
Avoidable words and lattice universal

semigroup varieties

by
Pavel Goralcik

The "purely speculative field" opened to mathematical

research by Axel Thue [7, 8] about 80 years ago - combinatorics of

words - has found many applications since. The original problem
of avoidance of squares in arbitrarily long words on a small

(ternary) alphabet continues to be a source of inspiration. The
notion was recently generalized by Bean, Ehrenfeucht, and McNulty
[1] to the problem of avoidance of an arbitrary word. In this
form the problem perfectly fits into the framework of universal

algebra. The idea goes back to the application of square-free
words to semigroup varieties by Burris, Nelson [3] , and Jezek
t5].

It is well known, since the work of G. Birkhoff, that the classes

of semigroups closed under the passage to homomorphic images,
subsemigroups, and direct products - the so called varieties -

stand in one-one correspondence with the sets of equations
satisfied by them. Recall that by an squat ion is meant any pair
(u, v) of words over a countably infinite standard alphabet X;
such an equation is satisfied by a class 1C of semigroups if
f(u)=f(v) for every homomorphism f:X+->S with S in K. The

set of all equations satisfied by K is called the equations!
theory of K and can be described as

Th(K) = {Ker f; f Hom(X+, S). SeK}
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Al gebraical ly, Th(K) is a fuHy snvarisnt congruence in the free

semigroup X , i. e. a congruence closed to endomorphisms:

(u, v)&Th(K) implies (f(u) , f(v) ) & Th(K) for all fe End X+.

The one-one correspondence between the semigroup varieties V on

the one hand and their equational theories Th(V) on the other

hand is known to be a dual lattice isomorphism.

The variety Var(K) generated by a class K of semigroups can

be considered as an adequate expression of the "amount of

algebraic structure contained in K". We can say that a class K.

has at most as much semigroup structure as another class K'

provided Var(K) <^ Var(K'). In particular, any class K or a single

semigroup S which generates the variety Sem of all semigroups is

endowed, in this sense, with a maximum possible amount of

semigroup structure. In terms of equations, no non-trivial

equation (u, v), u/v, is satisfied by such a K or S.

The structural hierarchy of classes of semigroups is thus

expressed by the lattice L Sem of semigroup varieties. Each

variety V has its own hierarchy in the form of the lattice Ly
subvarieties of V.

of

Nowr, applying the same structural approach to the lattice Ly
we come to a fairly sophisticated way of comparing semigroup

varieties V by the amount of lattice structure contained in L y.
Naturally distinguished then become those varieties V whose

lattice Ly does not satisfy any non-trivial lattice equations.
Let us call such varieties V /atf-. /'cc' universal.

How to prove that a given lattice L does not satisfy any

non-trivial equation? One feasible way is to embed into L the
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partition lattice FT,^, over a countably infinite set since this
lattice has been proved by Sachs [6] not to satisfy any non-
trivial lattice equations.

The lattice Ly of subvarieties of a semigroup variety V is
dually isomorphic to the interval of equational theories between
Th(V) and the total congruence Th(lT) , the equational theory of

the variety T of trivial semigroups. Therefore we have

Statement 1. If a semigroup variety V is such that the partition
lattice on a countably infinite set TT^ can be embedded into the
interval [Th(V), Th(T)] of equational theories, then V is lattice
universal.

All told, let us now look more closely at congruences in X+.
Among the simplest ones are the so called /!ees congruences,
defined by ideals I in X+ as the congruence generated by 1^1. The
corresponding partition of X+ has I for the only non-singleton
class. When a Rees congruence is a theory? Obviously, if and only
if the ideal I defining it is invariant under the endomorphisms
of X+, f(I) ^ I for all f &End X+.

The invariant ideals in X+ form a closure system ^ easily
described as follows. For a word w in X+, denote by [w] the set
of all endomorphic images ("substitution instances") of w,

[w] = {f(w); f fc End X+>

Then we have

^/(w) = X~[w]X~ , ^(W) = U<C^(w); wfeW}

for any W c x+.
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Combinatorially speaking, ^(w) consists of the words on X
containing as a factor a substitution instance of the word w. The

complement of c/(w) in X consists of the words u having no
substitution instance of w as a factor; such a word u is said to

avoid the word w. We have come to the basic concept in [1].

Definition 1. A word w in X is avoidabJe on a finite alphabet

A^-X if there is an infinite collection of words on A avoiding w;

the word w is avoidable. if it is avoidable on some finite

alphabet A.

This definition is a direct generalization of the avoidance

of squares: the word aa is avoidable on the ternary alphabet

{a, b, c}. Our previous considerations lead us to considerably

strengthen the notion of avoidance.

Definition 2. An infinite set of words J is a JezeA' set if

(1) all w in J have the same set A of letters,

(2) J is ^/-independent, in the sense that u ^ ̂ /(v) for any
pair of distinct u, vsJ.

A word w X+ is strongly avoidable if there is a Jezek set

J <^ X of words avoiding w.

Statement 2. If the word w &X + is strongly avoidable then the
variety W determined by the Rees theory associated with the ideal

^/(w) is lattice universal. The theory Th(W) is generated by the
equations wx=xw=w (saying that w/Th(W) is a zero in X+/Tli(W)).
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A sketch of proof runs as follows. Let J be a Jezek set

avoiding w, let A be the set of letters occurring in the words

of J. Let K denote the fully invariant ideal

X ([w]U[J])X \ {f(u); u£j, feAut X"1"}

Assign to each equivalence E on J the equational theory

generated by E U(K ^ K). This assignment is an embedding of the

lattice of equivalences on J (isomorphic to H^ ) onto an
interval of the lattice of equational theories.

Jezek [5] is the first one to have constructed a Jezek set

of square-free words on the ternary alphabet {a, b, c}. His

construction enabled Goralcik and Vanicek [4] to produce, via

encodings of the original Jezek set J, to every binary word w

on A = {a, b} avoidable on A a Jezek set J avoiding w.

Theorem. Let A = {a, b}. A word w e A is avoidable on A if and

only if w&A [T]A , where

T = {aaa, ababa, abaab, abbab, aabba, abbaa, aababb}.

The complement A+\A [T]A consists of 28 words each of
which is unavoidable on A.

Every word w e A which is avoidable on A is strongly
avoidable on A.

To prove the first assertion, we only need to construct a

Jezek set J for w from the set of five words

aaa, ababa, aabba, aababb, abaab

(because . the remaining two in T are isomorphic to the reversals
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of aabba and abaab). The required Jezek sets are obtained by

encoding a fixed Jezek set J of square-free words on {a, b, c} by

the following codes:

For aaa: abbababbabaabaabb

abbabaababbabaabb

abbaababbababbaabb

For dbaba: ababbaabbb

abbaababbb

aababbabbb

For aabba: abbaaabaabababaaaabaabbbabbbb

abbaaabaaaabaaababbbb

abbaaabaaabaabababaaaabbbabbbb

For aababb abbaaaaabaaaaabaaaaabaaaaabbb

abbaaaabaaaabaaaabaaaabbb

abbaaabaaabaaabaaabaaabbb

For abaab: aaaababababaaaababbbb

abababaaaababababbbb

abaaaababababaaabbbb

The verification that it works is tedious.

One curious consequence of the above encoding is that for

each w in T the rate of growth of the number of words

avoiding w on A={a, b} (as a function of length) is the same as

the growth of the number of square-free ternary words, which is

exponential by Brandenburg [2].
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