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1. Introduction

In the classical representation theory of general linear groups over fields of characteristic zero

two classes of modules play a fundamental role, namely, Schur modules and Weyl modules relative

to a given Young shape [13-15]. As well known, these are irreducible modules, and, for every

Young shape ^, the Schur module relative to X is isomorphic to the Weyl module relative to the

conjugate shape \. Recently, it has been recognized that the definitions of Schur and Weyl modules

can be adapted in order to make sense over fields of arbitrary characteristic (see, e.g., [1-5,8,9] ),

giving rise to two classes of modules which are indecomposable but, in general, neither irreducible,

nor isomorphic. Hence, the problem arises of deciding, for a given Young shape, in which

characteristics the corresponding Weyl module is not irreducible. It has been shown (see [2, 9]) that

the solution of this problem is related to the rank of a matrix with integer entries, built up by

considering standard Young tableaux of the given shape.

In the present paper we first exhibit some theoretical results, based on a new presentation of

Weyl modules [2], which imply Aat a matrix of smaller size can be equivalently considered. Next, we

present an algorithm which constmcts such matrices and specifies in which charactenstics there is no
full rank. In particular, in §2 we recall the basic combinatorial facts about Young tableaux; in §3 we

define Schur and Weyl modules, and summarize the fundamental results which yield the crucial

property (Theorem 7) which the algorithm is based on. In §4 we describe the algorithm and its

implementation in FORTRAN 77 on GRAY Y-MP8/432 of CINECA Computing Centre [6]. A

sequential version has been devised, and numerical experiments are presented and discussed.

2. Young tableaux

Let E={ei, C2,..., en} be an alphabet, namely, a finite, Unearly ordered set, and let Mon(E) be

the free monoid generated by E. Elements w of Mon(E) are called words; ifweMon(E),

w=xiX2... Xk, xie E, we say that w has length k. The content of a word we Mon(E) is the function

cont(w) from E to the set of non-negative integers that assigns to each x in E the number cont(w;x) of
its occurencies in w.

Example: if E={a, b, c,d} and w=abacc, then w has length 4, and cont(w;a)=2, cont(w;b)=l,
cont(w;c)=2, cont(w;d)=0.



A word w will be said simple whenever cont(w;x)^l for every xe E. Ifv,we Mon(E), set

v ~w whenever cont(v)=cont(w).

Let v, weMon(E); if v,w are simple words such that v ~w, and if v=xiX2---xk, then

vv=x<j(i)Xo(2)---Xo(k) for some permutation o of {l, 2,..., k}; we define sign(v, w)=sign(a). In all

other cases, set sign(v,w)=0.

Example: ifE={a, b,c,d}, v=bcda, w=abdc, then v ~w, and sign(v, w)=l.

A Young shape ^ is a finite sequence of positive integers (k\, ^,..., ^), such that X[^^.j

whenever i<j, namely, a partition of the integer n=^. i+/l2+... +^k; in symbols, Xi-n. Shapes will be

ordered lexicographically from left to right.
A Young shape is usually seen as an array consisting of ^. i boxes in the first row, ^2 boxes in

the second row, and so on; for example, the diagram

SQQQD
DDDD^
DD^
aa

represents the shape (5,4,2,2).

The conjugate shape ?i=(?Li, ?l2,..., ?ih) of X is defined by setting \^ to be equal to the number
of entries ̂ , of \ such that Xi^j.

Example: if ?L=f4. 3. D:

QQDD
DDD"
r

the conjugate shape of ^ is ̂ =(3,2, 2, 1):

Qffl
aa^
un
Q~
Given a Young shape X, a Young tableau of shape ̂  relative to the alphabet {a, b, c,d,... } is any

way of filling the boxes of the shape with symbols of the set; for example,



is a Young tableau of shape (5,4,2).

Formally, a Young tableau of shape ^,=(Xi,^,2>"-^k) over r/zff alphabet E is a finite sequence

of words T=(Wi), i=l,2,...,k, where WIG Mon(E) is of length 'k[. We shall wnte sh(T)=X. The

content of the Young tableau T=(w;) is the function
cont(T)= Scont(Wi).
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Let T=(w;) be a Young tableau of shape ?i=(?ii, ?i2>-.. >^k); writing
Wl=\llXi2
W2=X21 X22 ......

Wk=XklXk2

set

Wj=xii X2i ... Xki for i=l,2,..., \i.

The Young tableau T=(w;), of shape X, is called the conjugate tableau of T.

Example: given the tableau T=(w;), 1=1, 2, 3,4, with

wi = bac ed
W2 = ac ec
W3 = b e
W4 = C b,

its conjugate tableau is T=(w'i), 1=1,2, 3,4,5, with

w'l = ba b c
w'2= ac e b
W'3 = CC
w'4 = ec
W'5 = d.

A Young tableau T.=(w;) is said to be standard if, for every i, writing Wi=xiX2... Xp, we have
Xh<Xk whenever h<k, and, writing Wi=yiy2... yq for the i-th word of the conjugate tableau T of T, we

have yh^yk whenever h<k.

Example: the tableau

E00E]

is standard, while



T'=

is not standard.

Given a shape X=(Xi,X2,...,Xk) with X. i$s IE I, the Deruyis tableau of shape X over E will be

the (standard) tableau Der(^. )=(w0, with

Wi= ^e^... e^ , i=l, 2,.., k.

For example, the Deruyts tableau of shape (4,3,2) over the alphabet {a,b,c,d,... } is

A Young tableau is said to be co-standard whenever its conjugate tableau is standard.

For example, the tableau
la|[a||cl|d|

is co-standard.

We recall the definitions of two equivalence relations over the set of all Young tableaux of a

given shape over E, which will be frequently used in the sequel:

Let S=(Vi), T=(w0 be Young tableaux over E; we say that S is row-equivalent to T, in

symbols

S~rT,
whenever sh(S)=sh(T) and Vi~wi for every i.

Similarly, we say that S is column-equivalent to T, in symbols

S~cT,
whenever S ~rT.

Example: the tableaux

are row-equivalent, while

|b||e||a|

lcllbl



fa]tb|Fe1

S = |c||d|

are column-equivalent.

Fdlbllet

|a||d|

If S=(v0, T=(w0 are Young tableaux of the same shape, set

sign (S,T) = n sign (vi, Wi).
I

Needless to add, sign (S,T)?0 if and only if S and T are row-equivalent.

Let S,T be Young tableaux over E, with sh(S)=sh(T); set

f^lf;f1)=Z £ sign(X, Y).
X-cS Y-cT

it is immediately seen that the integer J(|S| I |T|) is non zero only if the tableaux S and T have the

same content.

Example: let

|a||b||e|

there are four tableaux which are column-equivalent to S, namely:

[a||c||e|

T = Iblldl

|a||b||e|
s = Hfdl

|a||d||e|

Si = [clfb]
|c|fb]|e]

S2 = fa]fd1 S3 =

and four tableaux which are column-equivalent to T, namely:

|a||c||e|

T = |b||d|

|a||d||e|

Ti = [b1[c1
|b||c||e|

T2 = [alfdl T3 =

|c||d||e|

lallbl

|b||d1|e|

|a||c| ;

among these, the only pairs of row-equivalent tableaux are the following:

Si-rTi and S2~rT2;

moreover, sign(Si, Ti) = -1 = sign(S2, Ti); hence,

j(rsiim)=-2.



3. Schur modules and Weyl modules

Let K be an infinite field of any characteristic. Let A={ai, a2,..., ap}, B={bi, b2,..., bq} be

two alphabets. We create "double variables" (ailbj), i=l, 2,..., p, j=l, 2,..., q, which can be organized
in a pxq matrix M, and consider the polynomial algebra SK[(aj|bj)] over K generated by these
variables. To each word in Mon(A) w=xiX2... xi(; we associate the polynomial pol(w) in SK[(aiJbj)]
obtained by taking the determinant of the minor of M consisting of the first k columns and the rows

of indices xi,X2,..., Xk. In other words,

pol(w) = S sign(yiy2... yk, w) (yilbi)(y2 lb2)... (yktbk).
yiy2-ykeMon(A)

yiy2...yk~w

Example:

pol(aia3)=(ailbi)(a3lb2)-(a3lbi)(ailb2)=

=det
/(al
.
(a3

bl) (al|b2)'
bl)(a3|b2),

Now, to a Young tableau T=(wQ, i=l, 2,..., n, over A we associate the polynomial in SK[(a;|bj)]
pol(T) = pol(wi) pol(w2) ... pol(Wn).

Given a shape 'k, the Schur module Schur(^) relative to X is defined as the linear span over K

of pol(T), as T ranges over the set of all Young tableaux of shape ̂  over the alphabet A.

The general linear group GL(p,K) acts on the ring SK[(ai I bj)] by left multiplication, and it can
be shown that Schur(X) is invariant under this action, namely, it is a GL(p,K)-module. [see, e.g., l, 2~l

We now recall two fundamental results about Schur modules.

Theorem 1 The set P={pol(T); T standard tableau of shape X, over A} is a basis of the module

Schur(^). More specifically, if T is any tableau of shape \ over A, the polynomial pol(T) can be

uniquely expressed as a linear combination with integer coefficients of elements of P.

Proof: see, e.g., [1,2].

Theorem 2 The module Schur(^) has a unique niinimal GL(p,K)-submodule, namely, the cyclic

submodule Cyc(^) generated by the polynomial pol(Der(X)). Moreover, the module Cyc(^) is

linearly spanned by the set of elements

S pol(X),
X-cS

as S ranges over the set of all standard tableaux of shape X over A.

In particular, if K is of characteristic zero, for every shape X the module Schur(X) is

irreducible, namely, it has no proper submodule; hence, in characteristic zero, Cyc(X)=Schur(X).
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Proof: see, e.g., [2].

We now introduce Weyl modules, that can be described as the analogs of Schur modules in

the exterior letterplace algebra AK[<a;tbj>], which is the exterior algebra over K generated by the

double variables <ailbj>, i=l, 2,..., p, j=l, 2,..., q, here seen as skew-symmetric variables. In this
algebra, we can again associate a polynomial to every Young tableau, as follows: first of all, to each

word in Mon(A) w=\ix2... xk we associate an element of AK[<a;|bj>], which we shall denote by
skewpol(w) (polynomial in skew-symmetric variables), defined as:

skewpol(w) = Li <yilbi><y2 lb2>... <yklbk>.
yiy2-ykeMon(A)

yiy2-yk-w

Example: we have

and

skewpol(aiai) = <ai I bixai I bs>

skewpol(aia2) = <ai |bi><a2lb2> + <a2lbi><ai |b2> = skewpol(a2ai).

Now, to a Young tableau over A, T=(Wj), i=l, 2,..., n, can be associated the polynomial in

AK[<ailbj>]
skewpol(T) = skewpol(wi) skewpol(w2) ... skewpol(Wn).

Given a shape ̂ ,, the Weyl module Weyl(^, ) relative to X is defined as the linear span over K

of skewpol(T), as T ranges over the set of all Young tableaux of shape A, over the alphabet A.

The general linear group GL(p,K) acts on the ring AK[<a; I bj>] by left multiplication, and it is
easily seen that Weyl(^) is invariant under this action, namely, it is a GL(p, K)-module (see, e.

g.,. [l, 2,3]).
The main properties ofWeyl modules are summarized in the following theorems:

Theorem 3 The set Q={skewpol(T); T co-standard tableau of shape 'k over A} is a basis of the

module Weyl(^). More specifically, if T is any tableau of shape X over A, the polynomial skewpol(T)

can be uniquely expressed as a linear combination with integer coefficients of elements of Q.

Proof: see, e. g., [2].

Theorem 4 The module Weyl(X) has a unique maximal GL(p, K)-submodule, which is denoted by

CL(^). In particular, if K is of characteristic zero, for every shape ^ the module Weyl(?>. ) is
irreducible; hence, in characteristic zero, CL(X)=(0).

Proof: see, e.g., [2,3].

11



Our next goal is to examine the connections between Schur and Weyl modules. To this aim,
given a shape ?i, we can define a map

(j): Weyl(?i) -^ Schur(?i)

by setting, for every co-standard tableau T of shape ̂  over A,

(()(skewpol(T)) = £ pol(X)
X~cS

where S is the conjugate tableau of T, and extending by linearity. It is easily seen that <;) is a GL(p,K)-

module homoq^hism, and, by preceding results, its image is Cyc(^), the minimal submodule of

Schur(^). Moreover, we have:

Theorem 5 The kernel of the map (;) is precisely CL(k), the unique maximal submodule of Weyl(?L);

hence,

CycW = WeylW/^^
Proof: see [2].

The preceding results have the following inimediate consequences:

1. The module Weyl(^. ) is irreducible over a given field K whenever its maximal submodule CL(^.) is

the zero module.

2. The irreducibility ofWeyl(?i) depends only on the characteristic of the field.

3. Since the bases of the modules Schur(X) and Weyl(X. ) have the same cardinality, Schur(X) is

irreducible whenever Weyl(X) is irreducible.

We now state a result which allows us to verify, given a shape ̂  and a prime p, whether

Weyl(X) is irreducible over a field of characteristic p, or not.

Theorem 6 Let {Ti, T2,..., Tk} be the set of all standard tableaux of shape ^ over A. The

codimension of the module CL(X,) equals the rank over K of the matrix

J(X)=(J(fT, ]|[T[])), i,j=l, 2,... k.

In particular, the module Weyl(?i) is irreducible if and only ifdet J(k)^0.

Proof: see [2].

The matrix J(?i) has, in general, a very large size; the next result shows that it can be replaced

by a matrix of smaller size.
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Theorem 7 If the module CL(k) is non zero, then it must contain an element of the kind

skewpol(T), where T is a co-standard tableau whose content equals cont(Der(p. )) for some shape

[i>- n such that 4>/^.

Proof: see [2].

The previous result yields immediately the following consequence, which is the theoretical

underpinning of the algorithm presented in the next secdon.

Corollary Let Xn be a shape; set

A={^»-n;4>^4l<P}-

For every |J. s A, let {Si, S2,..., Sh} be the set of all standard tableaux of shape X over A, with

cont(Si)=cont(Der((l)) for every i; set

J(^)=(J([Si1l[S^)), i,j=l, 2,... h.
We have:

detJ(X)^0 <=> ]~[ del J(X;^) ̂  0.
|J. e A

Example: let A={a,b,c} and )k=(2, l)==?i; the standard tableaux of shape X over A are:

ab ac ab ac
Si= c Sz= b 83= a 84= a

ab ac be be
S5= b S6= c 87= b Sg= c .

In this case, the set A consists only of the shape |i=(3), and the standard tableaux whose content

equals cont(Der(p, )) are Si and 82; hence, by the preceding result, instead of considering the whole
matrix J(^), which has size 8, we can consider the 2x2 matrix J(^. ;|J. ).

4. The algorithm and its implementation

We start now to describe the steps of the algorithm:
1. Fix an integer n and a Young shape ̂ ,i-n.

2. Construct all shapes f^i-n such that (l>^.

3. For every such shape p., repeat:

3. 1. generate all standard tableaux {T;; 1=1, 2,.. } over the alphabet {1, 2,..., n}
of shape ?L and content = cont(Der((i));

3. 1. 1. for every standard tableau Tj, construct all tableaux T' which are

column-equivalent to T;

3. 2. for every pair of standard tableaux Ti, Tj compute the integer J([Ti| | |TjJ);
3. 3. compute the determinant of the matrix J( T; IT, ), i,j=l, 2,...;

13



3.4. determine the prime divisors of the determinant.

The implementation of Steps 1 and 2 requires only standard algorithms [10] to determine all
the partitions of the integer n, in descending order, until the shape X is obtained. In Step 3. 1 all the

standard tableaux of given shape and content are generated by taking into account several

combinatorial properties to avoid violations of standardness, hence minimizing computations and

storage requirements. For instance, in the first position of each column of a standard tableau we must

place the smallest symbol of the alphabet not yet used; a symbol x may occupy a box b only if the

number of unused symbols greater than or equal to x is sufficient to fill the boxes lying under and to

the right of the box b, and so forth. In Step 3. 1. 1 we construct all tableaux T' which are column

equivalent to a given standard tableau T; all column permutations of the tableau T are obtained by

standard algorithms [12]. For every such tableau T' a test is performed to verify whether in the rows

of T' there are repeated symbols; in this case, T is discarded. Otherwise, the rows of T' are sorted in

increasing order, and the tableau T" obtained henceforth is memorized together with sign(T',T"). In
Step 3. 2, each integer J(|Ti| I |T, |) is obtained by comparing all the memorized tableaux which are

column equivalent to T{ to those relative to Tj. In Step 3. 3 the detenninant of the matrix J(|T^

is computed by a standard Gauss factorizadon algorithm [11].

The algorithm was implemented in FORTRAN 77, and some experimentations were made on

the GRAY Y-MP8/432 supercomputer at CINECA Computing Centre. This is a vector computer with

specialized pipelined functional units, vector access to memory using indirect memory addressing is

completely supported by hardware features. The four CPU'S (6 ns cycle time) are tightly coupled via

the shared main memory and five identical groups of registers, caUed clusters, are used in common by

all processors.

The experimentations reported here were run on COS 1. 17 operating system, with CFT77 3.0

compiler, the time measurements were done, not in dedicated mode, using the SECOND function.

This because, actually, the GRAY runs two operating system: UNICOS 5.0 and COS 1. 17. The first

uses 3 CPU'S and 20 Megawords of memory, the second has 1 CPU and 7 Megawords of memory.

The runs were done on COS because UNICOS was not yet completely released.

Future implementations will comprehend a parallel version, developed using the autotaskin

facility of the CFT77 compiler under UNICOS, and the investigation of the maximum possible

dimemnsions that "shape" can reach.

5. Some numerical experiments

In the following table we present some results of our tests. For every given shape 'X. in

column 1, we give:

the total number of standard tableaux of shape ̂ . and content = cont(Der(p, )) for some [ie A

(column 2);

the factors of the determinants of the matrices J(HTi| I FTjl) (colunin 3);
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the time used for generating all Ae partidons [ie A and the standard tableaux of shape \ and

content = cont(Der(p.)) (column 4);
the time used to construct the matrices J(|Ti| I |T, |), compute theu- determinants, and detennine

their respective prime divisors (column 5).

shape stand, tabl. factors timel time2

2211 29 257 1. 913 exp(-3) 2. 106

3 2 1 32 235 54983
1274267

1. 106exp(-3) 1. 984

4111 40 2 3 7 11
443 194481
6168209959

1. 1732exp(-3) 2. 085

322 47 2 3 5 47
11765106383

5.59 exp(-3) 2.352

6 2 25 237 l. l5exp(-3) 1. 75

The above few examples show how the complexity of the problem is influenced by both the

total number of boxes and the shape X,. In particular, the more the shape is far from a "hook" (exactly
one row of length greater than 1), the more is the the time required for constructing the matrices

J([lDi[S])-
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