Matroidizing Set Systems
 Walter Wenzel, Bielefeld

Assume E is some finite set. Let $\langle\cdots\rangle: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ denote a closure operator which by definition satisfies

$$
F \subseteq\langle F\rangle=\ll F \gg \text { for } F \subseteq E
$$

and

$$
<F_{1}>\subseteq<F_{2}>\text { for } F_{1} \subseteq F_{2} \subseteq E \text {. }
$$

Then we define an anti chain $\mathcal{B}_{\langle\ldots>} \subseteq \mathcal{P}(E)$ by

$$
\mathcal{B}_{<\ldots>}:=\{B \subseteq E \mid=E,<B \backslash\{b\}>\neq E \text { for all } b \in B\} .
$$

Similarly, for any anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ we define a closure operator $<\cdots>_{\mathcal{B}}$: $\mathcal{P}(E) \rightarrow \mathcal{P}(E)$ by $<F\rangle_{\mathcal{B}}:=\{e \in E \mid$ for $B \in \mathcal{B}$ with $e \in B$ there exists $f \in F$ with $(B \backslash\{e\}) \cup\{f\} \in \mathcal{B}\}$.

If M denotes some matroid defined on E with \mathcal{B} as its set of bases and $<\cdots>$ as its closure operator, then $\mathcal{B}=\mathcal{B}_{\langle\cdots\rangle}$ and $\langle\cdots\rangle=\langle\cdots\rangle_{\mathcal{B}}$.
More generally we have

Proposition 1:

Assume $\mathcal{B} \subseteq \mathcal{P}(E)$ is some anti chain and $\langle\cdots\rangle: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ is some closure operator. Then the following statements are equivalent:
(i) $\mathcal{B}=\mathcal{B}_{\langle\cdots\rangle}$ and $\langle\cdots\rangle=\langle\cdots\rangle_{\mathcal{B}}$.
(ii) $\mathcal{B}=\mathcal{B}_{<\cdots\rangle}$ and $\langle\cdots\rangle$ is the closure operator of some matroid; that means:

For $F \subseteq E$ and $e, f \in E$ we have
$f \in<F \cup\{e\}>\mid<F>$ iff $e \in<F \cup\{f\}>\mid<F>$.
(iii) $\langle\cdots\rangle=\langle\cdots\rangle_{\mathcal{B}}$ and \mathcal{B} is the set of bases of some matroid; that means:

For $B_{1}, B_{2} \in \mathcal{B}$ and $b \in B_{1} \backslash B_{2}$ there exists some $b^{\prime} \in B_{2} \backslash B_{1}$ with $\left(B_{1} \backslash\{b\}\right) \cup\left\{b^{\prime}\right\} \in \mathcal{B}$. The operations

$$
\begin{aligned}
& P: \mathcal{B} \mapsto<\cdots\rangle_{\mathcal{B}} \mapsto \mathcal{B}_{<\cdots\rangle_{\mathcal{B}}} \\
& Q:<\cdots>\mapsto \mathcal{B}_{<\cdots>} \mapsto<\cdots>_{\left(\mathcal{B}_{<}, \cdots\right)}
\end{aligned}
$$

define maps from the set of anti chains and the set of closure operators into themselves.
By Proposition $1, P(\mathcal{B})=\mathcal{B}$ and $Q(<\cdots\rangle)=\langle\cdots\rangle$ iff \mathcal{B} is the set of bases of some matroid and $\langle\cdots\rangle$ is the closure operator of some matroid. Write

$$
P^{0}(\mathcal{B}):=\mathcal{B}, P^{n+1}(\mathcal{B}):=P\left(P^{n}(\mathcal{B})\right)
$$

for any anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ and

$$
Q^{0}(<\cdots>):=<\cdots>, Q^{n+1}(<\cdots>):=Q\left(Q^{n}(<\cdots>)\right)
$$

for any closure operator $\langle\cdots\rangle: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ and $n \geq 0$.

Proposition 2:

Assume $\mathcal{B} \subseteq \mathcal{P}(E)$ is some anti chain with $\mathcal{B} \neq \varnothing$ and $\langle\cdots\rangle: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ denotes some closure operator.
(i) For every $B^{\prime} \in \mathcal{B}_{\left(\langle\cdots\rangle_{B}\right)}$ there exists some $B \in \mathcal{B}$ with $B \subseteq B^{\prime}$.
(ii) There exists some $m=m(\# E) \leq 2^{\left(2^{\# E}\right)}$ such that $P^{m+1}(\mathcal{B})=P^{m}(\mathcal{B})$ and $Q^{m+1}(<\cdots>)=Q^{m}(<\cdots>)$.
In particular, $P^{m}(\mathcal{B})$ is the set of bases of some matroid $M=M(\mathcal{B})$ for any anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$.
(iii) If r denotes the rank of $M(\mathcal{B})$, then

$$
r \geq \min \{\# B \mid B \in \mathcal{B}\}
$$

Definition:

For some anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ let $\Gamma_{\mathcal{B}}$ denote the graph with \mathcal{B} as its set of vertices and

$$
\mathcal{K}_{\mathcal{B}}=\left\{\left\{B_{1}, B_{2}\right\} \mid \# B_{1}=\# B_{2}=\#\left(B_{1} \cap B_{2}\right)+1\right\}
$$

as its set of edges.

Remark:

If \mathcal{B} is the set of bases of some matroid, then $\Gamma_{\mathcal{B}}$ is the base graph of M.
In general, the number of connected components of $\Gamma_{\mathcal{B}}$ is not less than $b_{\mathcal{B}}:=\#\{\# B \mid B \in \mathcal{B}\}$.
The next two statements yield some more information about relations between \mathcal{B} and $\mathcal{B}_{\left(\langle\cdots\rangle_{B}\right)}$.

Proposition 3:

If $\min \{\# B \mid B \in \mathcal{B}\}=\min \left\{\# B \mid B \in \mathcal{B}_{(\langle\cdots>B)}\right\}$, then $\Gamma_{\mathcal{B}}$ is connected. In particular, $\min \{\# B \mid B \in \mathcal{B}\}=\min \left\{\# B \mid B \in \mathcal{B}_{\left(\langle\cdots\rangle_{B}\right)}\right\}$ implies $b_{\mathcal{B}}=1$.

Proposition 4:

Assume $2 \leq n \leq \# E$ and $\mathcal{B} \subseteq \mathcal{P}_{n}(E)$ with $\mathcal{B} \neq \varnothing$. Put
$\mathcal{H}:=\{H \subseteq E \mid B \nsubseteq H$ for all $B \in \mathcal{B}$, but for every $e \in E \backslash H$ there exists $B \in \mathcal{B}$ with $B \subseteq H \cup\{e\}\}$.
Furthermore, put $\tilde{E}:=E \cup \mathcal{H}$ and

$$
\mathcal{A}:=\mathcal{P}_{n}(E) \cup \cup\left\{\left\{e_{1}, \ldots, e_{n-1}, H\right\} \mid H \in \mathcal{H},\left\{e_{1}, \ldots, e_{n-1}\right\} \in \mathcal{P}_{n-1}(E) \backslash \mathcal{P}_{n-1}(H)\right\}
$$

Then $\mathcal{A} \subseteq \mathcal{P}_{n}(\tilde{E})$ is some anti chain with $\mathcal{B}_{\left(<\cdots>_{\mathcal{A}}\right)}=\mathcal{B}$.

Corollary:

For every $n \in \mathbb{N}$ with $n \geq 2$ and every $m \in \mathbb{N}$ there exists some finite set E and some anti chain $\mathcal{B} \subseteq \mathcal{P}_{n}(E)$ with $P^{k+1}(\mathcal{B}) \varsubsetneqq P^{k}(\mathcal{B})$ for $0 \leq k \leq m$.

Conjecture: $\quad m(\# E)=\mathcal{O}(\# E)$.

