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Self-reciprocal Polynomials
Over Finite Fields

by
Helmut Meyn1 and Werner Gotz1

Abstract. The reciprocal f*{x) of a polynomial f{x) of degree n is defined
by /*(a;) = xnf{l/x}. A polynomial is called self-reciprocal if it coincides
with its reciprocal.

The aim of this paper is threefold: first we want to call attention to the
fact that the product of all self-reciprocal irreducible monic (srim) poly-
nomials of a fixed degree has structural properties which are very similar
to those of the product of all irreducible monic polynomials over a finite
field IFg. In particular, we find the number of all srim-polynomials of fixed
degree by a simple Mobius-inversion.

The second and central point is a short proof of a criterion for the irre-
ducibillty of self-reciprocal polynomials over IFz, as given by Varshamov and
Garakov in [7]. Any polynomial / of degree n may be transformed into the
self-reciprocal polynomial fQ of degree 2n given by fQ{x) := xnf{x + a;- ).
The criterion states that the self-reciprocal polynomial fQ is irreducible if
and only if the irreducible polynomial / satisfies /'(O) = 1.

Finally we present some results on the distribution of the traces of
elements in a finite field. These results were obtained during an earlier
attempt to prove the criterion cited above and are of some independent
interest.

For further results on self-reciprocal polynomials see the notes of chapter
3, p. 132 in Lidl/Niederreiter [4].
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1 The role of the polynomial xq +1 - 1

Some remarks on self-reciprocal polynomials are in order before we can
state the main theorem of this section.

. If / is self-reciprocal then the set of roots of / is closed under the
inversion map a i-^ a

-1 (a ̂  0).

If / G IFg[.c] is irreducible and if the set of roots of / is closed under
inversion, then

-f(x) iif(x)=x-lAq^2
r(x) =

/(a;) otherwise

. If / is self-reciprocal and /(-I) 7^ 0 then / has even degree.

As a consequence, self-redprocal irreducible polynomials have even de-
gree with the only exception o! f(x) = .c+1. The following theorem
provides the means for finding the product of all srim-polynomials of fixed
degree:

Theorem 1

i) Each srim-polynomial of degree 2n (n ̂  1) over IFg is a factor of the
polynomial

H^{x):=x^+l-l^W, [x].

ii) Each irreducible factor of degree > 2 of Hq^[x) is a srim-polynomial
of degree 2d, where d divides n such that n/d is odd.

Proof:

1) If / is srim of degree 2n then {cr, aq, o;9 ,..., aq } is the set of roots
of / in IFg2n. Because this set is closed under inversion we have

3!jG [0, 2n-l] :aq3 = a-1

which means that a is a root of Hgj. Obviously Hgj(x) \ XQ - 1.
On the other hand f(x) | xq 1 - 1, so that 2n | 2j. It follows that
j =n.
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ii) Let g be an irreducible factor of degree ̂  2 of Hq,n. As a consequence
a root a ot g satisfies aqn = a-l, i.e. the set of roots of g is closed
under inversion. From this we know that g is self-reclprocal of even
degree 2d, say. By the arguments given in i) it follows that 2d divides
2n and g is a factor of H^d- Because of Hq,d \ Hg,n we have qd + 1 \
g" + 1» which is possible only in the case when nfd is odd. D

If we define Rq,n(x) as the product of all srim-polynomials of degree 2n
(n > 1) over IF, then Theorem 1 takes the form:

H^(x) = (xl+e^ - 1) H R,, aW (1)
d\n

n/d odd

where c, ̂  g mod 2, i.e. xl+ q - 1 collects the single linear factor x+litq
is even resp. the two linear factors (a; + l)(a; - 1) if g is odd.

If we further use the 'normalization

Hln W .. = H^{X)/{X1+^ - 1)

then we can invert the product-formula (1) by Mobius-inversion to get

Lemma 2 The product Rg,n{x) of all srim-polynomials of degree 2n satisfies

R.,nW = n H^xrw (2)
<t|n

d odd

Note that due to the fact that Ed|n ̂ (rf) = Oforn > 1 the normalization is
of concern only in the case n = 2' (s >0), i. e.

^,nW == H H^/aWW, if n ^ 2s (s > 0)
<(|n

d odd

As a simple consequence of (2) we are able to count the number of
srim-polynomials of fixed degree:

84



POLYNOMIALS OVER FINITE FIELDS

Theorem 3 Let Sq(n) denote the number of srim-polynomials of degree
In over Wq.

SM =
^(gn-l) ifgisoddAn=2a

^E_d|n. ^)gn/d otherwise
(3)

d odd

Remarks

. Carlitz determined the numbers Sg(n) in his paper [2]. Our proof via
Moblus-inversion avoids his lengthy calculations with L-series.

. Note the analogy of this procedure to the usual determination of the
number of all irreducible polynomials of fixed degree n over Wg:

^(")=iE^)9n/'
d\n

(cf. Lidl/Niederreiter [4]). The role of xq - 1 in the case of irre-
ducible polynomials is played by the polynoinial xq +1 - 1 in the case
of self-reciprocal irreducible polynomials.

. As is well known (cf. Miller [6]), formula (3) has an interpretation as
the number of all primitive self-complementary necklaces of length n
in q colors - even if q is not a prime power. This is proved by means
of de Brujin's method of counting.

2 Construction of irreducible self-reciprocal
polynomials

In Calais theory it is occasionally useful to remark that for any self-reciprocal
polynomial /(a;) of even degree 2n, x~nf(x) is a polynomial g[y) of degree
niny := x + x~ . Proceeding in the reverse direction we use this substitu-
tlon to construct self-reciprocal polynomials (cf. also Andrews [I], Carlitz
[2] and Miller [6]).
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Definition For f(x) = E?=o^a;\ ao /0 ̂  a^ set

2\t_n-zf^(x) := xnf{x + X-1) = Ea'(1 + X2^x
i=0

The self-redprocal polynomial fQ of degree 2n has a simple behaviour
with respect to reducibility:

Lemma 4 J/ / is irreducibk over Wq of degree n > 1 then either fQ is
a srim-polynomial of degree 2n or fQ is the product of a reciprocal pair of
irreducible polynomials of degree n which are not self-reciprocal.
Note: two polynomials g and h constitute a reciprocal pair if

37 e IF,* : ^(a-) = ^h{x)

Proof: If a is a root of fQ then a + a-1 is a root of /, by definition of fQ.
The irreducibility of / implies that a + a~l has degree n, i. e.

(o: + Q:-l)9" = a + a.
-1 (n mimimal!) (4)

This is equivalent to (^n+l-l)(a^n-l-l) = 0. So, either (a^"+l-l) =
0, which by Theorem 1 means that fQ is irreducible. Or (a9 1 -1) = 0,
which means that each irreduclble factor of fQ is of degree n. If such a
factor would be srim (which would be possible only in case n even) then
a

;»/2+1 _ 1 _1=0 would contradict to the minimality of n in (4). D
This property of the transformation f ^ fQ can be put in a different

way:

. If n > 1 then
Rq,nWq, n(x}

^n{x) = R,,^x)
where Rq,nii{x') = 1 ifn is odd and Iq,r,{x} denotes the product of all
irreducible monic polynomials of degree n over IFg.

. Furthermore, this relation allows a different way to deduce the for-
mula in Theorem 3 for the number of srim-polynomials.

For the proofs of these two remarks cf. Gotz [3].
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It is natural to ask for conditions for the coefRcients of / which guarantee
that /^ is irreducible. In the case of the smallest field (g = 2) Varshamov
and Garakov [7] gave the following answer:

Theorem 5 Let f be an irreducible polynomial over IFz- Then f^ is irre-
ducible if and only if f'(0) == 1, i. e. the linear coefficient of f is 1.

Proof: Let a be a root of /Q; then /3 := o: + Q:-l is a root of /. ^ has
degree n over IFz, because / is irreducible by assumption. On the other
hand, a is a root of 5?, where

g{x):=x2-ftx+l^W^[x]. (5)

The status of quadratic equations in characteristic 2 is well known:
Ax2 +BX+C =0 has

. one solution in case B = 0

. no solution in case B ^ 0 A Tr(^) == 1

. two solutions in case 5^0ATr(-^)=0

(cf. MacWilliams and Sloane [5], p. 277). The discriminant of g(x) is
rr(/?-2). Because Tv is the absolute trace, Tr(/3-2) = Tr(/3-1). But
Tr(/3-l) = 1 means that the second highest coefficient in f*{x) is one.
This is equivalent to //(0) = 1. D

Remark

In their paper [7] Varshamov and Garakov assert on p. 409 that "al-
most all of their results could be generalized to higher characteristics. Our
proof of their criterion shows, that the crucial condition is the irreducibll-
ity of g in equation (5). Exactly this equation is also the starting point of
Carlitz s counting arguments. How the irreducibility of g can be expressed
in terms of the coefficients of / is by no means obvious. The condition
/?2 - 4 ^ Wg2 (q odd) has to be investigated.
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3 Trace-Polynomials over Wq

In their proof of Theorem 5 Varshamov and Garakov in [7] perform some
calculations with polynomials which - in a first attempt to simplify their
proof - led us to the following considerations.

Definition

i) For 8 ^Wq the trace-polynomials are defined by

Ux, 6):=^ S if n = 0

^+S?=o1^1 ifn>0

ii) Fq,n(x, S) denotes the product of all irreducible monicpolynomials of
degree n over IFg, which have their second-highest coefficient equal to
s.

Observation Obviously, we have the relation Fg^n{x, S) \ Tq^(x, 8} .

The next lemma gives the structure of Tg,n(a;, 6):

Lemma 6 Ifq = p' is a prime power and 8 £ Wq, then the trace-
polynomials satisfy

T^(x, 8) = n{^(^, 7) ;^|n, 7£lF,, ^. 7= 5(modp)}
Proof:

"D" if / has the form /(a;) = xd + ̂ xd~1 +... anda is a root of / in IFg«
then by the transitivity of the trace:

Tr^a) = Tr-?(T^(a))

= Trd^a) = ^ . (-7) = -^ (modp)
"C" if g{x) I Tg, n{x, S) and g is irreducible of degree d, then rf is a dlvisor

of n' because (T^{x, 8)Y - T^{x, 8} = x^ - x. For a root a of 5
define 7 :== -Tr^(a) and so g(x) is a factor of Fq,a(x^). a
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By another application of the Mobius-inversion we find

Theorem 7

^,n(a-, o) = n, i, ̂ ,^(^, 0)^ if p / n

^,n(^, 0) = n^^^ (T,, n/. (^0) / (^n/Td - ^))'(<i) if p | n

F,.n(x, S) = Ild\n^p^ (T^^d-l(modp). 8YW if ^ °

Remarks

. By combining Theorem 7 and Theorem 1, and with the help of a
result which is valid for IFg only, Gotz [3] has given an alternative
proof of Theorem 5.

® For the case q = 2 and 6=1 Theorem 7 gives the remarkable in-
formation that over IFz there are exactly as many srim-polynomials
of degree In as there are irreducible monlc polynomials of degree n
with linear coefficient equal to 1 (by taking reciprocals). Theorem 5
provides an explicit bijection between these two sets of polynomials.
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