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by
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This title has been chosen because of shortness, but the real one is :

"Generalised Galois cormespondences in (generalised) category theory'

We shall try to explain in what sense those generalisations have to

be understood and what are our motivations for introducing them . At

the level of those words of introduction, it is enough to say that a

Galois correspondence being a pair of mappings between ordered sets

having to satisfy certain conditions, we generalise it by replacing

the mappings by difunctional relations and ordered sets by preordered

sets or at a later stage by categories or actegories .

1. SOME DEFINITIONS FOR BINARY RELATIONS

If R is a class of pairs , then R denotes its converse , ^> R its

domain . ^R (=>R ) its codomain , <^ R (=>RU <t R ) its field

)><R=>R©4R the class of its minimal elements , <-E. R = 4 R ©>> R

the class of its maximal elements

If X is a class , JJ. s, ={(x, x) / x 6X } denotes the identical

relation on X

We set ][^< <x, x)/(x, x)eR} (= R ^I^^=R ̂  1^^)
R^ ={ <x, x') / 3 y (x, y)£R and (x', y)6R >
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R is said to be reflexive on X iff 3C. CR ; to be transitive iff

y (x, y) R and (y, z)gR implies (x, z)^R ; to be a preorder

iff R is reflexive on 4> R and transitive ; to be an order iff ,

moreover , Rr\ R C -IL^n .

The section of R by the element x is, by definition : R(x) =

{ y / (x>y)  R>. if n is an integer, the class of elements of degree n

((resp. of codegree n) with respect to R is, by definition :

J>R = { x / x«I>R and R(x) has exactly n elements } (resp. <^R =*t:',, R)

Obviously, J^R = <LR and 4^R = >8R .
If J is a set of integers, we denote by )>^, R the union of {^R / n^-J}

Ol.

R is an equivalence iff R is a symmetrical preorder ( i. e. R=R ) ;

an equivalence on X iff , moreover, <$». R=X

R is functional or univocal if f R<vd^_or if f R =Jl, or if f J> R =.0 R
^R.

R is then an equivalence on ^> R .
~«

R is cofunctional iff R is functional.

R is biunivocal iff R is functional and cofunctional .

R is called difunctional iff 3y jy' (x, y)^. Rand (y, y') Ftand

(y', z)6 R implies (x, z)<"R . Rn/ is then an equivalence on ^» R and
»-.

R/v an equivalence on <^ R ; further, R is the disjoint union of all

the rectangles of the form XxY which are included in it, X and Y

being respectively equivalence classes with respect to R or to R'^/.

A symmetrical difunctional relation is called an altemance

If X and Y are classes and R a class of couples , we denote by R).

the restriction of R to X , that is to say { (x, y) / (x, y)^R a"d x^x

and . similarly , by R T^, (=lpt|*y) ) the corestriction of R to Y

One says that R| is the univocal part of R
'>, R.

An arrow joining some points x and y (x at the beginning , and y at the

end) is said to be a possible sagittal writing of the couple (x, y) .
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The sagittal writing is space consuming , but permits a "geometrical

grasp" which helps a lot in many cases . For instance the sagittal way

of asserting that R is difunctional can be stated by the implication :

C^. im^l6& ^-^. ^eK

A word of length n is, by definition , a functional relation u such

that its domain ^>u is the interval ]n] = <1, 2,..., n} .
'* *n ^.

Ifu=<^ .. '-. ^} the word u is writ ten u^, u.,..., u^ or, simply
ul HU 1 i. -n.

u u,... u providing that no danger of confusion results .

Let R^i-. -»R^. be classes of pairs . Then R,,..., R_ or R^ , ... ,R
/Tl» Qt

denotes the result of the composition operation on the word R.,...,R

= R ,... R which, by definition, is the class of all couples (x, z) such
<A>' I

y , y . . . , y ,y

<>v' I

that there exists such that y =x , y =z and V i fe n]
~A -<*t+l

( y. -». y.. . )   R . In the following pages , we adopt the traditional
l< ' t-+(

shortening which consists of writing ambigously R^. ... R, instead of

R^ ... R. For instance, with this convention, the restriction Rj^. can

also be written RT^,, the corestriction R^, can also be written . (TyR ,

R <^\ X xY can also be written 5vRTw and R<vcan also be written R R .
0-*».

When R^ =R =.... =R =R , then R ... R is, of course , conventionally

written Rrt' .

The union of { Ryt / n positive integer } is called the transitive

closure of R and denoted by R

a ^
The cyclic part of R is , by definition , R = R<^R

v ^. o
The acyclic part of R is , by definition , R = R^R = ReR

The connex closure of R is , by definition , the transitive closure of
<-'

RuR . It is an equivalence on ^ R , its equivalence classes are

called connected components of R .
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The difunctional closure of R is, by definition R = -^ =^

We say that R is a Ferrers relation iff 3 y 3y' (x, y)^R and

( y , y')6 R^ and (y', z) ^ R implies (x, z)^ R ; where, by definition,

R+ = RuS © R .

2 . GRACTS

We have introduced this neologism in order to express , just by saying

that R is a gract , that R is a class of couples for which each second

element is itself a couple .

Let us consider a couple (x, (y, z)) of the form just described .

Writing it sagittaly , as explained in §1, we obtain: >(y, z) or

^ . <. But, if we use this last way of writing , we can remark that we

do not loose anything but gain in conciseness if we suppress the arrow

going from x to y- . z , obtaining thus y -^z . This (simplified)

sagittal writing of (x, (y, z» justify that one calls x the label, y

the source and z the target of (x, (y, z)) .

The dual of a gract R is, by definition the gract :

dual R = { <z x *y) / (y ^ z) C P >

A gract which is such that for each possible label x ^ )>. R there is

only one possible source and one possible target is said to be a

iraph . Equivalently , a gract R is a graph iff R is functional .

If R is a graph, )> R is called the class of its loop-labels and R^
its subqract of loops

To any gract R , one can associate a graph :

gR = <((x, (y, z), (y, z)) / (x, (y, z»eR } called the graph of R
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<r^_.
cell R = <gR)"is an equivalence on R which is called the class

of cells of R

cell^ R is thus the class of all pairs of elements of R of the type
^-JL^^-.

, that we write down usually y ^ ̂  ^z , making use of the
^ X.' *. S-
"cellular writing" of those pairs that we adopt almost exclusively

in what follows

It is useful also to introduce the class of cocells of R denoted

cocell R and defined as the class of all pairs of elements of the type

^ , that we write down "cellularly" y ^_^_^z

It is very useful to introduce the following terminology :

p being some property that can be satisfied by a binary relation , and

R being a gract, one says that x6^>R satisfies the property p in R iff

the section R(x) satisfies this property . If some adjective is used

to express this property p, then, one qualifies x with this adjective .

For instance , x 6-^> R is said to be functional in R , or to be

R-functional iff R(x) is functional i. e. (y-x^z) R and (y-^»z') R

implies z=z'. ( One says also that x is a deterministic label ) .

3. SOME FUNDAMENTAL GRACTS

The first fundamental gract to be considered is probably the gract of

binary relations . It is defined as the class :

bp = { (x
<AV* -^-y) / R is a set of pairs and (x, y) ^ R }

As the section of br by R is R itself, then . according to the

adjectival terminology introduced at the end of §2, R satisfies the

property p iff R satisfies the property p in br .
"R

When (x --^-y)   br and when R is functionnal , we write frequently Rx

instead of y , as yis uniquely defined from x and R .

141



One has also to consider as fondamentals the gract of correspondences

defined as the class :

c.or (X . Y) / X and Y are sets and R C X ><. Y }

and the followings subgracts of it :

{ (X -^. Y) / (X -^
_^.

ucor
.<^t<w»

Y) t PAC and R is functional } ,

Scor = { (X -S>Y) /
.w*<uu

vcor = { (X -H>Y) /
.>/v^^»

^cor = < (X -R^Y) /vcor
%AAV>»

(X-si*-Y) fe cpr and R is cofunctional } ,

(X-^. Y)^. cpr and >R = X } ,
V.(X . Y)^cor and <( R = Y > ,

and their various intersections denoted by uucpr , uvcqr , etc.

uvcor is the gract of mappj.ngs , uuvcpr is the gract of injections ;

uvvco, r is the gract of surjections , lulyvcor the gract of biiections

For later use we need to introduce the following definitions :

If I is a gract, the class :
» ^

celir=< ((y<T~^'z), (y, z)) / <y<J^^z)6 cell F } is called the
~^_ _ r - - ^

gract of the cells of I . cocell I is defined in a similar way .

4 . TRAJECTORIES AND PATHS

If I is a gract and n a positive integer, we say that

It u= u,..., u and 3 a,,..., 3

(X
a»

. a^) (a.
t^t.

. y)> . . . > ^ u<y(-

is the gract of trajectories of I of length n, that

0
W, J = «X

0

and that the union wY of { w^F / n integer } is the gract of

) / xfi-^^F} is the gract of empty trajectories of

traiectories of | (or the gract of ( trajectories ) .

wg I is called the graph of the paths of I or the graph of

5. GENERALISED CATEGORIES : ACTEGQRIES

An actegory is, by definition, a couple ^> = ( F, H ), where F is
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gract and H = om^ a preconguence of wgF. That means that om S> is
a preorder contained in the equivalence : cell wg F = (gwgF)"^ this

preorder being . further , compatible with the concatenation of paths".

For more details cf. [Rig 89 ] .

om ̂  is called the class of precommutative path-cells of <6 and
the congruence corn ̂  = omc^ ^ (om<^ )^ is called the class of
commutative path-cells of SS

As explained in the paper just referred , in order to express that , for
the actegory *t? we have :

/, ^^____&^12

^
>- y

\^ (^^... --. (^^

  
om G? (resp. com^) , we write :

y, "'-^^............. _.,^ __^, . , >/V-«c^
, y ^oM (resp. (x^^'~"c^^

^ <. -. -. ...-^< ' '><r-^<'
corn g

In general, it is tacitly supposed that an actegory c^? has units.

That means that c^ has a subgract of loops id ̂  such that
«-<-*.

v(y-^z)^^ ^<y -^ y) idc^ and V(z -^ z)  : id ̂  one has
(y^_^z) 6comt  and ( vx< STz) «. corn ̂?

^ ^^7

A subgract Ff of an actegory CS is said to be commutative iff
cellwg F C comc^

By abuse of language , and in order to be in accordance with the

henceforth traditionnal terminology of category theory , we say that
r is a commutative diagramm .

The dual of an acteaor^_c^ is defined as the actegory dyal(^ the
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gract of which is the dual of the underlying gract of 75 , om

being omto dualised in an obvious way

A subgract F of an actegory <if7 is said to be subactegory-inducing iff

om^ /^cellwg 1 ' is a precongruence of I .

Then ( F, omc  /-\cellwg f) is said to be the actegory induced by f .

id<i^ is actegory-inducing, the actegory induced by it is denoted id ̂ .

The actegory of laxcorrespondences laxcor is defined by the gract cor

and the precongruence om laxcor defined as the class :

^.^^^A.t .... A^̂ -0
u,,..., u^ C v, ..... v,

^^BA .... B^r^

}

The actegory car is defined by the gract cor , by the congruence
-' -..'. ^

om cor (= corn cor) =com laxcor and by id con ={(X -^X)/ X is a set}

Translating the binary relation calculus into the language of the

actegory laxcor permits to visualize the demonstrations as a pasting

game of (pre)commutative diagramms . In this respect, it is useful to

introduce some special properties of diagramms . For instance , the

basic statement derived from Dedekind formula which asserts that if

(X .->-Y) , (Y - ' y-Z) , (Z-^-X) are elements of ^r , then :
C/ _/ ^ fj _/ ^ <~>

sr r^ t = ff ^^ ts ^\ r = 0 ^--^- nt <^»s = (? can be handled more

easily if one introduces the class of cycles :

3x^x . y . ^

dedk car = .<
lA*v

Y
^->y <^4

x .<?- 3 y  Y 5zfc Z
-t.

x .<

is a subgract of br
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The same definition can obviously be extended to any cycle of length

larger than 3 of elements of con .

In the actegory car , the subgracts ucpr, vcor, ucor, etc. are actegorv-
K^l^*%. " v<^*« " «-^>^*'

inducing, inducing actegories denoted ucor, vcor , ucor , etc.

The actegory of cells of an actegory ^ =( F , om^) is defined as

the actegory cellc  , the gract of which is cellwg F , om cellc^>
being the class :

a^^......... ^^
x.'-<'.

^»
"'4.. / ^-^ ̂ 6 °m^and (^-'^6 om ̂ 1
S}/ ~^^'~ ~ ^."^'^---^

The actegory cocell <5S is defined in a siimilar way .

The actegory br is defined by the gract br and by :

J

<^t*

om br (=com br )
U^<*2. ---^u^i

L' ^
t*<^....... Jt^

\^.. t^<"ii-a&
^, -.... ^<y^'^-^>^^^

6. IDEMPOTENTS. JINVERSES

Let "^ be an actegory . By definition the subgract of the idempotents

^6= \ (x-4-^x) / (xl^x)<<^ , x^-^x ^com^of ^ is

the gract of jinverses of<^ is:

y-^-x
J^. Ja.. -_ ^'^"^

j^S ='f (x^£^y) / (X3?>y) fccocell<^ and x'-^--^S^com^
^L

(x,^
The gract Yn^<^ of Yinvers^s of c > is defined in a similar manner by"
exchanging the roles of z. and z_ .

4 ^
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When is the actegory of mappings i. e. '"& = uvcor = map , it is

^
known that the cartouche writing of ( E . ' ^- E) ^ idp map which

consists of representing the equivalence classes of T as pointed

cartouches , the cartouche representing ^ C"*-) being filled with the

elements of it, and the element x being the distinguished point gives a

full and vivid picture of Y without loss of information .
ot

If c
^^\

and D^= /3 ( Q( r\

are idp maps, that (,

; = <EK4?F) 6 ]Y[iv map, and if we set cf^ =^3^ , (+L = ^ , ^c= ̂ °/^
^ P y (-f. ' ^

» =/3 (cxn/^ ) oi , then, it is known that (E . lfr E) and (F -£^F)
-»-4o() is a bijection and that (E-^->>F)

is a difunctionnal correspondence . Moreover :

, /v> I/^ D^ -0<<v , ^^ ^ and Z^D^(>^<^
As a consequence of those properties, a full and vivid picture of c ,

with no loss of information can be given as a cartouche writing, which

this time, consists of disposing in pairs joined by arrows labelled CV'

and /J going from a cartouche to the pointed element of the other one

(Cf. fig 26 p. 31 of [Rig 89] ) .

7. PREORDERED SETS. CLOSURE OPERATORS

A pair E = (X, R) is a preordered class iff X is a class and R a

class of pairs transitive and reflexive on X .

OE = X is said the underlying set of E and C^^ = R its underlying

relation . If u9p is acyclic (i. e. an order relation) E is said to be

an ordered class

<-' \->
The dual of E is defined as E = ( QE. t^g ) .

If XC. DE , we say that E| = (X, C<9 <\X xX) is the preordered class
iriduced by X
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For any preordered class E , ^= ^}^,, ^L= ^x
^£

. y) / (x, y)  ^ } is
a subgract of br which is actegory-inducing . The induced actegory

is denoted by E

If E is a preordered class, we say that a subclass X CD E is convex in

E iff Vx&X , V/x'  X , (x, y)ea3g and (y, x' ) ^f<)^ implies ye X .

If R is an equivalence on E , we say that R is convex in E

x DE R(x) is convex in E

iff

onset = { (E
»^t^^\.

F) / ( E -4-^ F)

^DE^£^aE.

 

: map and ^\ j^ \-S. ^, om car

is called the gract of preordered sets OF
^

. OF

F)^ cellwg onset

The actegory onset of preordered sets is defined by
j<_

om orset = corn onset = ( (E ^_^ _^ F) / (E
v / >v*.

( DE <^-3~*^Q F) ^ corn cor
iT

The subactegory ordset of ordered sets is defined in an obvious way .

The gract of c^losure operators is defined as

^ ord = {(E -f^E) / (E -X. E) ̂  j^ ord and <fca3p }
The gract of coclosure operators is defined as

& o£d = <(E-^ E) / (E^E) ^ idp ord and ̂  C^a >
Vt*^

Obviously : (E-f-»"E) ^ ^1 ord if f (E-yi». E)^cl ord
VK' - ^

If (E-^E)  - ^1 ord , then (aE-^rQE) & idp m». ^ .
The cartouche writing of (E->E) consists of the cartouche writing

Cf
of ( OE-^. &E) enriched by dotted arrows going from x to x' iff

(x, x')^(Jp , those dotted arrows being directed downwards when x and x'

are lying in the same cartouche . As ^f is convex in E, every

cartouche is convex in that sense that, when x and x' are inside it

and such that (x, x ' )&-c0p , then the interval having x and x' for
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extremities Is included in it .

The cartouche writing of a coclosure operation is defined similarly.

One can view it as obtained by "mirorring"that one relative to a

closure operator and by reversing the direction of the dotted arrows .

Thus the dotted arrows joining elements of a same cartouche are this

time, directed upwards .

8 ADJUNCTION COCELLS ,GALOIS COCELLS IN ord

The gract of adjunction-cocells is defined by :

-^.. ^ c-^
adj ord = J

-a<L
F)^ cocell ord

and <E -?-"^ ^
ft

It is an actegory-inducing subgract of cocell ord , which induces in

it the subactegory of adjunctions cocells : adj ord

The gract of Galois-cocells is defined by
-^

gal ord =
V»AV

E^-U

F) ̂  cocej. 1 ord

a>ni

di
01

\^
p fc- corn con

T-^F

It is a subgract of cocell ord , but is no more actegory-inducing .

. F^-^X
We have:

et

(E ^EJ^F)egalor^d iff (E^^^F)6adj ord iff (
"^

(E^r^F) adj ord if f (F Cj.^'E)  ad1 ord

^ ad] ord

VIA:

°< ^L
If c=(E ̂ ^»F) (; cocell ord , we define Qc by: Q c =(OE^J^^aF)

/a> . ^ww ... . - - ... t/SL.
It is known that , if c^adj ord , or. if c (. gal ord , then cfejTnv ord

V»»V»

As a consequence, the cartouche writing of c consists of the cartouche

writing of D c enriched by dotted arrows joining x to x' iff (x, x') u?i
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and by dotted arrows (of a different type if it is necessary to avoid

confusions) joining y to y'iff (y, y7(tjp. Moreover, when x and x'are in

the same cartouche the arrows are directed downwards; and when y and y'

are in the same cartouche, the arrows are directed downwards in the

case of adj or upwards in the case of gal .

(Remark : the dotted arrows are just the arrows of br
i^^F\

= £. >-/ £- )

It is known that, if c ^ adj ord , then
CPc

(E "- >. E) e, cl ord
%A<^«

(F
^c.

F) ^ ^1 ord

If Q^ is defined by

Q^-^pD^

w^f

u

< El
^

->f~l. ) C ord
'4»<

Q =o3p&f =/i>t0f one has

Dc = Qc, rk /^ Qc °<
U(»(» rla^ef ofr

l^e. ca>r»b(3&hc'

»J>i^rM>'^

/.
v

»

4'
»

W^e.n£ ft«^«.
le^sfAkniwt-O,

\M^:;, M// '^^
'***»4-^-^ I ID<.J&^

On<lM'l^tr&f-
^cartet te. lze.

V^^Fkftaa

lMAt' ler»\t^C

\^/^ '̂rp""^ >V^i (<,y)el^
V4^v ^}  9,. ®-^.

Fig 1

Cartouche writing of the Galois-cocell c = ( E ^""o"""* F) e gal ord
7^
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9. GALOIS COCELL OF A CORRESPONDANCE

In this paragraph, after having recalled that to any correspondance is

associated a Galois cocell ( generalising the association of an

achieved ordered set of Dedekind cuts to any ordered set ), we indicate

how the "theories d. exactitude" of Van den Bril are related to this

concept .

If X is a set, eX denotes the set of all subsets of X, ^X = eX © <^>
the set of all non empty subsets of X , e^X the set of all subsets of

X having n elements, and the ordered set oeX = (eX, l^o^y) where

= { (A, B) / ACBCX }
0<'K
If R is a binary relation, we define its punctual restriction R{ by

R^ = < (x, y) / «x}, y)eR > . ( Obviously R\ = <«|^T >

To any correspondance f = (A -^->-B) are associated by definition :
- the binary relation f = < (x, R(x)) / x A }

- the binary relation [f] = { (X, R[X]> / X6 jA }U< (/, B) }
(The first is the punctual restriction of the second : [ P ] { =f)

- the Galois cocell <^p = ( oeA^_<l|'_J^'oeB )
v7TS-

(where (B -^-A) is denoted by

The name of Galois cocell forCp is justified since C^   ̂  o£d .
If, by abuse of notation, we write simply Qp , £p, Dp instead of Q^
^'DC(. ' we have :
(X, Y)eQ<> iff X^Y is a rectangle of R and X=A or Y=B in the case

of X ^ Y = 0

(X, Y)e2. » iff XxY is a maximal rectangle of R

(X, Y) ^D. iff XxY is a rectangle contained in only one maximal

(X

rectangle of R

>y)6. D^ if f <x, y) is an element of only one maximal rectangle of R
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This last proposition shows that the "relation d. exactitude-of a

comespondance f = (A 2^8) introduced by Van den Bril in [VdB 86]
coincides with the relation Dp^. It results from this that the notion
of exactitude Is a facet of the Galois correspondances.

10. EXACT SQUARES

In this paragraph we indicate how the theory of Guitart. s "cames

exacts" can be derived from the last lines of the previous paragraph.

Let | be a gract . We define a class of pairs mesq F, that we call

the class of medial sections of the Fsquares by

nvfcsoi4((:t3. (:±;j
sx-^zz/ ' ^-r>'^

(x -i^zp^r
<tl.

, (z, -^^y)^r
&^-i^-y^/ ('< ̂ -^^)er , (z^A, y)er

It is almost obvious that mesq F is difunctionnal .

Now, if *C^ is an actegory having as underlying gract, its class

of medial sections of the commutative squares is , by definition :
^1.

Cesq<& ;
^<71\6.

^\ ^ ^ e ^<8
<sl^

Then, the notion of exact square in Guitart. s sense can be expressed by
the following :

^. v '
^K 4 ^^ "- -.. -. __ _ ..... ... /f^^^\ 1^

is an exact square iff its medial section (( ^ '\ ^
. x^.J ^satisfies the-relation d. exactitude"of cesq(^.

h'-^
l-<r3;

11. FROM QRD TO OR

A first step towards generalisations mentioned in the introduction

consist of making clear (i. e. in algebrzaic terms) how one can define

d or . For this, it is necessary to replace map by a-larger"category
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the elements of which are of the form :

R.
(;A,U ) -*>(B , v>) where

(A ->'B) cor , where R is difunctionnal and where U resp. V are
\A^\

n/ ^'1

equivalences on A resp. B such that U C R and ff"~C V .

Once this is done, one can easily define what is the convenient

definition for adj or and for gal or

A good example to examine in this perspective is the generalised

Galois correspondence given by the difunctionnal relations ker and

coker in an abelian category . (Cf. for instance [BriPu 69] )

12. FURTHER GENERALISATIONS

After having defined cl or , adj or , gal or , one can introduce

further generalisations by replacing or by the category of

categories <or by the actegory of actegories ). In this respect, we can

in this paper, just give the Fig 2 that shows what can be the cartouche

writing of an adjoint situation in category theory .

It was known in the topos theory folklore that a Grothendieck topology

can be defined by a "generalised" closure operator. A precise

description oi it can be found in [BaW 85] . One can realise that

many new ways of studying this concept and various related ones are

made possible by the use of the generalisations we have proposed.
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