Avoidable words and lattice universal
 semigroup varieties

by
Pavel Goralcik

The "purely speculative field" opened to mathematical research by Axel Thue $[7,8]$ about 80 years ago - combinatorics of words - has found many applications since. The original problem of avoidance of squares in arbitrarily long words on a small (ternary) alphabet continues to be a source of inspiration. The notion was recently generalized by Bean, Ehrenfeucht, and McNulty [1] to the problem of avoidance of an arbitrary word. In this form the problem perfectly fits into the framework of universal algebra. The idea goes back to the application of square-free words to semigroup varieties by Burris, Nelson [3], and Jezek [5] .

It is well known, since the work of G. Birkhoff, that the classes of semigroups closed under the passage to homomorphic images, subsemigroups, and direct products - the so called varieties stand in one-one correspondence with the sets of equations satisfied by them. Recall that by an equation is meant any pair (u,v) of words over a countably infinite standard alphabet X; such an equation is satisfied by a class K of semigroups if $f(u)=f(v)$ for every homomorphism $f: X^{+} \rightarrow S$ with S in K. The set of all equations satisfied by \mathbb{K} is called the equational theory of K and can be described as

$$
\operatorname{Th}(\mathbb{K})=\left\{\operatorname{Ker} f ; f \in \operatorname{Hom}\left(X^{+}, S\right), S \in \mathbb{K}\right\}
$$

Algebraically, $\mathrm{Th}(\mathrm{K})$ is a ful/y fnvariant congruence in the free semigroup X^{+}, i.e. a congruence closed to endomorphisms:

$$
(u, v) \in \operatorname{Th}(K) \quad \operatorname{implies}(f(u), f(v)) \in \operatorname{Th}(K) \text { for all } f \in \text { End } X^{+} \text {. }
$$

The one-one correspondence between the semigroup varieties ∇ on the one hand and their equational theories $\operatorname{Th}(V)$ on the other hand is known to be a dual lattice isomorphism.

The variety $\operatorname{Var}(\mathbb{K})$ generated by a class K of semigroups can be considered as an adequate expression of the "amount of algebraic structure contained in $K^{\prime \prime}$. We can say that a class \mathbb{R} has at most as much semigroup structure as another class K, provided $\operatorname{Var}(\mathbb{K}) \subseteq \operatorname{Var}\left(\mathbb{K}^{\prime}\right)$. In particular, any class K or a single semigroup S which generates the variety Sem of all semigroups is endowed, in this sense, with a maximum possible amount of semigroup structure. In terms of equations, no non-trivial equation $(u, v), u \neq v$, is satisfied by such a K or S.

The structural hierarchy of classes of semigroups is thus expressed by the lattice L sem of semigroup varieties. Each variety V has its own hierarchy in the form of the lattice L_{V} of subvarieties of \mathbf{V}.

Now, applying the same structural approach to the lattice L_{V} we come to a fairly sophisticated way of comparing semigroup varieties V by the amount of lattice structure contained in $L \mathbb{V}$. Naturally distinguished then become those varieties V whose lattice L_{V} does not satisfy any non-trivial lattice equations. Let us call such varieties V lattice universal.

How to prove that a given lattice L does not satisfy any non-trivial equation? One feasible way is to embed into L the
partition lattice T_{∞} over a countably infinite set since this lattice has been proved by sachs [6] not to satisfy any nontrivial lattice equations.

The lattice L_{V} of subvarieties of a semigroup variety V is dually isomorphic to the interval of equational theories between $T h(V)$ and the total congruence $T h(\mathbb{T})$, the equational theory of the variety T of trivial semigroups. Therefore we have

Statement 1. If a semigroup variety V is such that the partition lattice on a countably infinite set \prod_{∞} can be embedded into the interval [Th(V), Th(T)] of equational theories, then V is lattice universal.

All told, let us now look more closely at congruences in X^{+}. Among the simplest ones are the so called Rees congruences, defined by ideals I in X^{+}as the congruence generated by $I \times I$. The corresponding partition of X^{+}has I for the only non-singleton class. When a Rees congruence is a theory? Obviously, if and only if the ideal I defining it is invariant under the endomorphisms of $X^{+}, f(I) \subseteq I$ for all $f \in E n d X^{+}$.

The invariant ideals in X^{+}form a closure system y easily described as follows. For a word w in X^{+}, denote by $[w]$ the set of all endomorphic images ("substitution instances") of w,

$$
[w]=\left\{f(w) ; f \in \text { End } X^{+}\right\}
$$

Then we have

$$
y(w)=x^{*}[w] x^{*}, \quad y(w)=\bigcup\{\mathscr{H}(w) ; w \in W\}
$$

for any $W \subseteq X^{+}$.

Combinatorially speaking, $y(w)$ consists of the words on x containing as a factor a substitution instance of the word w. The complement of $\quad y(w)$ in X^{+}consists of the words u having no substitution instance of w as a factor; such a word u is said to avoid the word w. We have come to the basic concept in [1].

Definition 1. A word $w i n \mathrm{X}^{+}$is avoidable on a finite alphabet $A \subseteq X$ if there is an infinite collection of words on A avoiding $w ;$ the word w is avoidable if it is avoidable on some finite alphabet A.

This definition is a direct generalization of the avoidance of squares: the word aa is avoidable on the ternary alphabet $\{a, b, c\}$. Our previous considerations lead us to considerably strengthen the notion of avoidance.

Definition 2. An infinite set of words $J X^{+}$is a Jezek set if
(1) all w in J have the same set A of letters,
(2) J is \mathscr{Y}-independent, in the sense that $u \notin \mathcal{Y}(v)$ for any pair of distinct $u, v \in J$.

A word w^{+}is strong/y avoidable if there is a Jezek set $J \subseteq X^{+}$of words avoiding w.

Statement 2. If the word $w \in X^{+}$is strongly avoidable then the variety W determined by the Rees theory associated with the ideal $\mathscr{y}(w)$ is lattice universal. The theory $T h(w)$ is generated by the equations $w x=x w=w$ (saying that $w / T h(W)$ is a zero in $X^{+} / \operatorname{Th}(W)$).

A sketch of proof runs as follows. Let J be a Jezek set avoiding w, let A be the set of letters occurring in the words of J. Let K denote the fully invariant ideal

$$
X^{*}([w] \cup[J]) X^{*} \backslash\left\{f(u) ; u \in J, f \in \operatorname{Aut} X^{+}\right\}
$$

Assign to each equivalence E on J the equational theory generated by $E U(K \times K)$. This assignment is an embedding of the lattice of equivalences on J (isomorphic to Π_{∞}) onto an interval of the lattice of equational theories.

Jezek [5] is the first one to have constructed a Jezek set of square-free words on the ternary alphabet $\{a, b, c\}$. His construction enabled Goralcik and Vanicek [4] to produce, via encodings of the original Jezek set J, to every binary word w on $A=\{a, b\}$ avoidable on A a Jezek set J_{w} avoiding w.

Theorem. Let $A=\{a, b\}$. A word $w \in A^{+}$is avoidable on A if and only if $w \in A^{*}[T] A^{*}$, where
$T=\{a a a, a b a b a, a b a a b, a b b a b, a a b b a, ~ a b b a a, ~ a a b a b b\}$.
The complement $A^{+} \backslash A^{*}[T] A^{*}$ consists of 28 words each of which is unavoidable on A.

Every word $w \in A^{+}$which is avoidable on A is strongly avoidable on A.

To prove the first assertion, we only need to construct a Jezek set J_{w} for w from the set of five words
aaa, ababa, aabba, aababb, abaab
(because the remaining two in T are isomorphic to the reversals
of abbba and abaab). The required Jezek sets are obtained by encoding a fixed Jezek set J of square-free words on $\{a, b, c\}$ by the following codes:

For aaa: abbababbabaabaabb
abbabaababbabaabb
abbaababbababbaabb

For ababa: ababbaabbb
abbaababbb
aababbabbb

For aabba: abbaaabaabababaaaabaabbbabbbb abbaaabaaaabaaababbbb abbaaabaaabaabababaaaabbbabbbb

For aababb: abbaaaaabaaaaabaaaaabaaaaabbb abbaaaabaaaabaaaabaaaabbb
abbaaabaaabaaabaaabaaabbb

For abaab: aaaababababaaaababbbb
abababaaaababababbbb
abaaaababababaaabbbb

The verification that it works is tedious.

One curious consequence of the above encoding is that for each w in T the rate of growth of the number of words avoiding w on $A=\{a, b\}$ (as a function of length) is the same as the growth of the number of square-free ternary words, which is exponential by Brandenburg [2].

References

[1] D. Bean, A. Ehrenfeucht, and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math.84(1979)261-294.
[2] F. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theor. Comput. Sci. 23(1983)69-82.
[3] S, Burris, E. Nelson, Embedding the dual of in the lattice of equational classes of semigroups, A/gebra Universalis 2(1971)248-253.
[4] P. Goralcik, T. Vanicek, Binary patterns in binary words, to appear.
[5] J. Jezek, Intervals in the lattice of varieties, A/gebra Universalis 6(1976)147-158.
[6] D. Sachs, Identities in finite partition lattices, proc. Amer. Math. Soc. 12(1969)944-945.
[7] A. Thue, Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I, Math. Nat. Kl. Christiania VII(1906)1-22.
[8] A. Thue, Uber die gegenseitigen Lage gleicher Teile gewisser Zeichenreihen, Norske Uid. Selsk. Skr. I Hath. Nat. Kl. Christiania I(1912)1-67.
[9] T. Vanicek, Unavoidable words (in Czech), Diploma Thesis, Faculty of Mathematics and Physics, Charles University, 1989.

Pavel Goralcik
MFF KU, Sokolovska 83
18600 Praha 8 (Czechoslovakia)
\square

