' . . . , ^m,. . . } is given as in i) the coloring A^ would certainly have failed to
be bad in the first place. Q

Using the Erdos-Rado canonization theorem we get;

Theorem 4. 1:

k) F-
i) For all A; G<^, all mappings F : u - > u and all colorings A :

there exists an infinite M C a; satisfying Af- ( ^) is min-homogeneous.

u

ii) For all m, ̂  > 0, and all mappings F : u - ^ uj there exists n e L^ such that

for all A :( , ) "-> a; there exists M £ f ) satisfvii
F-reg ~ \m.

A I' ^ is min-homogeneous.

Proof: Following the lines of the preceding proof it is easily seen that the infinite

version implies the finite one. We therefore restrict ourselves to the proof of the

first part of the theorem which can be reduced to the canonization theorem. Using
the latter theorem we obtain an infinite subset Ji of a; on which our given F-
regressive coloring A is canonical. IfV= 0or V ^ 1 weget what we claim letting
M := R. Otherwise there exists i   V with ? > 1. For 7? == {ro, ri, r-2,... } let us
consider the F(ro) + 1 sets

Am = {ro, ri,... , r, -i, r, +m, r, +m+i,... , rm+A-i},

where 0 < m ^ F(ro). Obviously |A^| =fcfor0 ^ m ^ F(r-o) and because
A is F- regressive the pigeon hole principle yields p, q with 0 ^p< q ^ F(ro)
satisfying A(Ap) = A(AJ. But this means that r.+p - r.+,, which is absurd. D

171



Wolfgang Tkumser

If we replace the notion of minimum homogeneity by minimum ascendency in

theorein 4. 1 the same arguments work noting that there are no infinite strictly

descending chains of natural numbers. Therefore the least numbers n ^. u satisfying

the requirements of theorem 4. 1 are denoted by

J<M(F, m, fc) and JCM*(F, m, fc) respectively .

We adopt the convenient notation n -> (m)^_^g following the use in the literature.

The proof using the afore mentioned theorem as well as a compactness argument

does not provide us with constructive upper bounds. KM and KM* obviously are

functionals involving F. Nevertheless the function F does not affect the growth

rate of KM essentially as long as it behaves primitive recursively. Kanamori and

McAloon [KM 87] show how KM* can be estimated in terms of KM at the price

of increasing the exponent A;, but one can do slightly better than that. Obviously

KJ[4(id, m, 1) = m and in the case fc = 1 for KM* sharp upper bounds may be

obtained.

We will frequently use a tree-argument invented by Erdos and Rado (see [EHMR

84]) in order to prove Rajnsey-type theorems and restate a modified version most

suitable for our purposes. Let us consider the following definition first.

Definition 4. 2: By a rooted tree T on ACc^ we mean a tree having A as the

set of its nodes, where some element a   A is chosen as a root. Let a rooted tree T

on A Cci; be given. Directing its edges towards the given root we may identify T

with the set of pairs (a;, y) in A for which x immediately predecedes y and is nearer

to the root. The set of immediate successors of x in T will be denoted by succy^x).

We omit T if the context allows. A rooted tree T on A is called an A-tree if and

only if xTy implies a; < yforall a;, y 6 A. Let f -. w -> ube strictly increasing. An

A-tree T is called f(.r)-small branching provided |succ(a')| == |{y|a;'Tz/}| < f(x).

Because the following theorem plays an important role in several of our argu-

ments we motivate the tree- argument by sliowing how A- trees may be used
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to obtain fcheorems of Ramsey- type. Suppose we want to show that the set

An := {1, 2,... , 22"-3} for all colorings A : (A^) -> 2 always contains an
n- element subset N such that we have A \ (^) is constant, i. e.

for all n : 22"-3 -» (n)j.

We may achieve this by constructing the following An- tree T from the given A :

Let us put the number 1 at the top of the tree and subdivide the remaining elements

into two classes according to the color they obtain under A if supplemented by
the element 1. Now we continue this process with both classes separately, where
the immediate successors of the root 1 are given by the smallest elements of both

classes. The following picture shows the final situation we end up with if we restrict

ourselves to the case n = 3, where the original coloring A is indicated on the left
hand side:

A(1;2)=A(1;4)=A(1;5)=0

A(l;3) = A(l;6) = A(l;7) = A(l;8) = 1

A(2;4)=0;A(2;5)=1

A(3;6)=A(3;8)=0;A(3;7)=1

A(6;8)=0

^={3:6; 8}

Picture 1

The binary An- tree T has to contain a path P of cardinality 2n - 2 on which A

depends only on its minimum elements. Therefore P° is of cardinaUty 2(n - 2) + 1
and, by the pigeon hole principle, must contain at least n - 1 elements on which

A is constant by construction. Inserting max P will provide us with the desired

n- element set N. The theorem below resembles the reasoning above:
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Theorem 4. 2: (tree-argument) Let a finite subset A = {ai,..., an} of ̂  be

given. Let f -. u -> wbe& strictly increasing function and F : P(A) -» a; be a
function satisfying F{X~) < f{maxX°} for all X £ P(A) with \X\ ^ 2. Then there

exists an /(^)-small branching A-tree T such that X° = V0 implies F(X) = F(r)

for all paths PmT and all X, Y C P with \X\ = ]y| ^ 2.

Proof: The required tree T is defined reciirsively: Let Ti = 0 bea tree on {ai}
and suppose T, on {ai,.. . , a. } where t < n has already been defined. In order to
define T,+i consider the following procedure Pr:

Let k := 1.

If there exists aj in succr;(afc) for which F(Pa, U{aj}) = F(Pa, U{a. ^i}) let fc := j
and continue with the first line of Pr (Pa, denotes the uniquely de. ermined path

a^T... Tak in TJ. Otherwise let ^4. 1 := T, U {(afc, a. +i}). Finally let T := T».

The required properties are easily checked.

As will be seen in the following the requirement of the existence of large paths (in

order to iterate the argument) will force the set A to be very large. Because the
function F does not depend on the last elements if restricted to a path in T we

will eventually end up with a subset of A on which F depends only on singletons.

If for example A : (^) --^^is given, we may choose F(E) where E C n to
code the restricted coloring (A(X))xC£;, m^x=max £; yielding F(E) < /(max Eu),

where f{x) == x(12x). In the case where fc== 2 it is already sufficient to choose

F(£) = A({maxE°, max£}) and /(a-) = 2.

In order to obtain upper bound estimations like those occuring at the beginning of

section 3. 2 we have to specify the trees measuring the sizes of the underlying sets.

They serve as a link between the combinatorial functions and the numbertheoretic

functions we want to compare with. Suffice it to present a typical tree sufficiently

large to deal with (KM) statements, which has to replace the binary tree of picture
1. Observe that the number of successors as well as the depth of the tree may no
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longer be restricted to a given size. Although this fact is mainly responsible for

the difficulty in estimating upper bounds, its regular building nevertheless allows

us to determine its size by means of the functions Fy :

2 a;4-l

789 10111214151617 ...

,^(3)

,. (3) - 1

Picture 2

We conclude this exposition by showing a typical lower bound estimation.

Theorem 4. 3: KS[m + 3, Jfc) > F^, (m).

Proof: Let the mapping A : (^) -^ £Q xu be defined by A(a;, y) = (0, 0)

'^F^, {x) ̂  y and A(z, y) = (a, /) otherwise, where a £ N{uk, x) and / 6 [l, a;-l]
satisfy

F^x) ̂  y < F^\x).

One readily sees that a and / are defined properly. Let M £ (^3) satisfy 1) and
2) of (KS) and let a; <y < 2-be the three largest elements of M. We show that

A(a;, y) = (0, 0) or A(y, -?) = (0, 0) from which A:5(m + 3, fc) ̂  F^(m) follows.
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Assume to the contrary that A(a;, y) = A(a:, ̂ ) = (a, Q and A(y, z) = (^, ̂ ) with
/, /'>! and a < f3. Then

F!, {x)<y<z<F^{x).

We apply Fa to this inequality. The monotonicity of Fa assures that

(*) z<FW{x)^F^y).

By definition of A(y, 2;) we know that

^'(y)<^-(**)

But

(**') F^y) <. F^y) ̂  F'^y)

because F, (fc) < F^k) for all a   A^(/?, A;) and as /' > 1. Now (*), (**) and (***)
produce the obvious contradiction that z < z.

The study of regressive colorings into natural numbers also allows generalizations
by considering colorings into transfinite numbers and there is hope for many in-
teresting results coming up in this area.
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