Matroidizing Set Systems

Walter Wenzel, Bielefeld

Assume E is some finite set. Let $\langle \cdots \rangle : \mathcal{P}(E) \to \mathcal{P}(E)$ denote a closure operator which by

$$F \subseteq \langle F \rangle = \ll F \gg \text{ for } F \subset E$$

and

$$\langle F_1 \rangle \subseteq \langle F_2 \rangle$$
 for $F_1 \subset F_2 \subset E_1$

Then we define an anti chain $\mathcal{B}_{<\dots>} \subseteq \mathcal{P}(E)$ by

$$\mathcal{B}_{<\dots>} := \{ B \subseteq E \mid = E, \neq E \text{ for all } b \in B \}.$$

Similarly, for any anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ we define a closure operator $\langle \cdots \rangle_{\mathcal{B}} : \mathcal{P}(E) \to \mathcal{P}(E)$ by

 $\langle F \rangle_{\mathcal{B}} := \{ e \in E \mid \text{ for } B \in \mathcal{B} \text{ with } e \in B \text{ there exists } f \in F \text{ with } (B \setminus \{e\}) \cup \{f\} \in \mathcal{B} \}.$

If M denotes some matroid defined on E with B as its set of bases and $< \cdots >$ as its closure operator, then $\mathcal{B} = \mathcal{B}_{<\dots>}$ and $<\dots>=<\dots>_{\mathcal{B}}$. More generally we have

Proposition 1:

Assume $\mathcal{B} \subseteq \mathcal{P}(E)$ is some anti chain and $\langle \cdots \rangle : \mathcal{P}(E) \to \mathcal{P}(E)$ is some closure operator. Then the following statements are equivalent:

- (i) $\mathcal{B} = \mathcal{B}_{<\dots>}$ and $<\dots>=<\dots>_{\mathcal{B}}$.
- (ii) $\mathcal{B} = \mathcal{B}_{<\dots>}$ and $<\dots>$ is the closure operator of some matroid; that means: For $F \subseteq E$ and $e, f \in E$ we have $f \in < F \cup \{e\} > \backslash < F > \text{ iff } e \in < F \cup \{f\} > \backslash < F > .$

(iii) $\langle \cdots \rangle = \langle \cdots \rangle_{\mathcal{B}}$ and \mathcal{B} is the set of bases of some matroid; that means:

For $B_1, B_2 \in \mathcal{B}$ and $b \in B_1 \setminus B_2$ there exists some $b' \in B_2 \setminus B_1$ with $(B_1 \setminus \{b\}) \cup \{b'\} \in \mathcal{B}$. The operations

$$P: \mathcal{B} \rightarrowtail < \cdots >_{\mathcal{B}} \rightarrowtail \mathcal{B}_{< \cdots >_{\mathcal{B}}},$$
$$Q: < \cdots > \rightarrowtail \mathcal{B}_{< \cdots >} \rightarrowtail < \cdots >_{(\mathcal{B}_{< \cdots >})}$$

define maps from the set of anti chains and the set of closure operators into themselves. By Proposition 1, P(B) = B and $Q(\langle \cdots \rangle) = \langle \cdots \rangle$ iff B is the set of bases of some matroid and $<\cdots>$ is the closure operator of some matroid. Write

 $P^{0}(\mathcal{B}) := \mathcal{B}, P^{n+1}(\mathcal{B}) := P(P^{n}(\mathcal{B}))$

for any anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ and

$$Q^{0}(<\cdots>) := <\cdots>, Q^{n+1}(<\cdots>) := Q(Q^{n}(<\cdots>))$$

for any closure operator $\langle \cdots \rangle$: $\mathcal{P}(E) \rightarrow \mathcal{P}(E)$ and $n \ge 0$.

Proposition 2:

Assume $\mathcal{B} \subseteq \mathcal{P}(E)$ is some anti chain with $\mathcal{B} \neq \emptyset$ and $\langle \cdots \rangle : \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ denotes some closure operator.

- (i) For every $B' \in \mathcal{B}_{(<\cdots>B)}$ there exists some $B \in \mathcal{B}$ with $B \subseteq B'$.
- (ii) There exists some $m = m(\#E) \le 2^{(2^{\#E})}$ such that $P^{m+1}(\mathcal{B}) = P^m(\mathcal{B})$ and $Q^{m+1}(<\cdots>) = Q^m(<\cdots>)$. In particular, $P^m(\mathcal{B})$ is the set of bases of some matroid $M = M(\mathcal{B})$ for any anti chain $\mathcal{B} \subset \mathcal{P}(E)$.
- (iii) If r denotes the rank of $M(\mathcal{B})$, then

$$r \geq \min\{\#B \mid B \in \mathcal{B}\}.$$

Definition:

For some anti chain $\mathcal{B} \subseteq \mathcal{P}(E)$ let $\Gamma_{\mathcal{B}}$ denote the graph with \mathcal{B} as its set of vertices and

$$\mathcal{K}_{\mathcal{B}} = \{\{B_1, B_2\} \mid \#B_1 = \#B_2 = \#(B_1 \cap B_2) + 1\}$$

as its set of edges.

Remark:

If \mathcal{B} is the set of bases of some matroid, then $\Gamma_{\mathcal{B}}$ is the base graph of M. In general, the number of connected components of $\Gamma_{\mathcal{B}}$ is not less than $b_{\mathcal{B}} := \#\{\#B \mid B \in \mathcal{B}\}$.

The next two statements yield some more information about relations between \mathcal{B} and $\mathcal{B}_{(<\dots>_B)}$.

Proposition 3:

If $min\{\#B \mid B \in B\} = min\{\#B \mid B \in \mathcal{B}_{(<\dots>_B)}\}$, then Γ_B is connected. In particular, $min\{\#B \mid B \in B\} = min\{\#B \mid B \in \mathcal{B}_{(<\dots>_B)}\}$ implies $b_B = 1$.

Proposition 4: Assume $2 \le n \le \#E$ and $\mathcal{B} \subseteq \mathcal{P}_n(E)$ with $\mathcal{B} \ne \emptyset$. Put

 $\mathcal{H} := \{ H \subseteq E \mid B \notin H \text{ for all } B \in \mathcal{B}, \text{ but for every } e \in E \setminus H \text{ there exists } B \in \mathcal{B} \text{ with } B \subseteq H \cup \{e\} \}.$

Furthermore, put $\tilde{E} := E \dot{\cup} \mathcal{H}$ and

 $\mathcal{A} := \mathcal{P}_{n}(E) \cup \{\{e_{1}, \dots, e_{n-1}, H\} \mid H \in \mathcal{H}, \{e_{1}, \dots, e_{n-1}\} \in \mathcal{P}_{n-1}(E) \setminus \mathcal{P}_{n-1}(H)\}.$

Then $\mathcal{A} \subseteq \mathcal{P}_n(\tilde{E})$ is some anti chain with $\mathcal{B}_{(<\dots>_{\mathcal{A}})} = \mathcal{B}$.

Corollary:

For every $n \in \mathbb{N}$ with $n \geq 2$ and every $m \in \mathbb{N}$ there exists some finite set E and some anti chain $\mathcal{B} \subseteq \mathcal{P}_n(E)$ with $P^{k+1}(\mathcal{B}) \subsetneq P^k(\mathcal{B})$ for $0 \leq k \leq m$.

Conjecture: $m(\#E) = \mathcal{O}(\#E).$

