ON THE PERMANENT OF CERTAIN SUBMATRICES OF CIRCULANT $(0,1)-M A T R I C E S$

 BY
Norma ZAGAGLIA SALVI* \dagger

Abstract

Summary - Let $A=I_{n}+P^{h}+P^{k}$, where P represents the permutation $(12 \ldots n)$ and $1 \leq h<k \leq n-1$. We prove that the submatrix of A obtained by deleting the rows and the columns intersecting at three non-zero entries belonging to I, P^{h}, P^{k} has positive permanent, except in certain cases that are completely determined.

1 Introduction

A matrix of order n is called circulant if it is of the form $\sum_{i=1}^{n} s_{i} P^{i}$, where P is the $n \times n$-matrix representing the permutation $(12 \ldots n)$. Recall that the permanent of an n-square matrix $A=\left[a_{i j}\right]$ is defined by

$$
\operatorname{per} A=\sum a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

where the summation extends over all permutations σ of the symmetric group S_{n}.

Let $A=I_{n}+P^{h}+P^{k}$, where $1 \leq h<k \leq n-1$. Denote by a_{i}, b_{i}, c_{i} $(1 \leq i \leq n)$ the entries of A corresponding to I, P^{h}, P^{k},call them the first, second, and third diagonals of A, respectively.

Any three non-zero entries of A that belong to distinct rows and columns are said to be independent.

[^0]If e_{1}, e_{2}, e_{3} are three independent entries of A, the submatrix obtained by deleting the lines intersecting at e_{1}, e_{2}, e_{3} is said to correspond to e_{1}, e_{2}, e_{3}.

Let e be an entry of A; we denote by (e) and [e] respectively the row and the column containing e.

In this paper we consider the permanent of the submatrices of A corresponding to three independent entries. In particular, propositions 2.3 and 2.4 determine the values of n, h, k for which there are submatrices corresponding to three independent entries belonging to distinct diagonals with a zero line and, therefore, zero permanent. Moreover, theorem 3.1 proves that every submatrix R corresponding to three independent entries does not contain a zero submatrix of type (r, s) with $r+s=n-2$ and $r, s>1$.

In this way we prove that the submatrix correponding to three independent entries belonging to distinct diagonals has positive permanent, except in certain cases that are completely determined.

2 Sulbmatrices with a zero line

Definition 2.1 Let x, y be two entries of a row r^{\prime} of an $n \times n \operatorname{circulant}(0,1)$ matrix. We define the r-distance between x and y, denoted by r -dist (x, y), the number of elements of r^{\prime} between x and y by moving from left to right cyclically.
If x, y belong to a column c^{\prime}, then $\mathrm{c}-\operatorname{dist}(x, y)$ is the number of elements of c^{\prime} between x and y by moving from top to bottom cyclically.

In this way r-dist $(x, y)+\mathrm{r}-\operatorname{dist}(y, x)=n$.
Moreover, if $A=I+P^{h}+P^{k}$, let $\lambda=h, \mu=k-h, \nu=n-k$; we then have r-dist $\left(a_{i}, b_{i}\right)=\lambda, \mathrm{r}-\operatorname{dist}\left(b_{i}, c_{i}\right)=\mu, \mathrm{r}-\operatorname{dist}\left(c_{i}, a_{i}\right)=\nu,(1 \leq i \leq n)$.

Thus, if $a^{\prime}, b^{\prime}, c^{\prime}$ are the non-zero entries of a column, we have c -dist $\left(a^{\prime}, c^{\prime}\right)=$ $\nu, c-\operatorname{dist}\left(c^{\prime}, b^{\prime}\right)=\mu, c-\operatorname{dist}\left(b^{\prime}, a^{\prime}\right)=\lambda$.

Proposition 2.2 Let $A=I_{n}+P^{h}+P^{k}$, where $1 \leq h<k \leq n-1$ and where the integers $\lambda=h, \mu=k-h, \nu=n-k$ are distinct. For every non-zero entry e of A there are submatrices $R_{1}, R_{2}, C_{1}, C_{2}$ (where $R_{1} \neq R_{2}$ and $C_{1} \neq C_{2}$) with a zero line, corresponding to e and to two other independent entries belonging to distinct diagonals, .

Proof. Without loss of generality we can suppose $e=a_{1}$. Let b, c and a^{\prime}, c^{\prime} the non-zero entries of $\left[a_{1}\right]$ and (b), respectively. The second diagonal intersects $\left[c^{\prime}\right]$ at the element $b^{\prime \prime}$, while the third diagonal intersects $\left[a^{\prime}\right]$ at the element $c^{\prime \prime}$. The entries $b^{\prime \prime}$ and $c^{\prime \prime}$ belong to different rows. In fact, because c - $\operatorname{dist}\left(c^{\prime}, b^{\prime \prime}\right)=\mu$ and $c-\operatorname{dist}\left(a^{\prime}, c^{\prime \prime}\right)=\nu$, the contrary would imply $\mu=\nu$, contrary to our assumption. Moreover, $b^{\prime \prime} \neq b_{1}$, because otherwise
r - $\operatorname{dist}\left(a_{1}, b_{1}\right)=\lambda$ would coincide with r - $\operatorname{dist}\left(b, c^{\prime}\right)=\mu$; in a similar way we obtain $c^{\prime \prime} \neq c_{1}$. Thus the entries $a_{1}, b^{\prime \prime}, c^{\prime \prime}$ are independent, and the submatrix R_{1}, obtained by deleting the lines which the preceding elements belong to, contains a zero line, i.e. the line obtained from (b) .

The same considerations hold for (c).
The new submatrix R_{2} cannot coincide with the preceding one, because otherwise the columns $\left[b^{\prime \prime}\right]$ and $\left[c^{\prime \prime}\right]$ would intersect column (c) at the elements \bar{a} and \bar{b}. This in turn implies that $\mathrm{r}-\operatorname{dist}(\bar{a}, \bar{b})=\lambda$ coincides with $\mathrm{r}-\operatorname{dist}\left(c^{\prime}, a^{\prime}\right)=\nu$, which is impossible by our assumption.

We can repeat the same considerations for the non-zero elements b_{1}, c_{1} of $\left(a_{1}\right)$; so we have two other distinct submatrices C_{1}, C_{2} with a zero line respectively obtained from $\left[b_{1}\right]$ and $\left[c_{1}\right]$.

Proposition 2.3 Let $A=I+P^{h}+P^{k}$, where $1 \leq h<k \leq n-1$, and suppose that the integers $\lambda=h, \mu=k-h, \nu=n-k$ are distinct. For every entry $e \neq 0$ of A the four submatrices $R_{1}, R_{2}, C_{1}, C_{2}$ with a zero line (corresponding to e and to two other independent elements belonging to distinct diagonals) are all distinct, except in the following cases:
$n=7 \mu$ and either $\lambda=2 \mu, \nu=4 \mu$ or $\lambda=4 \mu, \nu=2 \mu$, or
$n=7 \lambda$ and either $\mu=4 \lambda, \nu=2 \lambda$ or $\mu=2 \lambda, \nu=4 \lambda$,
where exactly two of the submatrices coincide.
Proof. Without loss of generality we can suppose $e=a_{1}$. If b and c are the non-zero elements of $\left[a_{1}\right]$, let R_{1}, R_{2} be the submatrices with a zero line obtained respectively from the rows (b) and (c) as proved in proposition 2.2.

Similarly, submatrices C_{1}, C_{2} are obtained from $\left(a_{1}\right)$ and the columns [b_{1}] and $\left[c_{1}\right]$.

We have already proved that $R_{1} \neq R_{2}$ and $C_{1} \neq C_{2}$.
Now we prove that $R_{1} \neq C_{2}$.
Let c, b and b_{1}, c_{1} the non-zero entries of $\left[a_{1}\right]$ and $\left(a_{1}\right)$, respectively. R_{1} is obtained by considering the row (b), while C_{2} is obtained by considering the column $\left[c_{1}\right]$. Let c^{\prime}, a^{\prime} and $b^{\prime \prime}, a^{\prime \prime}$ be the non-zero entries of (b) and $\left[c_{1}\right]$, respectively.

We have two possibilities to consider.
The first is: $\left[a^{\prime \prime}\right]$ precedes $\left[a^{\prime}\right]$. In this case, as r-dist $\left(c_{1}, a_{1}\right)=\mathrm{r}-\operatorname{dist}\left(c^{\prime}, a^{\prime}\right)$, we see that $\left[c^{\prime}\right]$ precedes $\left[a^{\prime \prime}\right]$. Then the element $\bar{b}=\left[c^{\prime}\right] \cap\left(a^{\prime \prime}\right)$ can not belong to the second diagonal. In fact, on the contrary, it satisfies r-dist $\left(\bar{b}, a^{\prime \prime}\right)<$ r-dist $\left(c^{\prime}, a^{\prime}\right)$, that is $\mu+\nu<\nu$, which implies the impossible relation $\mu<0$.

The second possibility is : $\left[a^{\prime \prime}\right]$ follows $\left[a^{\prime}\right]$. In this case [$\left.c^{\prime}\right]$ precedes $\left[a^{\prime}\right]$ and the element $\bar{c}=\left[a^{\prime}\right] \cap\left(b^{\prime \prime}\right)$ does not belong to the third diagonal. In fact, on the contrary, it satisfies r-dist $\left(\bar{c}, b^{\prime \prime}\right)<\operatorname{r-dist}\left(a^{\prime}, b\right)$, that is $\lambda+\nu<\lambda$,
which implies the impossible relation $\nu<0$. In a similar way we obtain $R_{2} \neq C_{1}$.

Now consider the possibility that $R_{1}=C_{1}$. Let a^{\prime}, c^{\prime} and $a^{\prime \prime}, c^{\prime \prime}$ the nonzero elements of (b) and [b_{1}], respectively. Moreover, let $\bar{b}=\left[c^{\prime}\right] \cap\left(c^{\prime \prime}\right)$ and $\bar{c}=\left[a^{\prime}\right] \cap\left(a^{\prime \prime}\right)$; so R_{1} is obtained by deleting the lines intersecting at a_{1}, \bar{b}, \bar{c}.

We have two cases to consider:

1) $\left[c^{\prime}\right]$ precedes $\left[c^{\prime \prime}\right]$;
2) $\left[c^{\prime}\right]$ follows $\left[c^{\prime \prime}\right]$.

Case 1). Then $\mathrm{r}-\operatorname{dist}(b, c)+\mathrm{r}-\operatorname{dist}\left(\bar{b}, c^{\prime \prime}\right)=\mathrm{r}-\operatorname{dist}\left(a_{1}, b_{1}\right)$, that is

$$
\begin{equation*}
\lambda=2 \mu \tag{1}
\end{equation*}
$$

Moreover, r -dist $\left(a_{1}, b_{1}\right)+\mathrm{r}-\operatorname{dist}\left(a^{\prime \prime}, \bar{c}\right)=\mathrm{r}-\operatorname{dist}\left(b, a^{\prime}\right)$, i.e. $\lambda+\lambda+\mu=\mu+\nu$. So we obtain

$$
\begin{equation*}
\nu=2 \lambda \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain $\lambda=2 \mu, \nu=4 \mu$ and $n=7 \mu$. (see fig.1)

fig. 1

Case 2). Then $\mathrm{r}-\operatorname{dist}\left(a_{1}, b_{1}\right)+\mathrm{r}-\operatorname{dist}\left(c^{\prime \prime}, \bar{b}\right)=\mathrm{r}-\operatorname{dist}\left(b, c^{\prime}\right)$, that is

$$
\begin{equation*}
\mu=2 \lambda+\nu \tag{3}
\end{equation*}
$$

Moreover r-dist $\left(a_{1}, b_{1}\right)+\mathrm{r}-\operatorname{dist}\left(a^{\prime \prime}, \bar{c}\right)=\mathrm{r}-\operatorname{dist}\left(b, a^{\prime}\right)$, i.e. $\lambda+\lambda+\mu=\mu+\nu$.
So we obtain

$$
\begin{equation*}
\nu=2 \lambda \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain $\mu=4 \lambda, \nu=2 \lambda$ and $n=7 \lambda$. (see fig.2)

fig. 2

By using a similar procedure, we consider the case $R_{2}=C_{2}$; we obtain either

$$
\begin{aligned}
& n=7 \lambda, \mu=4 \lambda, \nu=2 \lambda, \text { or } \\
& n=7 \mu, \lambda=4 \mu, \nu=2 \mu
\end{aligned}
$$

Thus in the preceding cases there are three submatrices of order $n-3$ with a zero line corresponding to a non-zero entry e and to two other independent entries belonging to distinct diagonals ; in every other case the matrices $R_{1}, R_{2}, C_{1}, C_{2}$ are distinct.

Proposition 2.4 Let $A=I_{n}+P^{h}+P^{k}$, where $1 \leq h<k \leq n-1$, and suppose that at least two of the integers $\lambda=h, \mu=k-h, \nu=n-k$ coincide. Then there are no submatrices of order $n-3$, corresponding to three independent entries belonging to distinct diagonals, with a zero line.

Proof. Suppose $\lambda=\mu$; the other cases can be reduced to this situation by multiplying A by a power of P.

We prove that three independent entries e_{1}, e_{2}, e_{2}, such that the submatrix obtained by deleting the corresponding lines has a zero line, do not exist. Without loss of generality we can suppose $e_{1}=a_{1}$. Let b, c and a^{\prime}, c^{\prime} the non-zero entries of $\left[a_{1}\right]$ and (b) respectively; moreover let \bar{b}, \bar{c} the elements of the second and third diagonal belonging to $\left[c^{\prime}\right]$ and $\left[a^{\prime}\right]$.

As r-dist $\left(b, c^{\prime}\right)=\mathrm{r}-\operatorname{dist}\left(a_{1}, b_{1}\right)$, this implies $\bar{b}=b_{1} ;$ but then a_{1}, \bar{b}, \bar{c} are not independent.

Consider the row (c) ; let a^{*}, b^{*} the non-zero elements of (c) and \hat{b}, \hat{c} the intersections of the second and third diagonal with $\left[a^{*}\right]$ and $\left[b^{*}\right]$. The elements \hat{b}, \hat{c} are in the same row because they are at the same distance of a^{*}, b^{*}. Thus also a_{1}, \hat{b}, \hat{c} are not independent.

In a similar way we can proceed by considering $\left(a_{1}\right)$ and the columns $\left[b_{1}\right],\left[c_{1}\right]$.

3 Submatrices with positive permanent

Theorem 3.1 Let R be a submatrix of $A=I_{n}+P^{h}+P^{k}, 1 \leq h<k \leq n-1$, obtained by deleting the lines intersecting at three independent entries. Then R does not contain a zero submatrix of type (r, s) with $r+s=n-2$ and $r, s>1$.

Proof. Let R be a submatrix corresponding to three independent entries e_{1}, e_{2}, e_{2} and containing a zero-submatrix H of type (r, s) with $r+s=n-2$ and $r, s>1$.

Let $T=\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$ and $U=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ denote the rows and the columns of A whose intersection determines H. For every row t_{i} there are three columns, corresponding to the non-zero entries of t_{i}, that clearly do not belong to U. Thus there are $3 r$ columns $v_{i}(1 \leq i \leq 3 r)$ that do not belong to U. As every column contains three non-zero entries, every element of $V=\left\{v_{1}, v_{2}, \ldots, v_{3 r}\right\}$ can be repeated at most three times in V. Thus V contains at least r distinct elements.

If every element of V is repeated three times, then there are r distinct elements in V, and every non-zero entry of a column of V belongs to a row of T. This implies that the columns $\left[e_{1}\right],\left[e_{2}\right],\left[e_{3}\right]$ do not belong to V, hence A contains $r+s+3=n+1$ distinct columns, a contradiction.

Suppose that not every element of V is repeated three times in V. Then at least $r+i, 1 \leq i \leq 3$, elements of V are distinct, and there are at least i non-zero entries belonging to elements of V that do not belong to the rows of T. In this case i of the columns $\left[e_{1}\right],\left[e_{2}\right],\left[e_{3}\right]$ can coincide with elements of V; but then A has again $n+1$ distinct columns, a contradiction.

Theorem 3.2 Let $A=I_{n}+P^{h}+P^{k}$, where $1 \leq h<k \leq n-1$, and suppose that at least two of the integers $\lambda=h, \mu=k-h, \nu=n-k$ coincide. Then every submatrix of A corresponding to three independent entries belonging to I_{n}, P^{h}, P^{k} has a positive permanent.

Proof. Let R be a submatrix corresponding to three independent entries belonging to distinct diagonals. Then by the Frobenius-König-Theorem [1] per $R=0$ if and only if R contains a zero submatrix of type (r, s) such that $r+s=n-2$. By proposition 2.4 and theorem 3.1 this is impossible. Thus per $R>0$.

References

[1] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications, vol. 6, Addison-Wesley, Reading, Mass., 1978.
[2] H. Minc, Theory of Permanents 1982-1985, Linear and Multilinear Algebra 21,1987, p.109-148.
\square

[^0]: *Work supported by the Italian Ministry of Education
 ${ }^{\dagger}$ Dipartimento di Matematica, Politechnico di Milano, I-20133 Milano, Italia

