Publ. I.R.M.A. Strasbourg, 1988, 361/S-19 Actes 19^e Séminaire Lotharingien de Combinatoire, p.97-103

ON THE PERMANENT OF CERTAIN SUBMATRICES OF CIRCULANT (0,1)-MATRICES

BY

NORMA ZAGAGLIA SALVI * †

Summary – Let $A = I_n + P^h + P^k$, where P represents the permutation $(12 \dots n)$ and $1 \leq h < k \leq n-1$. We prove that the submatrix of A obtained by deleting the rows and the columns intersecting at three non-zero entries belonging to I, P^h, P^k has positive permanent, except in certain cases that are completely determined.

1 Introduction

A matrix of order n is called *circulant* if it is of the form $\sum_{i=1}^{n} s_i P^i$, where P is the $n \times n$ -matrix representing the permutation (12...n). Recall that the permanent of an n-square matrix $A = [a_{ij}]$ is defined by

$$perA = \sum a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$$

where the summation extends over all permutations σ of the symmetric group S_n .

Let $A = I_n + P^h + P^k$, where $1 \le h < k \le n - 1$. Denote by a_i, b_i, c_i $(1 \le i \le n)$ the entries of A corresponding to I, P^h, P^k , call them the first, second, and third diagonals of A, respectively.

Any three non-zero entries of A that belong to distinct rows and columns are said to be *independent*.

^{*}Work supported by the Italian Ministry of Education

[†]Dipartimento di Matematica, Politechnico di Milano, I-20133 Milano, Italia

If e_1, e_2, e_3 are three independent entries of A, the submatrix obtained by deleting the lines intersecting at e_1, e_2, e_3 is said to *correspond* to e_1, e_2, e_3 .

Let e be an entry of A; we denote by (e) and [e] respectively the row and the column containing e.

In this paper we consider the permanent of the submatrices of A corresponding to three independent entries. In particular, propositions 2.3 and 2.4 determine the values of n, h, k for which there are submatrices corresponding to three independent entries belonging to distinct diagonals with a zero line and, therefore, zero permanent. Moreover, theorem 3.1 proves that every submatrix R corresponding to three independent entries does not contain a zero submatrix of type (r,s) with r + s = n - 2 and r, s > 1.

In this way we prove that the submatrix correponding to three independent entries belonging to distinct diagonals has positive permanent, except in certain cases that are completely determined.

2 Submatrices with a zero line

Definition 2.1 Let x, y be two entries of a row r' of an $n \times n$ circulant (0, 1)matrix. We define the r-distance between x and y, denoted by r-dist(x, y), the number of elements of r' between x and y by moving from left to right cyclically.

If x, y belong to a column c', then c-dist(x, y) is the number of elements of c' between x and y by moving from top to bottom cyclically.

In this way r-dist (x, y) + r-dist(y, x) = n.

Moreover, if $A = I + P^h + P^k$, let $\lambda = h, \mu = k - h, \nu = n - k$; we then have r-dist $(a_i, b_i) = \lambda$, r-dist $(b_i, c_i) = \mu$, r-dist $(c_i, a_i) = \nu$, $(1 \le i \le n)$.

Thus, if a', b', c' are the non-zero entries of a column, we have c-dist $(a', c') = \nu$, c-dist $(c', b') = \mu$, c-dist $(b', a') = \lambda$.

Proposition 2.2 Let $A = I_n + P^h + P^k$, where $1 \le h < k \le n-1$ and where the integers $\lambda = h$, $\mu = k - h$, $\nu = n - k$ are distinct. For every non-zero entry e of A there are submatrices R_1 , R_2 , C_1 , C_2 (where $R_1 \ne R_2$ and $C_1 \ne C_2$) with a zero line, corresponding to e and to two other independent entries belonging to distinct diagonals, .

Proof. Without loss of generality we can suppose $e = a_1$. Let b, c and a', c' the non-zero entries of $[a_1]$ and (b), respectively. The second diagonal intersects [c'] at the element b'', while the third diagonal intersects [a'] at the element c''. The entries b'' and c'' belong to different rows. In fact, because c-dist $(c', b'') = \mu$ and c-dist $(a', c'') = \nu$, the contrary would imply $\mu = \nu$, contrary to our assumption. Moreover, $b'' \neq b_1$, because otherwise

r-dist $(a_1, b_1) = \lambda$ would coincide with r-dist $(b, c') = \mu$; in a similar way we obtain $c'' \neq c_1$. Thus the entries a_1, b'', c'' are independent, and the submatrix R_1 , obtained by deleting the lines which the preceding elements belong to, contains a zero line, i.e. the line obtained from (b).

The same considerations hold for (c).

The new submatrix R_2 cannot coincide with the preceding one, because otherwise the columns [b''] and [c''] would intersect column (c) at the elements \bar{a} and \bar{b} . This in turn implies that r-dist $(\bar{a}, \bar{b}) = \lambda$ coincides with r-dist $(c', a') = \nu$, which is impossible by our assumption.

We can repeat the same considerations for the non-zero elements b_1, c_1 of (a_1) ; so we have two other distinct submatrices C_1, C_2 with a zero line respectively obtained from $[b_1]$ and $[c_1]$. \Box

Proposition 2.3 Let $A = I + P^h + P^k$, where $1 \le h < k \le n-1$, and suppose that the integers $\lambda = h$, $\mu = k - h$, $\nu = n - k$ are distinct. For every entry $e \ne 0$ of A the four submatrices R_1 , R_2 , C_1 , C_2 with a zero line (corresponding to e and to two other independent elements belonging to distinct diagonals) are all distinct, except in the following cases:

 $n=7\mu$ and either $\lambda=2\mu, \nu=4\mu$ or $\lambda=4\mu, \nu=2\mu$, or

 $n = 7\lambda$ and either $\mu = 4\lambda, \nu = 2\lambda$ or $\mu = 2\lambda, \nu = 4\lambda$,

where exactly two of the submatrices coincide.

Proof. Without loss of generality we can suppose $e = a_1$. If b and c are the non-zero elements of $[a_1]$, let R_1, R_2 be the submatrices with a zero line obtained respectively from the rows (b) and (c) as proved in proposition 2.2.

Similarly, submatrices C_1, C_2 are obtained from (a_1) and the columns $[b_1]$ and $[c_1]$.

We have already proved that $R_1 \neq R_2$ and $C_1 \neq C_2$.

Now we prove that $R_1 \neq C_2$.

Let c, b and b_1, c_1 the non-zero entries of $[a_1]$ and (a_1) , respectively. R_1 is obtained by considering the row (b), while C_2 is obtained by considering the column $[c_1]$. Let $\dot{c'}, a'$ and b'', a'' be the non-zero entries of (b) and $[c_1]$, respectively.

We have two possibilities to consider.

The first is : [a''] precedes [a']. In this case, as $r-\text{dist}(c_1, a_1) = r-\text{dist}(c', a')$, we see that [c'] precedes [a'']. Then the element $\overline{b} = [c'] \cap (a'')$ can not belong to the second diagonal. In fact, on the contrary, it satisfies $r-\text{dist}(\overline{b}, a'') < r-\text{dist}(c', a')$, that is $\mu + \nu < \nu$, which implies the impossible relation $\mu < 0$.

The second possibility is : [a''] follows [a']. In this case [c'] precedes [a']and the element $\bar{c} = [a'] \cap (b'')$ does not belong to the third diagonal. In fact, on the contrary, it satisfies r-dist $(\bar{c}, b'') < r$ -dist(a', b), that is $\lambda + \nu < \lambda$, which implies the impossible relation $\nu < 0$. In a similar way we obtain $R_2 \neq C_1$.

Now consider the possibility that $R_1 = C_1$. Let a', c' and a'', c'' the nonzero elements of (b) and $[b_1]$, respectively. Moreover, let $\overline{b} = [c'] \cap (c'')$ and $\overline{c} = [a'] \cap (a'')$; so R_1 is obtained by deleting the lines intersecting at $a_1, \overline{b}, \overline{c}$.

We have two cases to consider:

- 1) [c'] precedes [c''];
- 2) [c'] follows [c''].

Case 1). Then $r\operatorname{-dist}(b,c) + r\operatorname{-dist}(\bar{b},c'') = r\operatorname{-dist}(a_1,b_1)$, that is

$$\lambda = 2\mu \tag{1}$$

Moreover, r-dist(a₁, b₁) + r-dist(a'', $\bar{c})$ = r-dist(b, a') , i.e. $\lambda + \lambda + \mu = \mu + \nu$. So we obtain

$$\nu = 2\lambda \tag{2}$$

From (1) and (2) we obtain $\lambda = 2\mu$, $\nu = 4\mu$ and $n = 7\mu$. (see fig.1)

Case 2). Then $r\operatorname{-dist}(a_1, b_1) + r\operatorname{-dist}(c'', \overline{b}) = r\operatorname{-dist}(b, c')$, that is

$$\mu = 2\lambda + \nu \tag{3}$$

Moreover r-dist (a_1, b_1) + r-dist (a'', \bar{c}) = r-dist(b, a'), i.e. $\lambda + \lambda + \mu = \mu + \nu$. So we obtain

$$a_1$$
 b_1 c_1
 c
 c'
 b
 b
 c''
 c'''
 c'''
 c'''
 c'''
 c'''
 c'''
 c'''
 c'''
 c

 $\nu = 2\lambda \tag{4}$

From (3) and (4) we obtain $\mu = 4\lambda$, $\nu = 2\lambda$ and $n = 7\lambda$. (see fig.2)

By using a similar procedure, we consider the case $R_2 = C_2$; we obtain either

 $n = 7\lambda$, $\mu = 4\lambda$, $\nu = 2\lambda$, or $n = 7\mu$, $\lambda = 4\mu$, $\nu = 2\mu$

Thus in the preceding cases there are three submatrices of order n-3 with a zero line corresponding to a non-zero entry e and to two other independent entries belonging to distinct diagonals; in every other case the matrices R_1 , R_2 , C_1 , C_2 are distinct. \Box

Proposition 2.4 Let $A = I_n + P^h + P^k$, where $1 \le h < k \le n - 1$, and suppose that at least two of the integers $\lambda = h$, $\mu = k - h$, $\nu = n - k$ coincide. Then there are no submatrices of order n - 3, corresponding to three independent entries belonging to distinct diagonals, with a zero line.

Proof. Suppose $\lambda = \mu$; the other cases can be reduced to this situation by multiplying A by a power of P.

We prove that three independent entries e_1, e_2, e_2 , such that the submatrix obtained by deleting the corresponding lines has a zero line, do not exist. Without loss of generality we can suppose $e_1 = a_1$. Let b, c and a', c' the non-zero entries of $[a_1]$ and (b) respectively; moreover let $\overline{b}, \overline{c}$ the elements of the second and third diagonal belonging to [c'] and [a'].

As $r-dist(b, c') = r-dist(a_1, b_1)$, this implies $\overline{b} = b_1$; but then $a_1, \overline{b}, \overline{c}$ are not independent.

Consider the row (c); let a^*, b^* the non-zero elements of (c) and \hat{b}, \hat{c} the intersections of the second and third diagonal with $[a^*]$ and $[b^*]$. The elements \hat{b}, \hat{c} are in the same row because they are at the same distance of a^*, b^* . Thus also a_1, \hat{b}, \hat{c} are not independent.

In a similar way we can proceed by considering (a_1) and the columns $[b_1], [c_1]$. \Box

3 Submatrices with positive permanent

Theorem 3.1 Let R be a submatrix of $A = I_n + P^h + P^k$, $1 \le h < k \le n-1$, obtained by deleting the lines intersecting at three independent entries. Then R does not contain a zero submatrix of type (r,s) with r + s = n - 2 and r, s > 1.

Proof. Let R be a submatrix corresponding to three independent entries e_1, e_2, e_2 and containing a zero-submatrix H of type (r, s) with r + s = n - 2 and r, s > 1.

Let $T = \{t_1, t_2, \ldots, t_r\}$ and $U = \{u_1, u_2, \ldots, u_s\}$ denote the rows and the columns of A whose intersection determines H. For every row t_i there are three columns, corresponding to the non-zero entries of t_i , that clearly do not belong to U. Thus there are 3r columns v_i $(1 \le i \le 3r)$ that do not belong to U. As every column contains three non-zero entries, every element of $V = \{v_1, v_2, \ldots, v_{3r}\}$ can be repeated at most three times in V. Thus V contains at least r distinct elements.

If every element of V is repeated three times, then there are r distinct elements in V, and every non-zero entry of a column of V belongs to a row of T. This implies that the columns $[e_1], [e_2], [e_3]$ do not belong to V, hence A contains r + s + 3 = n + 1 distinct columns, a contradiction.

Suppose that not every element of V is repeated three times in V. Then at least r + i, $1 \le i \le 3$, elements of V are distinct, and there are at least inon-zero entries belonging to elements of V that do not belong to the rows of T. In this case i of the columns $[e_1], [e_2], [e_3]$ can coincide with elements of V; but then A has again n + 1 distinct columns, a contradiction. \Box **Theorem 3.2** Let $A = I_n + P^h + P^k$, where $1 \le h < k \le n-1$, and suppose that at least two of the integers $\lambda = h$, $\mu = k - h$, $\nu = n - k$ coincide. Then every submatrix of A corresponding to three independent entries belonging to I_n , P^h , P^k has a positive permanent.

Proof. Let R be a submatrix corresponding to three independent entries belonging to distinct diagonals. Then by the Frobenius-König-Theorem [1] per R = 0 if and only if R contains a zero submatrix of type (r, s) such that r + s = n - 2. By proposition 2.4 and theorem 3.1 this is impossible. Thus per R > 0. \Box

References

- [1] H. Minc, *Permanents*, Encyclopedia of Mathematics and its Applications, vol. 6, Addison-Wesley, Reading, Mass., 1978.
- [2] H. Minc, Theory of Permanents 1982-1985, Linear and Multilinear Algebra 21,1987, p.109-148.

