Some combinatorial properties of complete semi-Thue systems

Winfried Kurth
Technische Universität Clausthal
Institut für Mathematik
Erzstr. 1, D-3392 Clausthal-Zellerfeld

A reduction system (R, \longrightarrow) consists of a set R and a binary relation \longrightarrow on R. Let $\xrightarrow{*}$ be the reflexivetransitive closure of \longrightarrow and $[x]$ the class of an $x \in R$ with respect to the equivalence generated by $\longrightarrow . x$ is called irreducible (or in normal form) if there is no $y \in R$ such that $x \longrightarrow y$. A reduction system can have the following properties:

- Chain Condition: There is no infinite chain $x_{1} \longrightarrow x_{2} \longrightarrow x_{3} \longrightarrow \ldots$ in R. (Then \longrightarrow is called terminating or Noetherian.)
- Confluence: $\forall w, x, y \in R:(w \xrightarrow{*} x \wedge w \xrightarrow{*} y \Rightarrow \exists z \in R: x \xrightarrow{*} z \wedge y \xrightarrow{*} z)$.
- Completeness: Chain condition and confluence.

If a reduction system is complete, normal forms always exist and are unique. See [3] for further details.
Let Σ be a finite alphabet. Σ^{\star} denotes the free monoid over Σ and \square the empty word. A semi-Thue system (STS) on Σ is a subset $S \subseteq \Sigma^{\star} \times \Sigma^{\star}$. Each element (u, v) of S is called a rule and written in the form $u \longrightarrow v$. A STS S defines a reduction relation \longrightarrow on Σ^{\star} by $x u y ~ \longrightarrow x y \Leftrightarrow(u, v) \in S$.

Let $O V(u)=\left\{x \in \Sigma^{\star} \mid \exists y, z \in \Sigma^{\star}: u=y x=x z\right\} \backslash\{\square, u\}$ be the set of non-trivial self-overlaps of $u \in \Sigma^{\star}$. Generalizing results of Book [2], Otto and Wrathall [6], one obtains the following
Theorem: Let the single-rule STS $u \longrightarrow v$ fulfill the chain condition, and let $u=u_{0} u_{1} u_{2} \ldots u_{k}(k \geq 0)$, such that $O V(u)=\left\{u_{1} u_{2} \ldots u_{k}, u_{2} \ldots u_{k}, \ldots, u_{k}\right\}$. The STS is confluent iff one of the following two conditions is satisfied:
(a) v has $u_{1} u_{2} \ldots u_{k}$ as a self-overlap, or
(b) there is a $j \in\{1,2, \ldots k+1\}$, such that $v=u_{j} u_{j+1} \ldots u_{k} \quad($ for $j=k+1: v=\square)$ and $u=u_{j-1}^{j} u_{j} u_{j+1} \ldots u_{k}$.

For the case $v=\square$, this means that u must be a power of a word y without proper self-overlap [2]. The classes $[w]$ of such complete systems $y^{v} \longrightarrow \square$ are deterministic context-free languages [1]. One can show that the unambiguous grammar $(\Sigma \cup\{S\}, \Sigma, P, S)$ with $P=\left\{S \longrightarrow \square, S \longrightarrow\left(a_{1} S a_{2} S \ldots a_{k-1} S a_{k}\right)^{r} S\right\}$, where $y=a_{1} a_{2} \ldots a_{k}\left(a_{i} \in \Sigma\right)$, generates [\square]. (There is a similar grammar for the general case [w].) From this presentation it follows that the structure generating function $S(z)$ (cf. [4]) of [$\square]$ is the unique solution of the equation $S(z)=1+z^{r k}(S(z))^{r(k-1)+1}$ in $\mathbb{Z}[[z]]$, which is a variant of the well-known "trinomial equation" (T): $A(x)=1+x(A(x))^{t}(t \in \mathbb{N})$. (T$)$ has the unique solution $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with $a_{n}=\frac{1}{n(t-1)+1}\binom{t_{n}}{n}$ (the a_{n} having a lot of combinatorial interpretations, see, e.g, [5]). This is usually proved by the Lagrange inversion formula, but it can also be deduced from the set equation $\left[a^{p}\right]=\left[a^{p-1}\right] a+\left[a^{p+k-1}\right] b$ for the special same manner.

References

[1] R. V. Book, Confluent and other types of Thue systems. J. ACM, 29 (1982), 171-182.
[2] ~, A note on special Thue systems with a single defining relation. Math. Systems Th., 16 (1983), 57-60.
3] G. Huet, Confluent reductions: Abstract properties and applications to term rewriting systems. J. ACM, 27 (1980), 797-821.
[4] W. Kuich, On the entropy of context-free languages. Information and Control, 16 (1970), 173-200.
$[5] \sim$, A context-free language and enumeration problems of infinite trees and digraphs. J. Comb. Th.(B), 10 (1971), 135-142.
[6] F. Otto and C. Wrathall, A note on Thue systems with a single defining relation. Math. Systems Th., 18
(1985), 135-143.

