Publ. I.R.M.A. Strasbourg, 1988, 358/S-18 Actes 16^e Séminaire Lotharingien, p. 109-111

ON A DECOMPOSITION OF SQUARE MATRICES OVER A RING WITH IDENTITY

BY

HEINZ LÜNEBURG

Let R be a not necessarily commutative ring with 1 and let P be an $(n \ by \ n)$ -matrix over R. Then P is called a permutation matrix if, and only if, the following conditions are satisfied:

(1) $P_{ij} \in \{0,1\}$ for all $i, j \in \{0, 1, ..., n-1\}$.

(2) Each row of P contains exactly one 1.

(3) Each column of P contains exactly one 1.

Denote by S_n the symmetric group on the set $\{0, 1, ..., n - 1\}$. If $\pi \in S_n$ then we define $P(\pi)$ by

 $P(\pi)_{ij} := if \pi(j) = i$ then 1 else 0.

Then $P(\pi)$ is a permutation matrix and all permutation matrices are obtained in this way, as is well-known.

The set Mat_n(K) of all (n by n)-matrices over the field K forms a vector space of dimension n**2 over K and it belongs to the folklore of permutation matrices that

dim(span(P(π) | $\pi \in S_n$)) = (n - 1)**2 + 1.

Linear Algebra tells us that there exists a basis of the span of permutation matrices consisting entirely of permutation matrices. Sear= ching for such a basis yields a much more general Theorem.

THEOREM 1. Let R be a not necessarily commutative ring with 1 and let n be a positive integer. Consider the set $Mat_{n+1}(R)$ of all ((n + 1) by (n + 1))-matrices over R as a left R-module. Define the submodules V_1 , V_2 , V_3 of $Mat_{n+1}(R)$ as follows:

H. LÜNEBURG

1) V_1 consists of all $a \in Mat_{n+1}(R)$ such that $a_{ni} = a_{in} = 0$ for i := 0 to n - 1 and $a_{nn} = \sum_{j:=0 \text{ to } n-1} a_{n-1,j}$.

2) Let a be an n- and b be an (n - 1)-tuple over R. Define the matrices C(a) and D(b) by

Ø	an			• a ₃ a ₂	a
a1	Ø	an		···· a ₃	az
a2	a ₁	0 a	n °°°°		a3
a _{n-1}				a ₂ a ₁ 0	a _n
an				$a_3 a_2 a_1$	0

and

Х	Ø	Ø		• • •	 		0 0
Ø	Ø	b _{n-1}		• • •	 		b_2 b_1
0	b ₁	0	b _{n-}	1 •	 		$b_2 b_1 \\ b_2 b_2$
Ø	b _{n-1}				 	b ₂	b ₁ 0

respectively where X is the sum of the b_i 's. Then V_2 consists of all matrices of the form C(a) + D(b).

3) V_3 is the set of all $a \in Mat_{n+1}(R)$ with $a_{ij} = 0$ for all $(i,j) \iff (n,0), (n,n)$.

Then $Mat_{n+1}(R)$ is the direct sum of V_1 , V_2 , V_3 . Moreover, V_1 is , as an R-module, isomorphic to $Mat_n(R)$.

The proof is left as an exercise to the reader.

THEOREM 2. Same assumptions and notations as in Theorem 1. Define the permutations α , $\beta \in S_{n+1}$ by $\alpha := (0,1,2,\ldots,n)$ and $\beta := (1,2,\ldots,n)$ and set $B(i) := P(\alpha * * i)$ for i := 1 to n and $B(n + i) := P(\beta * * i)$ for i := 1 to n - 1. Then $\{B(i) \mid i := 1 \text{ to } 2*n - 1\}$ is a basis for V₂.

Proof. Straightforward.

As a consequence of Theorems 1 and 2 we get

THEOREM 3. Denote by $\operatorname{const}_{n+1}(R)$ the set of all $a \in \operatorname{Mat}_{n+1}(R)$ such that there exists an $r \in R$ with $\Sigma_{k:=0}$ to $n a_{kj} = r = \Sigma_{l:=0}$ to $n a_{il}$ for all i and j. Then $\operatorname{const}_{n+1}(R)$ is a direct summand of $\operatorname{Mat}_{n+1}(R)$ having a basis consisting in n**2 + 1 permutation matrices.

DECOMPOSITION OF SQUARE MATRICES

Theorems 1 and 2 give a recursion for a basis of $const_{n+1}(R)$ as well as for a basis of a complement of $const_{n+1}(R)$. As an example, we list the 17 permutations whose permutation matrices form a basis of $const_5(R)$. The /'s indicate the steps in the recursion. Moreover, we list a set of 8 mat= rices forming a basis of a complement of $const_5(R)$.

(0) / (0,1) / (0,1,2), (0,2,1), (1,2) / (0,1,2,3), (0,2) (1,3), (0,3,2,1), (1,2,3), (1,3,2) / (0,1,2,3,4), (0,2,4,1,3), (0,3,1,4,2), (0,4,3,2,1), (1,2,3,4), (1,3) (2,4), (1,4,3,2).

1 0	Ø 0 0	0 1	0 0 1 0	0 0 0 1		0 0 0 0		1 0 0	0 1 0	0 0 1 0	0 0 0 1	0 1 0	0 0 0 0	0 0 0 0	0 0 1	0 0 0 1	0 0 0	Ø	0 0 1 0	Ø 0 1 0	0 0 0 1	
0 0 1 0	0	0	0 0 0	t	2 2 2		0 0 0 0	0 0 0 0	0 0 0 0	0 0 1	0 0 0 1	0 0 0 1	0 0 0				0 0 0 0	0	0 0 0)))	0 0 0 0

The recursion for the basis of $const_{n+1}(R)$ clearly shows that $const_{n+1}(R)$ has a basis consisting of n**2 + 1 permutation matrices.

Address of the author:

FB Mathematik der Universität Pfaffenbergstraße 95

D-6750 Kaiserslautern

