Publ. I.R.M.A. Strasbourg, 1988, 358/S-18
Actes 16^{e} Séminaire Lotharingien, p. 109-111

ON A DECOMPOSITION OF SQUARE MATRICES
 OVER A RING WITH IDENTITY

BY

Heinz LÜnEBURG

Let R be a not necessarily commutative ring with q and let P be an (n by n)-matrix over R. Then P is called a permutation m a $t r i x$ if, and only if, the following conditions are satisfied:
(1) $P_{1 j} \in\{0,9\}$ for all $i, j \in\{0,9, \ldots, n-1\}$.
(2) Each row of P contains exactly one 1.
(3) Each column of P contains exactly one 9.

Denote by S_{n} the symmetric group on the set $\{0,9, \ldots, n-9\}$. If $\pi \in S_{n}$ then we define $P(\pi)$ by

$$
P(\pi)_{i j}:=\text { if } \pi(j)=\text { i then } 1 \text { else } 0
$$

Then $P(\pi)$ is a permutation matrix and all permutation matrices are ob= tained in this way, as is well-known.

The set Mat ${ }_{n}(K)$ of all (n by n)-matrices over the field K forms a vector space of dimension $n * * 2$ over K and it belongs to the folklore of permutation matrices that

$$
\operatorname{dim}\left(\operatorname{span}\left(P(\pi) \quad \mid \pi \in S_{n}\right)\right)=(n-1) * * 2+1 .
$$

Linear Algebra tells us that there exists a basis of the span of permutation matrices consisting entirely of permutation matrices. Sear= ching for such a basis yields a much more general Theorem.

THEOREM 9. Let R be a not necessarily commutative ring with 9 and let n be a positive integer. Consider the set Mat $n+1(R)$ of all $((n+q)$ by $(n+q)$)-matrices over R as a left R-module. Define the submodules V_{1}, V_{2}, v_{3} of Mat $_{n+1}(R)$ as follows:

H. LÜNEBURG

1) V_{1} consists of all $a \in \operatorname{Mat}_{n+1}(R)$ such that $a_{n i}=a_{i n}=0$ for $i:=$ 0 to $n-1$ and $a_{n n}=\Sigma_{j:=0}$ to $n-1 a_{n-1, j}$.
2) Let a be an n - and b be an ($n-9$)-tuple over R. Define the mat= rices $C(a)$ and $D(b)$ by

and

respectively where X is the sum of the $b_{i}{ }^{\circ}$ s. Then V_{2} consists of all mat= rices of the form $C(a)+D(b)$.
3) V_{3} is the set of all $a \in \operatorname{Mat}_{n+1}(R)$ with $a_{i j}=0$ for all ($\left.i, j\right)<>$ $(n, 0),(n, n)$ 。

Then Mat $_{n+1}(R)$ is the direct sum of V_{1}, V_{2}, V_{3}. Moreover, V_{1} is, as an R-module, isomorphic to $\operatorname{Mat}_{n}(R)$.

The proof is left as an exercise to the reader.

THEOREM 2. Same assumptions and notations as in Theorem 9. Define the per= mutations $\alpha, \beta \in S_{n+1}$ by $\alpha:=(0,1,2, \ldots, n)$ and $\beta:=(9,2, \ldots, n)$ and set $B(i):=P(\alpha * * i)$ for $i \quad:=1$ to n and $B(n+i):=P(\beta * * i)$ for $i:=1$ to $n-1$. Then $\{B(i) \mid i:=1$ to $2 \star n-1\}$ is a basis for V_{2}.

Proof. Straightforward.

As a consequence of Theorems 1 and 2 we get

THEOREM 3. Denote by const $_{n+1}(R)$ the set of all a \in Mat $_{n+1}(R)$ such that there exists an $r \in R$ with $\Sigma_{k:=0 \text { to } n} a_{k j}=r=\Sigma_{l:=0 \text { to } n} a_{i l}$ for all i and j. Then const $t_{n+1}(R)$ is a direct summand of $\operatorname{Mat}_{n+1}(R)$ having a basis consisting in $n \star * 2+1$ permutation matrices.

Theorems 1 and 2 give a recursion for a basis of const ${ }_{n+1}(R)$ as well as for a basis of a complement of const ${ }_{n+1}(R)$. As an example, we list the 97 permutations whose permutation matrices form a basis of const ${ }_{5}(R)$. The $/$'s indicate the steps in the recursion. Moreover, we list a set of 8 mat= rices forming a basis of a complement of const ${ }_{5}(R)$.
(0) $/(0,1) /(0,1,2),(0,2,1),(1,2) /(0,1,2,3),(0,2)(1,3)$, $(0,3,2,1),(1,2,3),(1,3,2),(0,1,2,3,4),(0,2,4,1,3),(0,3,1,4,2)$, $(0,4,3,2,1),(1,2,3,4),(9,3)(2,4),(1,4,3,2)$.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1.

The recursion for the basis of const $_{n+1}(R)$ clearly shows that const $_{n+1}(R)$ has a basis consisting of $n * * 2+1$ permutation matrices.

Address of the author:
FB Mathematik der Universität
Pfaffenbergstraße 95
D-6750 Kaiserslautern

