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Self-reciprocal Polynomials
Over Finite Fields

by
Helmut Meyn! and Werner Gotz!

Abstract. The reciprocal f*(z) of a polynomial f(z) of degree n is defined
by f*(z) = z"f(1/z). A polynomial is called self-reciprocal if it coincides
with its reciprocal.

The aim of this paper is threefold: first we want to call attention to the
fact that the product of all self-reciprocal irreducible monic (srim) poly-
nomials of a fixed degree has structural properties which are very similar
to those of the product of all irreducible monic polynomials over a finite
field IF,. In particular, we find the number of all srim-polynomials of fixed
degree by a simple M6bius-inversion.

The second and central point is a short proof of a criterion for the irre-
ducibility of self-reciprocal polynomials over IF, as given by Varshamov and
Garakov in [7]. Any polynomial f of degree n may be transformed into the
self-reciprocal polynomial f@ of degree 2n given by fz) ==z "f(z+z71).
The criterion states that the self-reciprocal polynomial f€ is irreducible if
and only if the irreducible polynomial f satisfies f'(0) = 1.

Finally we present some results on the distribution of the traces of
elements in a finite field. These results were obtained during an earlier
attempt to prove the criterion cited above and are of some independent
interest.

For further results on self-reciprocal polynomials see the notes of chapter
3, p. 132 in Lidl/Niederreiter [4].
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POLYNOMIALS OVER FINITIE FIELDS

1 The role of the polynomial z¢"+! — 1

Some remarks on self-reciprocal polynomials are in order before we can
state the main theorem of this section.

o If f is self-reciprocal then the set of roots of f is closed under the
inversion map a — a1 (e #0).

o If f € IF,[z] is irreducible and if the set of roots of f is closed under
inversion, then

& —f(z) if fz)=2—-1A £ 2
f(=) = { f(z)  otherwise !

o If f is self-reciprocal and f(—1) # 0 then f has even degree.

As a consequence, self-reciprocal irreducible polynomials have even de-
gree with the only exception of f(z) = z + 1. The following theorem
provides the means for finding the product of all srim-polynomials of fixed
degree:

Theorem 1

i) Each srim-polynomial of degree 2n (n > 1) over IF, is a factor of the
polynomial
Hypn(z) =2t — 1 € IF,[z].

ii) Each irreducible factor of degree > 2 of H,,(z) is a srim-polynomial
of degree 2d, where d divides n such that n/d is odd.

Proof:

i) If f is srim of degree 2n then {a,09,0%,..., o '} is the set of roots
of f in IF2n. Because this set is closed under inversion we have

35 €[0,2n—1]:a? = o1

which means that « is a root of H, ;. Obviously H,;(z) | 277~1 — 1.
On the other hand f(z) | 22"~! — 1, so that 2n | 25. It follows that
7 = m.
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ii) Let g be an irreducible factor of degree > 2 of Hy,p. As a consequence,
a root o of g satisfies a?” = a7, i.e. the set of roots of g is closed
under inversion. From this we know that g is self-reciprocal of even
degree 2d, say. By the arguments given in i) it follows that 2d divides
2n and g is a factor of H, 4. Because of Hyq | Hyn We have ¢+ 1]
g™ + 1, which is possible only in the case when n/dis odd. O

If we define R, () as the product of all srim-polynomials of degree 2n
(n > 1) over IF, then Theorem 1 takes the form:

Hyp(e) = (2" —1) J] Rou(e) (1)

din
n/dodd

where e, = ¢ mod 2, i.e. '*% — 1 collects the single linear factor z +1 if ¢
is even resp. the two linear factors (z + 1)(z — 1) if ¢ is odd.
If we further use the 'normalization’

HQ(z) = Hon(z)/(z'F1 = 1)
then we can invert the product-formula (1) by Mébius-inversion to get

Lemma 2 The product Ry.(z) of all srim-polynomials of degree 2n satisfies

Ryn(z) = II Hopnjale)"® (2)

dln
dodd

Note that due to the fact that Y4, p(d) = 0 for n > 1 the normalization is
of concern only in the case n = 2* (s > 0), i.e.

Ryn(z) = H Hq,n/d(:c)“(d), if n #£2° (s>0)
d|ln
dodd

As a simple consequence of (2) we are able to count the number of
srim-polynomials of fixed degree:
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Theorem 3 Let S,(n) denote the number of srim-polynomials of degree
2n over IF,.

%(qn‘l) if gisodd An = 2¢

Si(n) = (3)
! = am u(d) ¢*/¢ otherwise
dodd

Remarks

e Carlitz determined the numbers S¢(n) in his paper [2]. Our proof via
Mo6bius-inversion avoids his lengthy calculations with L-series.

e Note the analogy of this procedure to the usual determination of the
number of all irreducible polynomials of fixed degree n over IF,:

1
Ny(n) = — Z/,L(d) q™?
i din
(cf. Lidl/Niederreiter [4]). The réle of 29"~1 — 1 in the case of irre-
ducible polynomials is played by the polynomial z¢"+! — 1 jp the case
of self-reciprocal irreducible polynomials.

e Asis well known (cf. Miller [6]), formula (3) has an interpretation as
the number of all primitive self-complementary necklaces of length n
in ¢ colors - even if ¢ is not a prime power. This is proved by means
of de Brujin’s method of counting.

2 Construction of irreducible self-reciprocal
polynomials

In Galois theory it is occasionally useful to remark that for any self-reciprocal
polynomial f(z) of even degree 2n, z7"f(z) is a polynomial g(y) of degree
niny:=z 421, Proceeding in the reverse direction we use this substitu-
tion to construct self-reciprocal polynomials (cf. also Andrews (1], Carlitz

[2] and Miller [6]).
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Definition For f(z) = Y7 a:z’, a0 # 0 # a, set

fQ(:B) - :l!nf(.’l: + :13_1) — Zai(l + mz)imn—i
1=0
The self-reciprocal polynomial {9 of degree 2n has a simple behaviour
with respect to reducibility:

Lemma 4 If f is irreducible over IF, of degree n > 1 then either f< is
a srim-polynomial of degree 2n or f@ is the product of a reciprocal pair of
irreducible polynomials of degree n which are not self-reciprocal.

Note: two polynomials g and h constitute a reciprocal pair if

Iy € I, : g°(x) = 7h(z)

Proof: If a is a root of f9 then a + a~! is a root of f, by definition of f9.
The irreducibility of f implies that o + a~! has degree n, i.e.

(a+a ) =a+a™ (n mimimal!) (4)

This is equivalent to (a?"*! —1)(a? "' —1) = 0. So, either (e t1-1) =
0, which by Theorem 1 means that £9 is irreducible. Or (a?"~' —1) =0,
which means that each irreducible factor of f@ is of degree n. If such a
factor would be srim (which would be possible only in case n even) then
a?"*+1 _ 1 = 0 would contradict to the minimality of n in (4). O

This property of the transformation f — f@ can be put in a different
way:

e If n > 1 then Ry (2)Lon(2)
IQn r) = —2" T)lgn\T
in(®) = T Rpua(2)

where R, ,/5(z) = 1if n is odd and I, .(z) denotes the product of all
irreducible monic polynomials of degree n over IF,.

o Furthermore, this relation allows a different way to deduce the for-
mula in Theorem 3 for the number of srim-polynomials.

For the proofs of these two remarks cf. G&tz [3].
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It is natural to ask for conditions for the coefficients of f which guarantee
that f2 is irreducible. In the case of the smallest field (¢ = 2) Varshamov
and Garakov [7] gave the following answer:

Theorem 5 Let f be an irreducible polynomial over IF,. Then 19 is irre-
ducible if and only if f'(0) =1, i.e. the linear coefficient of f is 1.

Proof: Let o be a root of f% then 8 := a 4+ a1 is a root of f. B has
degree n over IF,, because f is irreducible by assumption. On the other
hand, « is a root of g, where

9(z) := 2% - Bz +1 € IFpufz]. (5)

The status of quadratic equations in characteristic 2 is well known:
Az? + Bz + C = 0 has

® one solution in case B = 0
® no solution in case B # 0 A Tr(4%) =1

® two solutions in case B # 0 A Tr(4%)=0
(cf. MacWilliams and Sloane [5], p. 277). The discriminant of g(z) is
Tr(B~?). Because Tr is the absolute trace, Tr(6~?) = Tr(6-'). But
Tr(87') = 1 means that the second highest coefficient in f*(z) is one.
This is equivalent to f/(0) = 1. O

Remark

In their paper [7] Varshamov and Garakov assert on p. 409 that ”al-
most” all of their results could be generalized to higher characteristics. Our
proof of their criterion shows, that the crucial condition is the irreducibil-
ity of g in equation (5). Exactly this equation is also the starting point of
Carlitz’s counting arguments. How the irreducibility of g can be expressed

in terms of the coefficients of f is by no means obvious. The condition
B—4¢IF? (q odd) has to be investigated.
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3 Trace-Polynomials over IF,

In their proof of Theorem 5 Varshamov and Garakov in [7] perform some
calculations with polynomials which — in a first attempt to simplify their
proof — led us to the following considerations.

Definition

i) For § € IF, the trace-polynomials are defined by

) ifn=0
T. §) = i
o) { §+Xipa? ifn>0

ii) F,n(z,8) denotes the product of all irreducible monic polynomials of
degree n over IF,, which have their second-highest coeflicient equal to

é.

Observation Obviously, we have the relation Fyn(z,8) | Tyn(z,6) -
The next lemma gives the structure of Ty a(z,6):

Lemma 6 If ¢ = p° is a prime power and § € IF,, then the trace-
polynomials satisfy

n
Tq,n(maﬁ) = H {Fq,d(m,')’) sd|n,vyell,, r y=6 (modp)}
Proof:

»5” if f has the form f(z) = z¢ +~z% 14 ... and ais aroot of f in [Fya
then by the transitivity of the trace:
Tri(a) = Tri(Try(a))
n n
= T"f(ga) =z (~)==b (modp)

" if g(z) | Tyn(z,8) and g is irreducible of degree d, then d is a divisor
of n because (Tyn(z,8))? — Tyn(z,6) = z? — z. For a root a of g
define v := —Tr?(c) and so g(z) is a factor of Fpa(zyy). O
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By another application of the Mé6bius-inversion we find

Theorem 7

Fq,n(.’l?, 0) = Hd[n Tq,n/d(m, O)M(d) if p /f n
n (d) .
Fon(2,0) = [L4jn Apfd (Tq,n/d(z>0) / (= e :c))u ifp|n

(d) .
Fon(z,8) = I L ApHd (Tq,n/d(m,d‘l(modp) . 5)“ if §#£0

Remarks

e By combining Theorem 7 and Theorem 1, and with the help of a
result which is valid for IF, only, G6tz [3] has given an alternative

proof of Theorem 5.

o For the case ¢ = 2 and § = 1 Theorem 7 gives the remarkable in-
formation that over IF, there are exactly as many srim-polynomials
of degree 2n as there are irreducible monic polynomials of degree n
with linear coefficient equal to 1 (by taking reciprocals). Theorem 5
provides an explicit bijection between these two sets of polynomials.

References

[1] G.E. Andrews
Reciprocal Polynomials and Quadratic Transformations
Utilitas Mathematica 28, (1985)

[2] L. Carlitz

Some Theorems on Irreducible Reciprocal Polynomials Over o Fj.

nite Field
J. reine angew. Math. 227 (1967), 212-220

[3] W. Gétz
Selbstreziproke Polynome tber endlichen Kérpern
Diploma thesis, Erlangen, 1989

89



II. MEYN AND W. GOTZ

[4] R. Lidl / H. Niederreiter
Finite Fields
Encyclopedia of Mathematics and its Applications, vol. 20,
Addison-Wesley, Reading, Mass., 1983

[5] F. J. MacWilliams / N.J.A. Sloane
The Theory of Error-Correcting Codes
North-Holland, Amsterdam, 1977

[6] R.L. Miller
Necklaces, Symmetries and Self-Reciprocal Polynomials
Discrete Mathematics 22 (1978), 25-33

[7] R.R. Varshamov / G.A. Garakov
On the Theory of Selfdual Polynomials over a Galois Field (Rus-
sian)
Bull. Math. Soc. Sci. Math. R.S. Roumanie, (N.S.), 13 (1969),
403-415

90



