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Abstract

There are two main problems in working with replacement systems over free
partially commutative monoids: For finite noetherian systems confluence is unde-
cidable, in general, and the known algorithm to compute irreducible normal forms
need time square in the derivation length instead of linear. We first give a decidable
and sufficient condition for finite noetherian systems such that confluence becomes
decidable. This condition is weaker than the known ones before. Then we give
a decidable and sufficient condition such that irreducible normal forms are com-
putable in time linear to the derivation length. Furthermore, we prove that the first
condition is implied by the second. We also present a new uniform algorithm for
computing normal forms using Zielonka’s theory of asynchronous automata.

1 Introduction

In Combintorics free partially commutative monoids have been introduced in [CF69]. In
computer science they serve today as an algebraic model for concurrent processes. This
is mainly due to the work of A. Mazurkiewicz [Maz77] who called the elements of these
monoids traces, a notion which is now standard. Since then an intensive study of traces
under various aspects has begun, let us mention [Maz87], [AR88] and [Per89] for recent
overviews.

In the present paper we continue to consider rewriting on traces. In [Die87] we intro-
duced trace replacement systems in order to have an abstract calculus for transformations
of concurrent processes. Trace replacement system generalize (and unify) the notion of
semi-Thue systems and vector replacement systems. They could also be viewed as semi-
Thue systems together with specified set of symmetric rules, this is the approach, for
example, in [BL87], [NO88], [Wra88], or as term rewriting system modulo an equivalence
relation [Ott89)].

A basic question with respect to trace replacement systems is how to decide their
word problem. This leads to the investigation of noetherian and confluent systems. The

“The paper also appears in the proceedings of the 7th Symposium on Theoretical Aspects of Computer
Science, Rouen (France) 1990, Lecture Notes in Computer Science, Springer: Berlin.
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noetherian property can always be achieved by directing the rules of the systems appro-
priatelb\/. But unfortunately, even for finite length reducing systems, deciding confluence
is recursively unsolvable. Therefore we need (good) sufficient and computable conditions
for deciding confluence.

Another important question is how fast we can decide the word problem by means of a
finite noetherian and confluent system. This is essentially the same question as to ask how
fast irreducible descendants are computable. Now, if the number of possible derivation
steps is polynomial in the length of input traces, then it is trivial to see that the problem
of computing irreducible normal forms rests tractable. But this is a very weak assertion.
In order to allow efficient calculations it is desirable (and may be necessary) that we
can compute irreducible normal forms of traces for a given finite noetherian system in
time linear to the number of derivation steps. (Let us abbreviate this by relatively linear
time complezity). However, the known algorithm achieve time square in that number
only. In [Die89] we gave a sufficient condition on the set of left-hand sides such that the
relatively linear time complexity can be obtained. But we left open the question whether
confluence is decidable if this condition holds. In the present paper we give a slightly
weaker condition which is still decidable and sufficient to ensure the relatively linear time
complexity and we also prove that confluence is decidable if this weaker condition holds.
This result is shown in the second section and based on the first section where we analyse
the structure of the set of traces which are critical for confluence. Our result roughly says
that we can decide the confluence of a noetherian system by inspecting the set of traces
which are generated by two left-hand sides and where no third rule appears. This is an
analogue of the critical pair criterion of Winkler-Buchberger for term rewriting systems.
(It is not exactly a special case of this criterion since trace replacement systems are term
rewriting systems modulo an equivalence relation.) Our main contribution is to show
that ¢ 1i. critical set of traces is effectively recognizable. Therefore we have an effective
procedure to decide whether this set is finite and if it is finite then we can test confluence
on this finite set. This set is, of course, finite for semi-Thue systems or vector replacement
systems. It is also finite for systems which are called coherent and convergent in [Ott89).
Thus, the decidability result of [Ott89] can be viewed as a special case of our situation.
It is also possible to combine our result with the condition A2) of [Die87] to obtain a
even smaller set of critical traces. In the third section we present a new algorithm for
computing irreducible normal forms. This algorithm terminates in all cases in time square
to the number of derivation steps and its worst-case behaviour is of that complexity for
certain systems. However, the interesting point is that whenever the system satisfies
the condition of section two, then the same algorithm realizes the relatively linear time
complexity. The existence of such a uniform algorithm was not known before and its
implementation depends essentially on the Zielonka’s theory of asynchronous automata.
This gives further evidence for the importance of the notion of asynchronous automata.

2 Preliminaries

Throughout this paper X means a fixed finite alphabet with independence relation I C
X x X which for technical reasons is assumed to be reflexive and symmetric. The comple-
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ment of / is denoted by D = X x X\ and called the dependence relation. We use M to
denote the associated free partially commutative monoid M — X*/{ab=ba | (a,b) € I},
the elements of M are called traces. Each trace t € M is identified with a labelled partially
ordered set as usual: the empty trace ¢ = 1 is identified with the empty set, if t € M is
a trace and a@ € X is a letter then ta is the disjoint union of ¢ and a new point labelled
with a. The partial order < of ta is induced by t and the requirement that the new point
is behind every point of ¢ which has a label depending on a. If t € M is a trace and
a € X is a letter then, by abuse of language, we shall write a € ¢ if we mean a fixed point
of ¢ with label a. Similary we proceed with subsets of ¢. Note that every subset [ C ¢
defines a unique trace / € M. A subset | C t of a trace ¢ € M is called a subtrace if for all
r,y,z €t with e <y < zand 2,2 € [ we have y €l. If I Ctis a subtrace then we can
write ¢ = ulv for some u,v € M and vice versa: if we have any factorization ¢ = ulv then
the factor { defines a unique subtrace C t. For any subset [ C t we define the generated
subtrace of [ in t by the smallest subtrace of ¢ containing [. We denote this subtrace by
(I). We can also define the generated subtrace by () ={yet|Iz,ze€l:a<y< z}.
With a subtrace | C ¢ we associate the following subtraces:

pre(l) = {zet\l|z <y for somey € I} of elements before /,
suf(l) = {z€t\l|y<zforsomey e [} of elements behind I, and
ind(!) = #\(IU pre(l) Usuf(l)) of elements which are independent of /.

The following simple observation is important: let { C ¢ be a subtrace then a factor-
ization t = ulv defines this subtrace { C t if and only if we have equations u = pre({)u;,
v = vy suf(() for some u;v; = ind(l).

Two subtraces I; C t, I, C ¢ are called strictly separated if I; C (pre(l;) U ind(/;)) for
some {%,7} = {1,2}. Thus, l; C¢, 1, C ¢ are strictly separated if and only if we can write
t = ulwljw for some u,v,w € M and {i,;} = {1,2}. (In previous papers we said that
Iy Ct, 1y Ctare not in mixed order.)

For a trace t € M its length is denoted by |t| and its alphabet by alph(t). The
independence relation I is extended to I C M x M by setting (t,) € I if alph(t) x
alph(t') © T C X x X. For a trace t € M the trace min(t) (max(t) respectively) is defined
by the set of minimal (maximal respectively) elements of the labelled partial order ¢.

A trace replacement system is a subset S C M x M. Rules (I,r) € S are also written
in the form [ = r. A system S C M x M defines a reduction relation ==> on traces by

t = t"if t = ulv, t' = urv for some u,v € M, (l,r) e S. By =;> (% respectively) we
mean the reflexive, transitive (, and symmetric respectively) closure of the relation ==

By Irr(S) we denote the set of irreducible traces. The word problem of S is to decide on
input traces t,# € M whether or not ¢ <:;$ t" holds. For time complexities we view the

replacement system S as fixed, l.e., we measure the non-uniform word problem where the
input size is given by the length of the traces ¢ and #.

A trace replacement system S C M x M is called noetherian if there are no infinite
derivation chains ¢, ? t =S> ..+, and confluent if for all ¢, <;= t =;> t2 there exists a
trace ¢ such that t =;> ¢ 4;: t2. If a finite system S C M x M is noetherian and conflu-

ent then the word problem of S is decidable. But, of course, without further restrictions
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the time complexity may become arbitrary high. (This follows since the computation
of a deterministic always halting Turing machine can be simulated by a noetherian and
confluent semi-Thue system.)

3 A sufficient decidable condition for testing conflu-
ence

For deciding the word problem of a given trace replacement system it is no restriction to
assume that the system is noetherian. We simply direct the rules such that the system
becomes noetherian. This is possible since every free partially commutative monoid has a
so-called admissible well-ordering, see [Die87, Prop. 1.1]. However, one of the main prob-
lems is dealing with trace replacement systems is that the confluence may be undecidable
even for finite length-reducing systems, see [NO88]. The general attempt to overcome this
difficulty is to find decidable sufficient conditions which guarantee that the confluence of
the system can be tested on an effectively calculable finite subset of the monoid. We
give such a condition below which is weaker than the ones known before, [Die87], [BL87],
[Ott89].

Before we state this condition let us recall another problem which one meets in the
replacement of traces. (This problem is not present in the semi-Thue or vectorreplacement
case.) Let (I,7) € S be the rule and ﬁ # be a reduction step. Then the result ¢’ is not

uniquely by the subtrace [ C ¢ which is ,replaced and by the rule (I,r). It may depend on
the explicit factorization t = ulv. Indeed, let a € X be a letter which is independent of [,

then there is a unique subtrace [ C t in the trace t = al = la but we have ar <(:l=-; t (_z__i ra.
This observation led us in previous papers [Die87], [Die89] to the assumption, called Al),

that @ and r should commute in all these cases. However, for deciding confluence this
assumption is not really necessary. It is enough if the system is confluent on all these
pairs (ar,ra). The first lemma is obvious and simply states that the confluence of these
pairs is decidable.

Lemma 3.1 Let S C M x M be a finite noetherian trace replacement system, (,r)e S
be a rule, and a € X be a letter such that (a, 1) € I. Then it is decidable whether the pair
(ar,ra) is confluent. O

The following considerations are based on a certain partial ordering < of M which is
canonically associated with any noetherian trace replacement system S C M X M. For
z,y € M weput z Xyify ==;> uzv for some u,v € M, i.e., z is “smaller” than y if and
only if z is a subtrace of some descendant of y. As usual z <y meansz Xy and z #y. It
is an easy exercise to see that, since S is noetherian, this defines a well-founded ordering
of M. This means that every non-empty subset of M has minimal elements with respect
to <. The reason that we do not need the assumption A1) here results from the next
lemma.

Lemma 3.2 Let S € M x M be a noetherian trace replacement system, t € M be a
trace, | C t be a subtrace and (I,r) € S be rule. Let ujvy = ugvy be two factorizations
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of ind(l) and t; = pre(l)u;rv; suf(l) fori = 1,2, i.e., ¢, ﬁ t (I:T t2. Then the following
vmplication holds. If the pair (ar,ra) is confluent for all @ € X such that (a,l) € I and
if the system S is confluent on all traces t' € M such that ' < t then the pair (t1,t,) is

confluent, too.

Proof: For simplification of notation it is convenient to observe first that we may assume
pre(!) = suf({) = 1. Thus, we have ¢ = ind(/)! and t; = w;rv; for i = 1,2. If we have
|uyuz| = 0 then ¢; = ¢; and the claim follows. If |uruz| > 0 then we may assume u; = ua
for some u € M,a € X with (a,{) € I. Since (ar,ra) is confluent, the pair (t1,uravy) is
confluent, too. The pair (urav,,t;) is confluent by induction since |uu,| < |ujuy|. The
lemma follows since urav, < ¢t. O

For a noetherian trace replacement system S C M x M and rules (li,71),(la,m9) € S
let us define the set of critical traces CT(l,1,,S) by the set of traces t € M satisfying
the following two conditions:

1) The left-hand sides I;,l, are subtraces Iy Ct,l, Ctsuch that (hul) =t and
li Ct,1; Ct are not strictly separated.

2) For all subtraces { C t such that (I,7) € S for some r € M we have for ; = 1 or for
v=2that (;Ul) =tand l; Ct,{C ¢ are not strictly separated.

To illustrate the notion of CT(ly,13,S) consider the semi-Thue case S C X* x X*,
where for further simplification S is assumed to be normalized, thus every left-hand side
of S is irreducible with respect to all other rules. Then a word w € X* belongs to
CT(l,15,S) if and only if w = v = uly, I, l; have over-lapping, and there is no third
left-hand-side occuring in w. It is the last property which will become important.

The following theorem shows that the decidability of confluence can be based on these
sets CT(ly,13,S). It can be viewed as an analogue to the Winkler-Buchberger criterion
for term rewriting systems [WB83], see also [KMNS8S, section 4,(C1)] and [BD8S] for a

rather general treatment of critical pair criteria.

Theorem 3.3 Let S C M x M be a noetherian trace replacement system. Then the
system S is confluent if and only if the following two assertions hold:

1) The pair (ar,ra) is confluent for all (I,r) € S,a € X such that (a,1) € I

i) Forall (I, ry), (I3,r2) € S the system S is confluent on the set CT(ly, I, S) of critical
traces defined above.

Remark 3.4 Before we prove the theorem observe that, in general ii) does not imply
i), unless M is free or commutative (in which case it does for trivial reasons). Indeed if
M is neither free nor commutative then there are three different letters a,b,c € X such
that (a,c) € I and (b,c) € D. Consider the one-rule system S = {a = b*}. Then

CT(a,a,S) = {a} and the system is confluent on {a} although (b%c,ch?) is not confluent.
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Proof of Theorem 3.3: Since the only-if-part is trivial, it is enough to show that if 1)
and ii) hold then S is confluent. Let (I1,m1),(l2,72) € S be rules, t € M be a trace with

subtraces I; C t,l; Ct, and t (f——:) t (l:—>) t,. We shall prove that (t1,t2) is confluent.
1,71 2,72

By noetherian induction we may assume that S is confluent on all traces t' € M such
that ¢ < t. Clearly, we may also assume that does not belong to CT'(ly,13,S). Hence,
for some rule (I,r) € S we find a subtrace | C t such that for 7 = 1 and 1= = 2 we
have that ([; Ul) # tor i © t,1 C t are strictly separated. For ¢ = 1,2 we choose
any t; &:——?) t (_1_3 t! such that (t},¢/) is confluent. This is possible: if l; € t,{ &t are
strictly separated then we may write t = ulpplw (¢t = ulvlw respectively) and the pair
(urpplw, uljvrw) ((ulvraw, urvlw) respectively) will do, if (l; U 1) = t there exists such a
pair since (l; Ul) < t. By standard techniques we are reduced to show the confluence of
the following pairs (t1,t;), (t1,t7), (81, t2), (t4,t5), (th, t2). The confluence of (#1,17), (t3,13)
is known by construction. The confluence of the other three pairs follows by Lemma 3.2.
a

The key to our decidability result below is the fact that the sets CT(ly,13,S) are
effectively calculable recognizable trace languages. To see this we introduce sets B(p, ¢,Y)
which roughly stands for the set of possible traces between p and ¢ with alphabet Y.
Formally B(p,q,Y) is defined for traces p,q € M and subsets Y C X by

B(p,q,Y)={y e M| alph(y) = Y and with respect to
the trace pyq it holds

suf (p) = yq and pre(q) = py}

Note that in the free commutative case M = NX the set B(p, gq,Y) will be empty unless
Y C alph(p) = alph(q). More generally, B(p,q,Y) is empty unless for each maximal
element a € p there exists some b € Y U alph(q) with (a,b) € D and for each minimal
element ¢ € ¢ there exists b € Y Ualph(p) with (b,¢) € D. If B(p,q,Y) is non-empty then
it contains those y € M with alph(y) =Y such that every minimal letter of y depends
on some letter in p and every maximal letter of y depends on some letter in g. Thus, in
all cases B(p,q,Y) is recognizable.

Theorem 3.5 Let S € M x M be a noetherian trace replacement system such that the
set of left hand sides is recognizable. Then for each (I1,71), (l2,2) € S the set CT(l1,1s,5)

is an effectively calculable recognizable subset.

Proof: Lett € M such that t € CT(l,13,S). Then Iy C ¢, I, C t are non-strictly
separated subtraces and we have t = (I, U ly). Define the following nine subtraces of t:

P = liﬂpre(lj) ,{Z,]} = {1’2}’
s; = l;Nnind(l;) {i,3} = {1,2},
q = liﬁsuf(lj) ,{2,]} = {172}’
s = ll N l‘Z)

yy = suf(ly)N pre(l2)

y, = suf(ly) Npre(h)

We have a picture as in Figure 1.
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Figure 1: A trace t = (I U ;) devided into nine subtraces.

The following formulae hold:

1) pisisq; = I for i=1,8

2) (si,l;) €T for {,7} = {1,2}

3) (p1p2) €1, (q1,¢) € 1,

4) yi € B(pi,q;,Y;) for some Y; C {a € X | (a,pjs1582¢:) € I}, 1,3} = {1,2},

hx¥hClr

5) s# 1lorpi,p,qi,q #1.

Vice versa, if the formulae 1) - 5) hold for some Diy Siy Sy qi, i and ¢ = 1,2 then
t = p1p2y151852Y2q1g2 yields a trace with non-strictly separated subtraces {; C t,l, Ct
such that (I;Uly) = ¢. Thus, the set CT(ly,1,,S) is a subset of a finite union of recognizable
sets of the form

Plsz(Pl, q2, Yl)SlsszB(Pz, q1, Y'z)(h‘h-

In the following we may think that the data P1,P2,91,8,82,q1,92 € M and ¥1,Y, C X
are fixed. There are only finitely many traces where P18191 = 1 or pysaq; = 1, thus we
assume p181q1 # 1 # pysaqa. In the next step one replaces B(p;,q;,Y;) by B; = {y €
B(pi,qi,Yi) | pisiy,ysjq; € Irr(8)} for {i,7} = {1,2}. This is possible without loosing
anything from CT(ly, 15, S). In fact, say P151y1 is reducible by some rule (/,7) € S. Then
the subtrace I C pys;y; C tis strictly separated from I, C ¢ and (lLUl) # t since pysaqs % 1.
Note that B = P1p2B151589B2q1¢; 1s recognizable. But it is still too large. It may contain
traces ¢ such that [ C ¢ is a subtrace for some left-hand side where (hUbL) #t# (I,ul).
It is not very difficult to exclude these traces, too, by distinguishing several cases. This is
left to the reader, since in our application of the next section the set B is already finite.
O

We now state the main result of this section which follows directly from the theorem
above together with Lemma 3.1.
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Corollary 3.6 Let S be a finite noetherian trace replacement system. Then it is decidable
whether the set CT(S) = U{CT (I, 1, 5) | (Ii,rs) € S, 1= 1,2} is finte. If the set CT(S)
is finite then it is decidable whether the system S is confluent. O

Remark 3.7 i) The exact calculation of the set CT(S) above seems to be very difficult
in general. However, in order to prove that CT(S) is finite it is enough to prove an upper
bound on this set. For example we might prove that the length of traces in CT(S) cannot
exceed a certain length. Then we can test confluence on all traces up to this length
without knowing the explicit description of CT(S).

ii) The reader might convince himself that it is possible to combine the corollary above
with [Die87, Thm. 3.1]. Then we obtain an even weaker condition for the decidability of
confluence. Since this is rather technical but not very difficult we have not shown it here.
a

4 The condition Gy for £ >0

We are going to measure the time complexity to compute irreducible forms for finite
noetherian systems S C M x M in terms of the following function

ds: N — N, ds(n)zmax{mENlt%f, |t| =n}

This means ds(n) is the maximal number of possible reduction steps starting on a trace
of length n. For applications, one is mainly interested in cases where dg grows slowly.
This is for example the case when S C M X M is weight-reducing, then ds is a linear
function. It is easy to see that irreducible normal forms can be computed (on some multi-
tape Turing machine) in time O(d%). But we have no idea whether this bound is optimal,
and for semi-Thue systems we can achieve a time bound O(ds), see [Boo82]. In [Die89)
we exhibited a sufficient decidable condition for trace replacement systems S C M x M
such that irreducible normal forms can be computed by a very simple algorithm in time
O(ds). The condition of [Die89] is equivalent to condition Go(S) below. We left open the
question whether confluence is decidable when Go(S) holds. We will see here that the
question has a positive answer. We present in fact a slightly weaker condition.

The informal reason why, so far, we can not prove a better time bound than O(d%) is
that for some ¢ > 0 there might be irreducible traces t € Irr(S) such that if we multiply ¢
by a letter a € X from the left (or right) then at (or ta) becomes reducible by some rule
(I,r) € S, but for all factorizations at = ulv, we have |u| > clt| and |v| > c|t|. Even if
there would be, at this stage, a fast way (constant time) to compute the reduction step
at = ulv => urv, we see no fast way to test whether urv is irreducible, it will take time

S

linear to the length of [t|. Of course, all these problems vanish if we could bound the
length of |u| in the situation above by some constant k 2> 0 depending on S only. This is
exactly what the following condition says.

Definition: Let k>0, X® ={te M |[t| < k},and S € M x M be a noetherian trace
replacement system with set of left-hand sides L = {l € M | (I,r) € S for some T € M}.
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We say that the condition G (S) holds if we have
XIrr(S) C Ier(S) U X® L,

Theorem 4.1 Letk >0 and S C M x M be a finite noetherian trace replacement system
and L be the set of left-hand sides. Then we have the following assertions.

1) It is decidable whether G(S) holds.
1) If Gx(S) holds then we can decide whether S is confluent.

1) If Gp(S) holds and if S is confluent then we can decide the word problem of S in
time O(dsg).

Proof: 1) trivial since all sets involved for deciding G(S) are recognizable.
iii) Follows easily by an obvious modification, which depends on k, of the very simple
algorithm right-reduce presented in [Die89]. Details are omitted since the new (but more
complicated) algorithm of the next section yields the same time bound up to constants.
ii) We show that the set CT'(ly, l3,5) introduced in the previous section is finite for all
1,1 € L. The result then follows by Corollary 3.6.

Let [;,l; € L and t € M be a trace with subtraces li ¢, l; C tsuch that (U L) =t
and l; C't, , C t are not strictly separated. As in the proof of Theorem 3.5 we devide ¢
into nine subtraces:

P = l,-ﬂpre(lj) ) {Z)]} = {1,2}a
S; = l,’ﬂind(lj) ; {Z,]} = {1,2},
¢ = LN SUf(lj) ) {Z’J} = {172};
s = ll ﬂlQ,

vi = suf(lL)npre(l;) , {45} ={1,2}.

Then we have t = P1P2Y151882q1G5.

By symmetry we may assume that |y;| > ly2| and it will be enough to show that if
t € CT(l,13,S) then the length of y; is bounded by some constant not depending on
t. Let m = max{|l| | I € L} and assume that ly1| > |p2s| 4+ k + m. (Note that |pys| is
bounded by |l and this bound is independent of It]).

Now, if the subtrace y;55q, C ¢ is reducible by some rule (I,r) € S then ¢ contains
a subtrace | C ¢ such that Iy C ¢, [ C ¢t are strictly separated and (I; U l) #t. (Note
that p; # 1 since |y;| > 1). Hence, we have t ¢ CT(ly,13,S) in this case. Therefore
We may assume y;82¢; € Irr(S). On the other hand, P28Y15292 = Y1l is reducible since
I € L. Now, it follows from G (S) that pysy1s292 = ulv for some (Lr)e S,u,ve M
with [u| < |pys| + k — 1. Since pysy1s2g; = y1lz is a subtrace of ¢, we may identify u, I,
v with subtraces of ¢, too. Since |y1| > |pys| + k + m, at least one letter of the subtrace
y1 & ¢t belongs to v C ¢, hence (I; U!) # ¢. Since p; # 1 we also have (I, Ul) #t, thus we
have t ¢ CT(ly,15,S). The theorem follows. O

Open problem Is it decidable whether for given finite S € M x M there exists k > 0
such that G(S) holds? This question would have an affirmative answer if we could decide
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for given recognizable trace languages A, B C M with A € M B whether there exists a
finite set F € M such that A C FB. This seems to be an interesting question for
recognizable trace languages independent of trace rewriting. It can be solved for regular
word languages.

The reason to consider the condition Gx(S) for different & > 0 follows from the next
proposition:

Proposition 4.2 Let k > 0 and M be neither free nor commutative then there exists
a length-reducing trace replacement system S C M x M of at most two rules such that

Gres1(S) holds but not Gi(S).

Proof: Since M is neither free nor commutative we find three different letters a,b,c € X
such that (a,b) € D and (a,c) € I. Consider the system S = {cb => 1,a*"* = 1}.

Then t = ca**'b € X Irr(S) but neither t = a**lcb € Irr(S) nor a¥*'chb € X® {cb,ak*+?}.
Hence Gx(S) does not hold whereas it is easy to see that Gx41(S) is true. O

Remark 4.3 i) If M is free or commutative then Go(S) holds for every system ¥
M x M. For one-rule systems Gi(S) implies Go(8) for any k > 0. Therefore, the
proposition above is tight. In the terminology of [Die89], the property Go(S) for a one-
rule system S = {({,r)} is equivalent with the property that [ is a cone or a block.

ii) In [Ott89] another decidable and sufficient condition is given such that the confluence
of finite noetherian trace replacement systems becomes decidable. The approach of Otto
‘s based on the notion of convergence and coherence for term rewriting systems which
was developped by Jouannaud [Jou83]. Inspecting Otto’s condition it turns out to be
equivalent with confluence in our sense and Go(S). Since Go(S) implies Gi(S) for all
k > 0 and any Gk(S) implies the condition given in Corollary 3.6, but non of these
implications is reversible, our condition is clearly weaker. Furthermore our approach has
the advantage of staying entirely in the theory of traces.

5 An efficient algorithm for computing irreducible
normal forms

In this section we present an algorithm which computes always irreducible normal forms
in time O(d%) but which has the property that whenever the system satisfies Gi(S5) for
some k > 0 then it works in time O(ds). From this viewpoint it is the best known
algorithm in this area. The implementation of the algorithm depends essentially on the
existence of finite asynchronous automata which were introduced in [Zie87]. The proof
that every recognizable trace language is accepted by such automaton seems to be one
of the most difficult in the field of trace theory. Unfortunately, the constants which are
obtained constructing these automata are extremely high. So, in practice it might be
necessary to work with “less optimal” algorithms. But may be a better understanding of
asynchronous automata will change the situation.

The algorithm we are going to construct is based on a notion of protocols which is
available for asynchronous automata, but not for usual finite M-automata. In fact, we
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shall use a minor modification of asynchronous automata which we will call asynchronous
cellular !. This modification is not important, it is done here to have smaller state sets.

A finite M-automaton U = (Z,§, qo, F') (where Z denotes the finite state set, 6 :
Z x M — Z is the (partially defined) transition mapping, go € Z is the initial state,
and F' C Z is the set of final states) is called asynchronous cellular if the following two
conditions hold:

1) The state set Z is a cartesian product Z = [] Z,
7 IEX
2) The partially defined transition mapping 6 is given by a collection of partial map-
pings
{6a:( JI Zy) = Z, |a € X}
beD(a)

where D(a) = {b € \'| (a,b) € D} for a € X.
3) For all traces t € M the state 6(qo,t) is defined.

Condition 2) means that for a € X, (22)zex € [lsex Z= the state 6((22)zex,a) is
defined if and only if 6a((25)beD(a)) is defined. In this case we have 6((2z)zex,a)y = z, for
y # a and 6((22)zex, a), = 5a((zb)b€D(a))'

Condition 3) is included for technical reasons only.

The deep theorem of Zielonka [Zie87] can be read as follows: For every recognizable
trace language L C M there exists effectively a finite asynchronous cellular automaton
which recognizes L. In fact, in the known proofs of Zielonka’s theorem [Zie87], or [CM8T],
(implicitely) a asynchronous cellular automaton is constructed first and the asynchronous
automaton in the sense of [Zie87] is obtained simply by blowing-up the state space. We
avoid this (unnecessary) blow-up. (The reader can also translate the following construc-
tion to the “usual” asynchronous automata).

Let U = ([Tsex Za, 6, g0, F) be a asynchronous cellular automaton. Protocols of U are
elements of the product space [Teex(ZF) which are inductively defined as follows:

The element go € [,ex Z» C [Toex(Z}) is a protocol. If p € [Teex(Z}) is a protocol
and a € X is a letter then the protocol ap is defined as follows: Take ¢ € [lzex Z: such
that p = gp’ for some p’ € [T,cx Z*. Then compute 6(q,a), € Z, and multiply this state
from the left to the a-component of p, the other components are unchanged. The reason
that we build up protocols from right-to-left is that we view protocols contained in a stack
and we follow the convention that the top of a stack is on the left-hand side. It follows
from the definition that if ¢ € M is a trace then p = tqo denotes a well-defined protocol
with p € [I,ex Z}. The crucial point is that if p = tqo is a protocol and t = at’ for
some ¢' € M, a € X then the protocol gy can be computed from tqgy in constant time
by erasing the left most state in the a-component of the protocol tgo. More generally, if
P = tgo and t = uv then we may compute the protocol vqo starting from p in |ul-steps.
We also shall write u~!p to denote the protocol vqo if p = uvge. This will also be done
for traces: if ¢ = uv then u~'¢ denotes the trace v.

'In a previous version of this paper these automata were called “uniform”. The new notation is due
to W. Zielonka who introduced this modification independently
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If U= (ITeex Za» 0,90, F) 1s a finite asynchronous cellular automata then a protocol
p € Tluex ZF is called final if p = zp' for some z € [lzex Zz, P € [loex Z: with z € F.
(We could also view [];ex Z} as a state set of an infinite asynchronous cellular automata
where M operates on the left). We are now ready to prove the following result.

Theorem 5.1 There is a construction giving on input a finite noetherian trace replace-
ment system S € M x M an algorithm right reducec which satisfies the following asser-
tions:

i) It holds right reduces(s) € Irr(S) for all s € M and right_reduces, terminates in
time O(d%).

ii) For some systems S © M X M the worst-case behaviour of right_reducecs 15 O(d%).

iii) Whenever S C M x M satisfies Gx(S) for some k 2 0 then right reduce,, terminates
in time O(ds).

Proof: For S C M x M let U = ([Tzex Zz,6,q0, F) be a finite asynchronous cellular
automaton which recognizes the set of reducible traces if they are read from right-to-
left. A protocol means an element p € [zex ZF as defined above. Define the algorithm
right_reduce,, as follows

function right_reduces, (s:trace):trace

var t:trace:=1;

var p:protocol:=qo;

while s # 1 do

choose some a € X which is maximal in s;

s:=sa" ! t:=at; p:=ap;

(“time: O(1)")

if p is a final protocol (“recall that p is final if and only if ¢ is reducible, time: 0(1)”)
then compute some u € M of minimal length such that

t = ulv for some (I,r) € S, v € M;

(“It is crucial that |u] is minimal and to note that this can be done in time O(Jul).
Note also that we must have [ € aM, hence v = (ul)~'t € Irr(S) ")

s = surs t 1= (ul)™'t; p = (ul)'p; (“time: O(|ul)”)

endif

endwhile

return t

endfunction.

It is easy to verify the correctness of the algorithm, i.e., right reduces(s) € Irr(S) for
all s € M, by the following invariants: st is a descendant of the input trace, t is irreducible
and p is the protocol tgo. For the time complexity see the comments above. Two points
are important: First, the “if-test” can be performed in constant time. This means we try
to find a left-hand side inside (the stack) ¢ only if we know that such a left-hand side exists.
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This was the only reason to work with asynchronous or asynchronous cellular automata.
Second, the factorization ¢ = ulv for some u,v € M, (I,r) € M with |u| minimal can be
performed in O(|u|) steps. This can be seen, for example, from the representation of a
trace as a tuple of words. Now, if the system 5 satisfies G (S) for some k£ > 0 then we
will have O(|u|) = O(1). This proves iif). Assertion i) is obvious since we do not enter
the then-part of the while-loop if ¢ is an irreducible trace. Assertion ii) is shown in the
following example. O

Example: Let (X, D) be given by the graph a — b— c—d. Consider the following special
trace replacement system S = {bc =1, ad = 1}. This system is confluent and the
function ds is linear. Independently of implementation details the worst-case behaviour
of the algorithm right-reduce,, above will be O(n?).

Indeed, consider an input trace of the form s = (ab)"c™d"™. Of course, s reduces to the
empty trace. But the algorithm right-reduce,, will perform ©(n?) times the while-loop.
Thus, the time complexity of the algorithm can not be better than ©(n?) even if the whole
while-loop could always be performed in constant time. O
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