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ON THE PERMANENT OF CERTAIN
SUBMATRICES

OF CIRCULANT (0, 1)-MATRICES

BY

NORMA ZAGAGLIA SALVI . +

Summary -Let A == In+Ph + Pk , where P represents the
permutation (12-... n) and l<, h<k<, n-l. We prove that
the submatrix of A obtained by deleting the rows and the columns
intersecting at three non-zero entries belonging to I, Ph, Pk has
positive pennanent, except in certain cases that are completely
determined.

1 Introduction

A matrix of order n is called circulant if it is of the form ̂ ^i 5, P' , where P
is the n x n-matrix representing the permutation (12 . .. n). Recall that the
permanent of an n-square matrix A = [a, j] is defined by

perA = ^ ai<T(i)a2(r(2) . . . an<r(n) )

where the summation extends over all permutations a- of the symmetric group
Sn.

Let A= In+Ph + Pk , where l<h<k<n-l. Denote by a,, &;, c.
(!<?'< n) the entries of A corresponding to I, Ph, Pk , call them the first,
second, and third diagonals of A , respectively.

Any three non-zero entries of A that belong to distinct rows and columns
are said to be independent.
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If ei, e2, 63 are three independent entries of A, the submatrix obtained by
deleting the lines intersecting at ei, 63, 63 is said to correspond to ei, 63, 63.

Let e be an entry of A ; we denote by (e) and [e] respectively the row and
the column containing e.

In this paper we consider the permanent of the submatrices of A corre-
spending to three independent entries. In particular, propositions 2. 3 and 2.4
determine the values of n, h, k for which there are submatrices corresponding
to three independent entries belonging to distinct diagonals with a zero line
and, therefore, zero permanent. Moreover, theorem 3. 1 proves that every
submatrix R corresponding to three independent entries does not contain a
zero submatrix of type (r, ^) with r+s =n-2 and r, s > 1.

In this way we prove that the submatrix correponding to three indepen-
dent entries belonging to distinct diagonals has positive permanent, except
in certain cases that are completely determined.

2 Submatrices with a zero line

Definition 2.1 Let x, y be two entries of a row r' of an nxn circulant^Q, !)-
matrix. We define the r-distance between x and y, denoted by r-dist{x, y~),
the number of elements of r' between x and y by moving from left to right
cyclically.

Ifx, y belong to a column d, then c-dist(a;, y) is the number of elements of c'
between x and y by moving from top to bottom cyclically.

In this way r-dist {x, y) + r-dist(y, a;) = n.
Moreover, if A =I+Ph+Pk, let \= h, ^= k-h, ^ =n-k ;we then

have^r-dist(a. -, 6. ) = A , r-dist(5;, c. ) = ,2 , r-dist(c., a. ) =^ , (l <i^n).
us'. ifa/!.y'c/ are the non-zero entries of a column, we have c-dist(a/, c') =

, c-dist(c/, y) = // , c-dist(6/, a/) = A .v

Proposition 2. 2 Let A == I^+Ph+pk , where Kh<k<n-land where
the integers \= h, ̂ i= k-h, v =n-k are distinct. For every non-zero
entry e of A there are submatrices R^, R^ C^, C^ ( where R^ ^ R^ and
<--1 ̂  C'2 ̂ ) W!^ a zero line, corresponding to e and to two other independent
entries belonging to distinct diagonals,

Proof. Without loss of generality we can suppose e == ai . Let &, c and
a' c' the non-zero entries of [ai] and (&) , respectively. The second diagonal
intersects [c/] at the element b" , while the third diagonal intersects [a/] at
the element d' . The entries V and c" belong to different rows. In fact,
because c-dist(c/, &//) = ^ and c-dist(a/, c//) = ^ , the contrary would imply
^ = i/ , contrary to our assumption. Moreover, b" ̂  b^ , because otherwise
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r-dist(ai, &i) = X would coincide with r-dist(&, c') =^ ; in a similar way we
obtain c" -^ Ci . Thus the entries ai, &", c" are independent, and the submatrix
RI , obtained by deleting the lines which the preceding elements belong to,
contains a zero line, i.e. the line obtained from (6) .

The same considerations hold for (c) .
The new submatrix R-i cannot coincide with the preceding one, because

otherwise the columns [b"} and [c//] would intersect column (c) at the ele-
ments d and b . This in turn implies that r-dist(a, &) = A coincides with
r-dist(c', a/) = i/ , which is impossible by our assumption.

We can repeat the same considerations for the non-zero elements &i, Ci
of (ai) ; so we have two other distinct submatrices C'i, C'2 with a zero line
respectively obtained from [&i] and [ci] . D

Proposition 2. 3 Let A= I+Ph + Pk , where l^h<k^n-l, and
suppose that the integers X=h, p, =k- h^v=n-k are distinct. For
every entry e -^- 0 o/ A the. four submatrices J?i, R-i, C'i, C'2 wt^ a zero
line (corresponding to e and to two other independent elements belonging to
distinct diagonals) are all distinct, except in the following cases:

n = 7fJ, and either X = 2fJ,, v =4p, or \= 4^/, i/ = 2p, , or
n = 7A and either /x = 4A, i/ = 2A or /J, = 2A, i/ = 4A ,

where exactly two of the submatriaes coincide.

Proof. Without loss of generality we can suppose e = ai . If 6 and c are
the non-zero elements of [ai], let J?i, I?2 be the submatrices with a zero line
obtained respectively from the rows (6) and (c) as proved in proposition 2. 2.

Similarly, submatrices Ci, C^ are obtained from (ai) and the coliunns [b-i]
and [ci] .

We have already proved that J?i -^ R^ and C\^ C^.
Now we prove that R^ ̂  C-^ .
Let c, b and 5i, Ci the non-zero entries of [ai] and (cii) , respectively. J?i

is obtained by considering the row (6), while C-i is obtained by considering
the colunm [ci] . Let c , a/ and V', a" be the non-zero entries of (6) and [ci] ,
respectively.

We have two possibilities to consider.
The first is : [a"] precedes [oi/]. In this case, as r-dist(ci, ai) = r-dist(c', a/),

we see that [c/] precedes [a"} . Then the element b = [c'} D (a") can not belong
to the second diagonal. In fact, on the contrary, it satisfies r-dist(6, a") <
r-dist(c/, a/), that \s [J. + v < v, which implies the impossible relation , 2 < 0 .

The second possibility is : [a"} follows [a/] . In this case [c/] precedes [a'}
and the element c = [a'} n {b") does not belong to the third diagonal. In
fact, on the contrary, it satisfies r-dist(c, b") < r-dist(a/, 6), that is X+r < \,
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which Implies the impossible relation i/ < 0 . In a similar way we obtain
R^C,.

Now consider the possibility that R^ = C-i. Let a/, c/ and a//, c" the non-
zero elements of (&) and [&i] , respectively. Moreover, let b = [c'j n (c//) and
c = [a/] n (aw) ; so R^ is obtained by deleting the lines intersecting at ai, 6, c .

We have two cases to consider:

1) [c/] precedes [c//] ;
2) [c/] follows [c"} .

Case 1). Then r-dist(6, c) + r-dist(6, c") = r-dist(di, &i) , that is

A =2,. (1)

Moreover, r-dist(ai, &i) 4- r-dist(a//, c) = r-dist(&, a') , i. e. X+X+p. ^p. +i/
. So we obtain

i/==2A (2)

From (1) and (2) we obtain A =2^ , i/=4^ and n == 7^ . (see fig. 1)

GI &1 Ci

fig. 1

Case 2). Then r-dist(ai, &i) + r-dist(c//, 6) = r-dist(6, c/) , that is

^=2X+v (3)
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Moreover r-dist(ai, &i) + r-dist(a//, c) == r-dist(6, a/) , i.e. \+\+p. =p, +v .
So we obtain

i/=2A (4)
From (3) and (4) we obtain p, =4\ , v =2\ and n=7\ . (see fig. 2)

ai &i <=1

c"

a'

fig. 2

By using a similar procedure, we consider the case J?2 ==  '2 ; we obtain
either

n= 7A , ^=4A , i/=2A , or
n=7fj., \==4p,, v=2p.

Thus in the preceding cases there are three submatrices of order n - 3
with a zero line corresponding to a non-zero entry e and to two other in-
dependent entries belonging to distinct diagonals ; in every other case the
matrices i?i, Ry, Ci, Cs are distinct. D

Proposition 2.4 Let A= In+Ph +Pk , where 1 <h <k <, n-l, and
suppose that at least two of the integers \=h, fJ, =:k- h, v=n-k
coincide. Then there are no submatrices of order n - 3 , corresponding to
three independent entries belonging to distinct diagonals, with a zero line.

Proof. Suppose A = ^ ; the other cases can be reduced to this situation
by multiplying A by a power of P.
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We prove that three independent entries ei, 63, 63 , such that the subma-
trix obtained by deleting the corresponding lines has a zero line, do not exist.
Without loss of generality we can suppose ei = ai . Let b, c and a/, c/ the
non-zero entries of [ai] and (6) respectively; moreover let 6, c the elements of
the second and third diagonal belonging to [c/] and [a'} .

As r-dist(6, c/) = r-dist(ai, &i), this implies 6 = &i ; but then Gi, 6, c are
not independent.

Consider the row (c) ; let a*, b* the non-zero elements of (c) and b,c
the intersections of the second and third diagonal with [a*] and [6*] . The
elements 6, c are in the same row because they are at the same distance of
a*, 6* . Thus also ai, 6, c are not independent.

In a similar way we can proceed by considering (ai) and the columns
[&i]Jci]. a

3 Submatrices with positive permanent

Theorem 3. 1 Let R be a submatrix of A = Jn+P/l+PA;, 1 <h <k ̂  n-1,
obtained by deleting the lines intersecting at three independent entries. Then
R does not contain a zero submatrix of type (r, s) with r+ s = n-2 and
r, 3 > 1.

Proof. Let R be a, submatrix corresponding to three independent entries
ei, 62, 62 and containing a zero-submatrix H of type (r, s) with r +5 = n - 2
and r, s > 1.

Let T = {<i, <2, . . . , <r} and U = {ui, U2,.. ., u, } denote the rows and the
columns of A whose intersection determines H. For every row <; there are
three columns, corresponding to the non-zero entries of t, , that clearly do
not belong to U . Thus there are 3r columns v, {1 <: i < 3r) that do not
belong to U. As every column contains three non-zero entries, every element
of y = {ui, f2,..., U3^} can be repeated at most three times in V . Thus V
contains at least r distinct elements.

If every element of V is repeated three times, then there are r distinct
elements in V , and every non-zero entry of a column of V belongs to a row
of T . This implies that the columns [ei], [63], [e^\ do not belong to V , hence
A contains r+s+3=n+l distinct columns, a contradiction.

Suppose that not every element of V is repeated three times in V. Then
at least r+? , 1 ^z'^3, elements of V are distinct, and there are at least i
non-zero entries belonging to elements of V that do not belong to the rows
of T. In this case i of the columns [ei], [es], [63] can coincide with elements
of V ; but then A has again n + 1 distinct columns, a contradiction. D
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Theorem 3. 2 Let A = Tn+P/l+Pfe , wAere \ <, h <k ̂ n-\ , and suppose
that at least two of the integers \=h, p, =k-h, v=n-k coincide. Then
every submatrix of A corresponding to three independent entries belonging to
I^Ph, Pk has a positive permanent.

Proof. Let E be a submatrix corresponding to three independent entries
belonging to distinct diagonals. Then by the Frobenius-Konig-Theorem [1]
perR = 0 if and only if R contains a zero submatrix of type (r, s) such that
r+s==n-2. By proposition 2. 4 and theorem 3. 1 this is impossible. Thus
perR > 0 . D
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