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SEMIRINGS, AUTOMATA AND COMBINATORIAL
APPLICATIONS

VON

WERNER KUICH

ABSTRACT. This paper introduces into the basics of linear algebra

in semirings and automata theory. These are then applied to combi-
natorial-—-problems.

The topics from semirings and automata considered in this paper
should interest mathematicians who are specialized in combinatorics.
They include the basic definitions of semirings and formal power
series, convergence and linear equations, matrices, automata, rational
power series, algebraic systems, algebraic power series and pushdown
automata. The presentation of these topics is along the lines of
Sections 1,2,3,4,7,8 and 10 of Kuich,Salomaa [15]. There the results
are fully referenced. The Hadamard product of matrices and Construc-

tion 5 seem to be new. The Hurwitz product of matrices and Construc-
tion 6 are due to Kiister [16].
An interested reader is referred to the books on the classical theory

of automata and languages:Bucher,Maurer [2],Ginsburg [7],Harrison [10],
Hopcroft,Ullman [11],Hotz,Estenfeld [12],Salomaa {19],[20]; and on
books on the theory of automata and languages based on formal power
series:Berstel,Reutenauer [1],Conway [4] ,Eilenberg [5],Kuich,Salomaa
[15] ,Salomaa,Soittola [21] and Wechler [23].

There are some books and papers that apply the theory of automata and
languages to combinatorics:Chomsky,SChﬁtzenberger TB],Eilenberg [s1,

Goldman [8],Goulden,Jackson [9],Kuich [14] and Straubing [22].
Our applications include the following topics:Rational sequences and

rational sequences with finitely many distinct coefficients are charac-
terized; normal form automata for the generation of rational sequences
are defined; a new proof for the Cayley-Hamilton Theorem in commutative
rings is given; Construétions on automata are defined that lead directly
to operations on generating functions; these constructions are applied
in a number of examples to rational and algebraic sequences.
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W. KUICH

1. SEMIRINGS AND POWER SERIES.

In this section we define the basic notions: semirings and formal

power series.

By a semiring we mean a set A together with two binary operations

+ and * and two constant elements O and 1 such that
(i) <A,+,0> is a commutative monoid,
(ii) <A,+,1> is a monoid,

(iii) the distribution laws a° (b+c) = a*b + a-<c and

(a+b) *c = a*c + bec hold for every a,b,c,
(iv) Oca = a0 = O for every a.
A semiring is called commutative iff a*b = bca for every a and b.

If the operations and the constant elements of A are understood
then we denote the semiring simply by A. Otherwise, we use the
notation <A,+,°,0,1>.

The two most important semirings are the Boolean semiring B and
the semiring N. Here B consists of two different elements O, 1 and
is defined by 1+1 = 1. The semiring N consists of the nonnegative
integers with the usual operations.

The following notational conventions will hold throughout the paper:
A denotes a semiring, I denotes an alphabet and £* denotes the words
over I including the empty word €. All items may be indexed.

Mappings r of I* into A are called formal power series. The values

of r are denoted by (r,w), where w € Z*, and r itself is written as
a formal sum

r = E (r,w)w.

wer*

The values (r,w) are also referred to as the coefficients of the
series. We say also that r is a series with (noncommuting) variables
in . The collection of all power series r as defined above is
denoted by A<<I*>>,

Given r € A<<Z*>>, where A is a semiring, the subset of £* defined
by

{w| (r,w) = 0}
is termed the support of r and denoted by supp(r). The subset of
A<<L¥>> consisting of all series with a finite support is denoted
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by A<I*>. Series of A<I*> are referred to as polynomials. It will
be convenient to use the notations A<ZUe>, A<I> and A<e> for the
collections of polynomials having their supports in IUe, I and €,

respectively.

Observe that we have written € instead of {e}. We do not usually
make any notational distinction between an element and the single-

ton consisting of that element.

Examples of polynomials belonging to A<I*> are the power series O

and w, w € Z*, defined by (O,w') = O and (w,w') = 6w it for all
4
w'e I¥, respectively. Here dw w' denotes the Kronecker symbol:
’
) v = 1 if w = w' and 6 v = 0 if w # w'. (We will use in the
W,wW W,W

sequel the Kronecker symbol for arbitrary sets.)
For rl,r2 € A<<I*>> we define the sum r1+r2 and the product

ry-r, by (r1+r2,w)=(r1,w)+(r2,w) and (r1°r2,w)= Z ~ (rl,wl)(rz,wz),
wlwz-w

for all w € I*. Clearly, <A<<I*>>,4,.,0,e> and <A<I*>,+,+,0,e> are
semirings again.

Subsets of I* are called formal languages over I. We now connect the

theories of formal languages and formal power series. For L < I¥, we
define the characteristic series of L, char(L) € A<<I*>> by
(char (L) ,w) =1 if w € L and (char (L) ,w) = 0 if w € L.

When we consider formal power series in B<<I*>>, then r € B<<I*>>
corresponds to L < I* iff r = char (L) (or, equivalently, L=supp(r)).
Hence, the semirings <B<<Z*>>,+,°,O,£> and <@(Z*),U,',®,{€}> are
isomorphic. Here ¢ denotes the power set, @ denotes the empty set
and * is the usual product of formal languages.

The Hadamard product of two power series r, and r, belonging to

A<<Z;>> and A<<Z;>> is defined by

t, @E, = § (ry,w) (r,,w)w.
1 2 we(z nz)* ! 2

In language theory, the operation corresponding to the Hadamard
product is the intersection of languages. If ry and r, correspond
to the languages L1 and L2 in the isomorphism referred to above

0 Lss

then ry O] r, corresponds to Ll 2

Another operation for languages is the Hurwitz (shuffle) product wi.

In language theory, it is Ccustomarily defined for languages L and L'
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"= ' 1 > ' [ 1 '
by LwL {wlwl...wnwnln_l,wl...wnEL,wl...wnEL }. (Here w,; and w;

are words, for i=l1,...,n.) We prefer an inductive definition. For
* .
wl,w2€Z and xl,xZGZ, we define
WL ESW,, ELUIW,=W,,

and

wlxlqu2x2=(wlxlquz)x2+(w1u4w2x2)x1.
Hence, L) maps two words over I into a power series in A<<I*>>. We
now define the Hurwitz product of the power series r, and r, in
A<<E*>> by

rjur,= Z X *(rl,wl)(rz,wz)wlquz.

Wy er* w, €L

If r1,r2€ B<<L*>>, then this definition is "isomorphic" to that

given above for languages.

Observe that <A<<I*>>,+,0,0,char(L*)> and <A<<I*>>,+,L,0,€e> are

semirings.

The partial derivative rz€A<<Z*>> of a formal power series

r€A<<I*>> with respect to a symbol z€I is defined by

(rz,w)= ¥ (r,wlzwz).
W=W, W,
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2. CONVERGENCE AND EQUATIONS.

We now give an axiomatic definition for the notion of convergence
of a special type. The notion is particularly suitable for hand-
ling equations arising in automata theory. It also gives rise to
some important identities needed later on.

A mapping a:N+A is called a sequence in A. By AN we denote the set

of all such sequences. If aEAN then we use the notation a=(a(n)).

We denote by o and n the sequences defined by o(n)=0 and n(n)=1,

for all n2o0, respectively. For aEﬂN, CEA, we define ca and ac in

AN by (ca) (n)=ca(n) and (ac) (n)=a(n)c, for all n20, respectively.
N . . N
For al,GZEA , we define al+a2 and al-a2 in A" by

(al+a2)(n)=a1(n)+a2(n) and (a1°u2)(n)=u1(n)a2(n), for all nz20,
respectively.

Observe that <AN,+,-,o,n> is a semiring. We need one further opera-
tion before giving the basic definitions of convergence.

Consider a€al and a€A. Then aaeﬂN denotes the sequence defined by
aa(0)=a, aa(n+1)=a(n), for all nz20.

Each set Dg;AN satisfying the following conditions (D1)-(D3) is
called a set of convergent sequences in A.

(D1) neb.

1+a2€D.

(ii) If oeD and c€A then ca,aceD.

(D2) (i) If al,aZED then a

(D3) If «€D and a€A then aaED.

Let D be a set of convergent sequences in A. A mapping lim:D-A
satisfying the following conditions (lim 1)-(1lim 3) is called a
limit function (on D).

(lim 1) lim n=1.
1+11m a2.

(ii)If o€D and ceA then lim ca=c 1lim a and lim occ=(lim a)c.

(lim 2) (i)If al,azeD then lim(al+u2)=lim a

(lim 3) If o€D and a€A then lim aa=1im a.

Observe that, for all CEA, the sequence cn=nc is convergent inde-
pendently of D and converges to c.

9



W. KUICH

In what follows we often use the terms "convergence in A" and
"limit in A" without explicitly specifying D and lim. Sets of
convergent sequences will be considered only in the case that

a limit function is defined. We also use the notation lim a(n)
n-o

for lim a.

A notion of convergence definable for'every A, referred to as

discrete convergence, will now be discussed. This notion of

convergence is the classical one considered in connection with
semirings and will also be the most important one needed in the

sequel.

The set of convergent sequences Dd is the set of ultimately con-

stant sequences. Here, a sequence a is ultimately constant iff

there exists an naZO such that for all kz20
a(na+k)=a(na).

The value of the limit function limd on Dd for such an ultimately

constant sequence is a(na).

Each set of convergent sequences D has to contain Dd’ i.e., Dd is
the smallest set of sequences for which (D1)-(D3) holds. Further-
more, if lim is a limit function on D, then lim a=limd a for all

aEDd.

Hence, the discrete convergence is the only notion of convergence
if the set of convergent sequences is given by Dd' It is a notion

of convergence in all semirings.

The following two examples show that our notion of limit is compa-

tible with the customary ones.

Example 2.1. A sequence aEﬁN is called a Cauchy sequence iff for

all €>0, there exists an n_20 such that |a(n1)—a(n2)|<€ holds for

>
all n,,n,2n_.

One possible choice for the set D of convergent sequences in R is
the set of Cauchy sequences with the usual convergence in R. This

notion of convergence in R is called the Cauchy convergence. 0

Example 2.2. A sequence aemm is called an Euler sequence iff the

: n
sequence ( ) (?\ a(j)/2;> is a Cauchy sequence.
j=o0 \J

10
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One possible choice for the set D of convergent sequences in R is
the set of Euler sequences with the following notion of conver-
gence:
Y n n
limE a=lim } (j)a(j)/Z ; where the limit on the right side denotes
n->o j=0

the Cauchy convergence.

This notion of convergence in R is called the Euler convergence. It

n .
can be shown that, for all a€R, with -3<a<l limE ] a3=l/(1—a) and

n-o j:o
; n
lim_ a '=0.
n»mE
Let a=-1. Then 1,-1,1,-1,... converges to O and 1,0,1,0,... con-
verges to %. 0

In the next example a somewhat unusual notion of convergence will be
considered. The notion is connected with the important concept of a

quasi-inverse discussed below.

Example 2.3. Consider the set D of sequences in R, generated by (D2)

and (D3) from the sequences (an), where a is in R.

Then it is easily seen that D forms a set of convergent sequences
and, furthermore, o€D iff there exist nazo and 221 such that, for

all k20
b, -
a +k)= .a.+b, c.,a.,beERr,
(ng*+k) jﬁlcnan e

aizaj for i#j and ajil, where 1s5i, jsg.

It is easy to see, either directly or using the Vandermonde deter-
minant, that

2

! c.ak+b=0 for all k20 implies c;=0, 15352, and b=o.

421 373

2
Hence, if we define lim:D+R by lim a=b for a(na+k)= ) cja§+b, then
3=1
lim is a welldefined mapping and it is easily seen that lim is a
limit function in R.

n .
We note that lim a3=lim(l—an+1)/(l-a) =
n-+o j=0 n-+o
1/(1-a)-a lim a®/(1-a)=1/(1-a) for a=1, ' 0
n-+o©

1

The powers a i20, of an element a in a semiring A are defined in

11
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the natural way, whereby ao=1.

n .
If () al)eD then we write

j=1 n .
lim 7§ al=a*
n-—+o J=l

and call it the guasi-inverse of a (with respect to the given

o
notion of convergence). If ( ) al)eD then we write
j=0
nooL
lim ) al=a
and call it the star of a (with respect to the given notion of con-
vergence) .

(For n=0 the range of j is empty in the sum defining at. In this
case we consider the sum to be equal to 0.)

The next theorem shows the close interconnection between at and a*.

Theorem 2.1. Let a€A. Then a* exists iff at exists, and 1+a+=a*,

% *
aa"=a"a=at.

n . n oz
Proof. Let a%* exist. Then l+a*=1lim n+lim( ) ad)=lim(n+( ) al))=

j=1 j=1

n
lim al=a*. Hence a* exists.
n-+o© J=O
n . n+l . n .
Let a* exist. Then aa*=a lim ) al=1lim ) al=lim i al=a*. Hence a*
n-o j=o n-+w j=]_ n>eo j:l

exists. Obviously aa*=a*a. O

Corollary 2.2. If a* exists then

*_ % .. n+l_=
a*= ) al+a™ *a*, and

T n+l
a*= ) al+a*a™", for all nzo. 0

j=0

We now consider equations of the form

y=ay+b, a,beA, (1)
where y is a variable. An element seA is called a solution of (1)
iff s=as+b.

Theorem 2.3. If a* exists then s=a*b is a solution of (1).

Proof. By Corollary 2.2, we have a*=aa*+1. Multiplying by b gives
a*b=aa*b+b, which shows that this a*b is a solution of (1). 0

12
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The next theorem gives a sufficient condition for the unigqueness

of the solution.

Theorem 2.4. If a* exists and lim a™=0 then s=a*b is the unique
n-+o

solution of (1).

Proof. By Theorem 2.3, s is a solution of (1) . Assume t€A is a
solution of (1). Then
2 n+l . T 5
t=at+b=a“t+ab+b=...=a"" *t ) alb
3=0
holds for all n20.

; ; n
Since lim a =0, we have

n-o
a lim a"=lim an+1=0.
n->o n->wo
n+l__ T 5 n+l T3
Furthermore, a "t+ ] a’b=t implies (a )t+( ] a’)b=nt. Hence, by
j=0 =0
(lim 1)-(1im 3),
' n+l o j
(lim a" " ") t+(lim } aJl)b=a*b=t. 0

. n->o n-+o j:o

E i

ample 2.4. Let y=ay+l, -3<a<l.'We work with the Euler convergence.

Then lim a™=0 and a*=1/(1-a). Hence, the unique solution of y=ay+l
n—»oo

is 1/(1-a). 0

We now continue Example 2.3. Recall that, for a=1l, lim an=0, a*
. n-+o

exists and a*=1/(1-a). This implies that the equation y=ay+l, a=l,
has the unique solution s=1/(1l-a).

We now turn to the discussion of some important identities. The
letter a, with or without subscripts, stands for an element of A.

* 5 o * . *
Theorem 2.5, (alaz) exists iff (azal) exists. Whenever (alaz)
. *_ _ *
exists then (alaz) al—al(azal) .
Proof. To prove the first sentence, it suffices to show that the

existence of (alaz)* implies the existence of (azal)*. Assume that

(alaz)* exists. Then
n-1 q n-1 . n »
(1 (aja;)0)ep and n+(a, | (a;a)%a)=( | (a,a)d)ep
j:o j:o j::o

The second sentence of the theorem follows because

13
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n g n .
(a;a,)*a,=lim . } (a,a,)’a,=lim a J (a,a,)l=a. (aja,)*. 0
AR B TR AR A B B 11922

Theorem 2.6. Assume the existence of (a1+a2)*, aI and (azaz)* and,
furthermore, that

. n
lim(a,+a,) =0.

Then
*

*__ % *yk_,_* *
(a1+a2) —al(azal) -(alaz) aj .
Proof. We first show that a;(azai)* is a solution of the equation
y=(a1+a2)y+1:

%, %

* ey ka4 *y % * Ky ka4 %) ok k) k__x
(a1+a2)al(a2a1) +1 al(azal) +a2a1(a2a1) +1 al(azal) +(a2a1) al(azal)

By our assumption and Theorem 2.4, the solution obtained is unique.
Our theorem now follows by Theorem 2.5.

We again continue Example 2.3. Assume that alxl, a2=1, al+a2=1. Then
*— -
al—l/(l al)’
* * _ Kk __ N - - = - - *
(ajay)"ay=(1/(1-a,/(1-a;))) /(1-a;) =1/ (1-(a;+a,) ) =(a;+a,) *. U

. * * : * *
Theorem 2.7. Assume the existence of (al+a2) ¢ oay and (a1+a2a1a2)

and, furthermore, that
lim an=lim(a +a.a¥a )n=0.
—— 1 " 1 727172

Then
*_ * * g3
(a1+a2) —(a1+a2a1a2) (1+a2a1).

Proof. By Corollary 2.2, we have
(al+a2)*=a1(al+a2)*+a2(al+a2)*+1.
Hence, by our assumption and Theorem 2.4, the unique solution of the
equation
y=aly+a2(a1+a2)*+l
equals (a1+a2)*. By Theorem 2.3 and our assumption, another repre-

sentation of the unique solution is aiaz(al+a2)*+a;. Substituting

aIaz(a1+a2)*+aI for the third occurrence of (a1+a2)* in the first
equality of the proof yields

*_ * * *
(a1+a2) —(al+a2a1a2)(a1+a2) +a2a1+1.

This shows that (al+a2)* is a solution of the equation

14
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_ * *
y—(a1+a2a1a2)y+a2al+l.

By Theorem 2.4 and our assumption lim(al+a2aIa2)n=O, the solution

n-+o
is unique. By Theorem 2.3 and the existence of (a1+a2a;a2)*,
another representation for the unique solution is

* * *
(a1+a2a1a2) (1+a2a1). 0

We now show how a notion of convergence in A can be transferred to
A<<Z*>>. The main idea is that a sequence of power series deter-
mines, for each w in Z*, a sequence of coefficients of w. The limits
of the latter sequences determine the coefficients in the limit of

our sequence of power series.

Observe first that AN<<Z*>> and (A<<Z"'>>)[N are isomorphic. Assume
now that a convergence in A is given by D and lim. Then a conver-
gence in A<<I¥*>> ig given by D<<I*>> and lim', where
lim' @ = ] lim(a,w)w, a€D<<I*>>,
wer*
The concept of a guasiregular power series will be very important

in the sequel. A power series r of A<<I*>> is termed quasiregular

iff (r,e)=0. Our next theorem shows that the star of a quasiregular
power series always exists. Moreover, the star does not depend on

the used notion of convergence.

Theorem 2.8. If r€A<<I*>> is quasiregular then lim r''=0 and r*
n-+-o

exists.

Proof. We consider first lim r"” and r* with respect to the discrete

n->-o
convergence in A. Since (r,e)=0, by induction on |w| we infer the
(r",w)=0 for all n>|w|, wer*,
This implies

lim r™=o0.

n-+>o
Furthermore, we have
|wl+k . lw| . .
(rj,w)= Z (rj,w) for all k20, weZl™.
j=0 j=0
Hence,
n : lw] .
(r*,wi=(lim | rl,w=( ] rI,w
n--co j:o j:o

for all we€Z®, and r* exists with respect to the discrete convergence.

By the observations made above, these equalities remain valid for an
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arbitrary convergence. 0

Corollary 2.9. If r€EA<<I¥*>> is quasiregular then

. el
r*=) () rd,ww. 0
wer*® j=0

We now introduce the notion of a strong convergence. This notion is
pafticularly suitable for handling power series. In view of Theorem
2.4, the existence of the star of r and the convergence of rn to O
are of great importance for a power series r. Strong convergence in
A and the convergence of (r,e)n to O guarantee these two important

properties for a power series r.
A convergence in A is called strong iff the condition

n :
{- 3 aja(n—j))ED is satisfied for each a€D and each a€A such that
3=0

(an)ED and lim a™=o0.
n->o

Theorem 2.10. Assume that a strong convergence has been defined in

A. Furthermore, assume that (an)ED and lim an=0. Then
n-—+-o

* .
a  exists and, whenever o€D, then

n o
lim )} aJla(n-j)=a* lim a.
n-+o j=0

Proof. Since n is a convergent sequence, the sequence

n oo n .
( X aJn(n-j))=( Z aj) is again convergent by the definition of a
j:o j:o

. . . *
strong convergence in A. This shows the existence of a”.

Assume now that o is a convergent sequence and denote

. n :
lim Z aja(n—j)=b.
n-+o ]:O
By (D2), (lim 2) and (D3), (lim 3) the equality

n . n-1 ;
! ala(n-j)=a(n)+a § aJa(n-1-3)
j:o j:o

implies that

b=1im a+ab.

Hence, by Theorem 2.4, b is the unique solution a* lim a of the

equation y=ay+lim a. 0

16
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Theorem 2.10 shows that a convergence in A being strong means that

lim a™=0
n—)oo
implies
n s
lim ] alo(n-j)=a*lim a(n),
n-—+c j:o n->o

provided lim a(n) exists.
n->o

Our next example shows that a notion of strong convergence is defi-
nable for every semiring A. It is, of course, the discrete conver-
gence.

Example 2.5. Consider the discrete convergence in A.

For notational convenience we denote Dd and limd by D and 1lim,

respectively. Consider an a in A such that (an)eD and lim a™=o0. By

n—+>o

the definition of D and lim this means the existence of an n.21

(6]
such that, for all kz20,
n_.+k
& 7. = (2)
Hence, we have that
n.-1
(0] 2
a*= 7§ al. (3)
j=0

Furthermore, consider a sequence o in D. This means the existence
of an nazo such that, for all k20,

a(na)=a(na+k)
and

lim a(n)=a(na).

n—»oo

We have to show that the sequence

n g
B(n)= ] ala(n-j)
j=0

is a convergent sequence. Define n8=n0+na—1.

Then, for all k20, we have that
n.+n_ +k-1
o

(6] 2
B(n8+k)= 'ZO aja(no+na+k-j-1)=
J:
7 o .
= ]EO a a(n0+na+k—j—1)= JEO a a(na)=a a(na).

17
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Indeed, the first equality follows by the definition of 8 and Ngs

the second equality by (2), the third equality by the observation

that no+na+k-j-12na+k for OSanO—l, and the last equality by (3).

Hence, B is a convergent sequence.

By the definition of lim, we infer that

lim B(n)=a*a(na)=a*lim a(n). 0
n-+« n--o

For the next theorem we assume strong convergence in A. It is stated

without proof.

Theorem 2.11. Assume that r is a power series in A<<I*>> such that
*

1im(r,e)n=0. Then lim rn=0, r  exists and, further-

n->o n-+o
more,
(*,w)=§ (£¥,€e) (xr,u) (£*,v)
uv=w
‘ u*e
holds for all wer'. 0

The following two examples show that the Cauchy convergence and the

Euler convergence are strong.

Example 2.6. We consider the Cauchy convergence introduced in

Example 2.1.

The Theorem of Mertens states that, if
n

a_ 1s absolutely conver-
o M

o

S e 8

gent and )} b_ is convergent then ) J a.b__.=J a_ ] b_.
n=0 ° n=0 j=0 307 p=0 "m=0 ™

Consider an a€R with |a|<l. Then (a™ converges to O and, further-
more, ( ) aj) converges absolutely to a*=1/(l-a). Let o be a con-
j=0
vergent sequence and define
B(0)=a(0), B(j)=a(j)-a(j-1) for jz2l.

n n
Then ) B(j)=a(n) and ( )} B(j)) is a convergent sequence with
=9 3=0
n
lim ] B(j)=lim a(n).
n-+o j:o n+«

18
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Hence, by the Theorem of Mertens,
n k
(1 1

k=0 j=0

is a convergent sequence with limit

the sequence

al B(x-§))

a* lim a(n).

n-—+w

Furthermore,
n k

] ) &l Bk-j) =
k=0 =0

n k-1 . n %

y al (a(k-3)-a(k-j-1)) + J a(0) =
k=1 j=0 k=0

n k-1 ; n-1 Xk n K

Pl alak-3) - 7} adak-9) + § a¥ a(0) + «(0) =
k=1 j=0 k=0 j=0 k=1

n k ; n-1 k . n .

!l alak=3) - ] ¥ al a(k-j) + a0 = § al a(n-j).
k=1 j=0 k=0 j=0 j=0

Here the first equality follows by
equality by changing in the second
index k to k+1, the third equality

the definition of B, the second
term of the right side the
by adding the first and third

term of its left side and the last equality simply by addition.

Hence, we have that

n § n k ;
lim ]} al a(n-j) =1im § J a3 B(k-j) = a* 1lim a(n).
n-+o j:o n>o k=0 J=O n-—+o

If a € R with |a|>1 or a =

sequence. If a=1, then (an) converges, but lim an=110. This implies
n->o

-1, then (an) is not a convergent

that the Cauchy convergence is strong. O

Example 2.7. We consider the Euler convergence introduced in Example

2.2. Using a theorem similar to the Theorem of Mertens, we may con-

clude as above that the Euler convergence is strong. 0

Example 2.8. We consider the convergence introduced in Example 2.3.

Let a €R with a#1 and define the sequence a(n)=a", n20. Then a is

a convergent sequence. Since
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n .
) al a(n-j)=(n+1)an

3=0
and ((n+1)a™ is not a convergent sequence, we conclude that the

considered convergence is not a strong convergence. 0

Theorem 2.11 shows that, in case of a strong convergence, the
coefficient of € has a great influehce on the convergence
behavior of a power series. The definition of a cycle-free power
series is now clear: a power series r is called cycle-free (with
respect to the given notion of strong convergence) iff

lim(r,e)=0.
n-»oo

Theorem 2.12. For each cycle-free power series r, lim r=0 and
n-+v

% .
r exists.

Proof. By Theorem 2.11. 0

Example 2.9. Consider R<<I*>>. Then we know three strong conver-

gences in R and, hence, three types of cycle-freeness of power
series.

A power series r is cycle-free with respect to the discrete conver-
gence iff (r,e)=0, i.e., if r is quasiregular. A power series r is
cycle-free with respect to the Cauchy convergence iff | (r,e)|<1l.
And a power series r is cycle-free with respect to the Euler con-
vergence iff -3<(r,e)<l. 0

By Example 2.9, the question arises whether a power series cycle-
free with respect to different notions of strong convergence may
have different stars. The next theorem shows that this is not the
case.

Theorem 2.13. Assume that a power series r is cycle-free, possibly

with respect to different notions of strong conver-
gence. Then r* is independent of the notion of strong
convergence.
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n :
Proof. By Theorem 2.12, lim r™=0 and lim ] rl=r* exist with
n-co n->o j:o

respect to any of the notions of strong convergence considered.
Since the equation Y=ry+e, € and ¢ in A<<i¥ss, has, by Theorem 2.4,
the unique solution r*, the star of r is independent of the conver-

gence used. ‘ 0

This means that it depends on the notion of the strong convergence
considered, whether a pdwer series r is cycle-free or not. But if

r is cycle-free then r* is uniquely determined.

We transfer the term cycle-free to equations. An equation
Y=ry+s, r,s€A<<I*>>, (4)
is termed cycle-free iff r is cycle-free.

Theorem 2.14. Every cycle-free equation (4) has the unique solution

*
r s.

Proof. Since r is cycle-free. Theorem 2.12 implies that lim r’ =0

| o *
and, furthermore, the exlstence of r”.

By Theorem 2.4, (4) has the unique solution r*s. 0

. . . . * .
Consider a power series r in A<<I*>>. The power series ro=(r,e)e

is called the €e-part and r1=w£2+(r,w)w is called the quasiregular

part of r.

Theorem 2.15. For each cycle-free power series r,

r*=r*(r r*)*-(r*r )*r*
0’170 " '"o"1’ “*o-
Proof. Since r=ry+r; is cycle-free, (ro+rl)* exists and
lim(ro+r1)n=0. Since we use a strong convergence, lim rg=0 implies
n-+w n->o©

the existence of IS’ Since rlrs is quasiregular, rlrg is cycle-

free and (rlr;)* exists.

Hence, Theorem 2.6 implies our theorem. ]
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Theorem 2.15 is extremely useful for the computation of the star

of a power series.

Example 2.9. Consider the power series r=ac+bx in R<x*> with -3<a<l.

We work with the Euler convergence. Then r is cycle-free and
r*=(a*bx) *a*.
Hence,

* ) j -
rs <_b_x e A S |
1-a l1-a j=0 (1-a)3
Furthermore, r* is the unique solution of the equation
y=(ae+bx)y+e. a
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3. MATRICES AND AUTOMATA.

We now introduce matrices and vectors with entries in a semiring
and indexed by countable index sets. Automata are then defined in

terms of matrices.

Consider two nonempty countable index sets I and I'. Mappings M of
IXI' into A are called matrices. The values of M are denoted by

Mi i where i€I and i'€I'. The values Mi i are also referred to
’ r

as the entries of the matrix. In particular, Mi i is called the
4

(i,i')-entry of M. The collection of all matrices M as defined

1]
above is denoted by AIXI .

If I or I' is a singleton, M is called a row or column vector,

respectively. If I is finite and equals {1,...,n} or I' is finite

1 ]
and equals {1,...,m} then gixt is also denoted by v or

AIxm

a finite matrix.

» respectively. If both, I and I' are finite, then M is called

For each i€I, consider the set of indices R(i)={i‘|Mi i,=0}. Then
! ’

M is called a row finite matrix iff R(i) is finite for all ie€I.
Similarly, consider the set C(i')={i|Mi i.zo} for i'€I'. Then M is
N . ’

called ‘a column finite matrix iff C(i') is finite for all i'eI'.

The collection ‘of all matrices that are both row and column finite

IxI'
3 &

Unless stated otherwise, the letter I (resp. Q), possibly provided

as defined above is denoted by A

with 1nd1ces, will denote in the sequel a countable (resp. finite)

nonempty index set.

We introduce some operations and special matrices inducing a monoid

L}
or semiring structure to matrices. For Ml,MZEAIXI we define the

IxI'®
1+M2€A by

(M1+M2)i,i' (M l)l grH My, it

sum M

for all i€r, i‘er'.

1
Furthermore, we introduce the zero matrix OEAIXI . All the entries

of O are 0. By ‘the definition of the sum and fhe zero matrix,

IxI' IxI'

<A ,+,0> and <A ,+,0> are commutative monoids.
J

I sz szI

For MléA 1 and MZEA 3, where M, is row finite or M2 is column

xI
1773
finite, we deflne the product M1 >€ by

1
I
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(M, M €I

for all 11611, i3 3°

(My) 5

¥4 D 0 T P .
172 1 11,12 2,13

i, i &
1 3 12 I2

If My is row (resp. M, is column) finite then the range of the

variable 12 in the sum is, in fact, R(il) (resp. C(iB))' Hence,

in both cases, the range of the variable 12 is finite and Mle is

welldefined. Furthermore, we introduce the matrix of unity

IXI, where E. 6. . for all il’iZEI‘ Clearly, <A§XI,+,~,O,E>

i1eiy 19415

EEA
is a semiring.

In the sequel we will need some isomorphisms between semirings of

0x0, IxI (IxQ)x(IxQ) (QxI)x(QxI)
)J ’ J

matrices. The semirings (A and

(A§xI)QXQ are isomorphic by the correspondence

(M) )

M
1 11,12 q9,:9, = 2)(11,q1),(12.q2) (

L COPEDL N O

( (M4)q1'q2) i]_'iZ' 11'1261' qquZEQ-

Moreover, there are certain isomorphisms between the semirings

A§XI<<Z*>> (that are formal power series whose coefficients are

IxI

matrices) and (A<<I >>) (that are matrices whose entries are

IxI

* .
formal power series): There exists a subsemiring of AJ <<I">> iso-

morphic to (a<<L* >>)J %L and there exists a subset of (A<<I >>) %1

IxI

that is a semiring isomorphic to AJ <<I*>>, Both isomorphisms are

due to the correspondence (M;,w); ,iz=((M2)i1,i2'w)' iy,1,€1, weL*.
<<z*>> we may use the notation (Mi i ,w) and for
1’72

Hence, for MEA§XI

MG(A<<Z*>>)§X we may use the notation (M,w);
iy

IxI
J

All limits (especially the star) are taken in A; <<z*>> and all

definitions valid for (ordinary) formal power series are valid also

for matrices in (A<<I >>)IXI. E.g., MZE(A<<Z >>)IXI is cycle-free

EAIxI

iff 11m(M1,€) N_0 for the corresponding matrix Ml <<z*>>, i.e.

n-+o©

iff there exists a k21 such that (Ml,e)
We now introduce blocks of matrices.
Assume the existence of nonempty countable index sets J, J' and Ij’
I!, for jeJ, j'€J' 'such that I=\ /I , I'= \! ,and I. NI, =@,
J 5€5 3’ J* 3; 32

]
13.015.=¢ for j1=j2, ji*jé. Consider a matrix M in Nl

1 42
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Then the restricted mapping
M:I_.xI!,-»A
J ]
I.xI!,
is a matrix in a J J and is called the (Ij,Iﬁ,)—block of M. Con-

IxI'

sider now the matrices Ml,MZEA with blocks Mt(Ij’Iﬁ')' t=1,2.

Then the blocks of the sum of the matrices M1 and M2 can be ex-

pressed by the blocks of Ml and M2 in the usual way:

(M1+M2)(Ij'Ii')=M1(Ij'13')+M2(Ij'13')'

Moreover, if M1 is a matrix in the semiring A§XI and M2 is a matrix
'
in A§XI then
(MM ) (T, ,It,)= ] M, (I. ,I.)M, (I.,I',).
1727773, 1 A S A M

In general, limits of sequences in (A<<Z*>>)§XI are taken (isomor-

IxI IxI

J 3 1s the discrete

phically) in A <<z*>> and the convergence in A

Oone.

In the next four theorems, we assume that I is partitioned into I
IxI
J

venience, we will denote M(I. 1I. ) by M. . for 15j,,j,52.

1,

and 12 and that M is a matrix in A <<r*>>. For notational con-

Theorem 3.1. Assume that M is cycle-free and, furthermore, that

* %
Mp,10Mp,0/M) ¥4y oM oMy 4 and My, 2%Mp, 1M1 1My, , are
cycle-free.
Then

* = * *
MUy rIy) =My g+ M5 oMy )%,
* * *
1,11, oMy oMy 1) My oM 5,
" _ * * %
MAIyrIy)=(My o#My (M M) o) My 1My g
* _ 5 *
MoIprIp)=(My o+My (M7 1My )%

M*(I1,12)=(M

Proof. Consider the matrices

M,= and M2= B
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The matrix M, is cycle-free. Hence, MI exists and equals

My g o)
*
o} M3 o, .
This implies that
: *

. My 474 oMo oy 4 o

My +M MIM, =
o) M, +M, MY M

2,2702,15 ,1 1,2 # °

Hence, by our assumptions we infer that M1+M2MIM2 is cycle-free. We
are now in the position to apply Theorem 2.7 with al=M1 and a2=M2.
The computation of
* * %*
(M1+M2M1M2) (E+M2Ml)
proves the theorem. 0

Theorem 3.2. Assume that M and M are cycle-free, and M or
1,1 2,2 1,2

M is quasiregular.
2,1

Then M is cycle-free and

* _ * *

M (1:1,11)-(1~41,1+b'11'2 2,2 2’1) '
* = *

M (Il,IZ) ( 2'1) Ml'z

*
1’2) M M

*
My - M5 5

% _ *
MU(I,, I )=(M, +M; M) 4

2 2 2 X

2 X =2 X

* . * *
M7 (I, I )=(My o+My My M3 o).

Proof. We only prove the case that M2 1 is quasiregular. The proof
’

of the other case is similar.

We claim that, for k21,

k k k

1,108) l(MllzlE) (MZ,Z'E) 2

(M,e)k =

k
(o] (lez,s) 5

The proof is by induction on k.

Since (M2 1,e)=0, the claim holds true for k=1.
’

If k>1,

M, €)%= (M, ) (M,e) 1=
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1 Ky : )"2
k= (M €) T (M €)M, 5.
(M) 106} (Mg 5,€) (My, 1) k1+k£=k_1 1,1° 1,2 , )
R
o My o0€) 9 2,2’
’
k,+1 k2 =i
’ +(M LE) (M +€)
S Iy gee) b My e My pie) feMy o,e) My
1,1 k,+k =k-2 1°
1¥k3
K
[o} (MZ,Z'C)

Clearly, the last matrix obtained equals the right side of our claim.

Denote
(Ml,l's) o] o] (Ml,Z'E)
Ml = r Mz = ’
0 (o} (o} (o}
0 0 ’
M3 = s
0 (M2,2’€)

Since the discrete convergence in A§XI is strong, we obtain
k k
lim ) mtom, w2 - M} M, lim M7 = o,
n>o k. +k,=n-1 n-+e
172
This implies that M is cycle-free. Furthermore,

* -
My, 1%My, M3, M, 1/€)=(M; ,€) and

* = . .
(M2’2+M2'1M1r1M1,2’€)‘(MZ,Z'E)' Hence, the conditions of Theorem 3.1

are satisfied and our theorem is proved. O

Theorem 3.3. Assume that M1 1 and M2 2 are cycle-free. Furthermore,
’ ’
assume that M2 1=0. Then M is cycle-free and

14
* * Ca%
My,1 M1,1M,0M0 5
) M3, )

Proof. By Theorem 3.2. 0
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Theorem 3.4. Assume that Ml 1 and Mz , are cycle-free.
’ ’

Furthermore, assume that M1 2=O. Then M is cycle-free

’

and
*»
. M1'1. (0]
M =
* * «
My My aMy,0 M2 /-
Proof. By Theorem 3.2. 0
We now consider linear systems of the form
1]
Y=MY+P, M€A§XI<<E*>>, PEA§XI <<L®>>, (5)

]
where Y is a variable. A matrix SGAIXI

<<I*>> is called a solution
of (5) iff S=MS+P. The linear system (5) is called cycle-free iff

M is cycle-free.

Theorem 3.5. Every cycle-free linear system (5) has the unique
solution M*P. ]

As we will see below there is a close connection between linear

systems and automata.

We need four operations on matrices which are used later on for

automatatheoretic constructions: Kronecker product, Kronecker sum,

Hadamard product and Hurwitz product.
I,xI:

L Lo%la
(i) The Xronecker product of MleA and MZEA , denoted by

(11XI2)X(IiXIé
M1®M2, is the matrix in A defined by

@ 5 5 . . = . . E e &
(Ml MZ)(11,12),(1i,1é) (Ml)ll,li(MZ)lz,lé

IIXII szI2
(ii) The Kronecker sum of MIEA and MZEA , denoted by

M1®M2, is the matrix defined by

M1$M2=M1®E2+E£®M2.

I xI
Here Et is the matrix of unity in A t, t=1,2.

The Kronecker product and the Kronecker sum are easily extended
to more structured semirings by isomorphism. ‘
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leIi szIé

(iii) The Hadamard product of MlEA <<ZI>> and MZEA <<Z;>>,

denoted by M1®M2, is the matrix defined by
M.GM_ = J (M, ,W)®(M,,w)w.
1 * 1 2
we(Z,nZ,)

I in szIé

(iv) The Hurwitz product of M.€aA <<I*>> and M.€A <<I*>>,

1
denoted by MluJMz, is the matrix defined by

2

MM = ] ) « My W ) OM, wy) wyiw

* 2°
wlez wzeZ

The next three theorems state the usual properties of the Kronecker

product.
Itxlé
Theorem 3.6. Assume that, for t=1,2, Mt,M£€A . Then
] o~ ] 1) = ]
(Ml-f—Ml)QM2 M1®M2+M1®M2, M1®(M2+M2) M1®M2+M1®M ’
M1®0=0 and O®M2=O. 0
Itxlé

Theorem 3.7. Assume that MtEA + t=1,2,3. Then

M1®(M2®M3)=(Ml®M2)®M3. | v 0

Theorem 3.8. Let A be a commutative semiring. Assume that
I.xI IuxI L X1

1 2773 4775 *
MleAJ , MZEAJ ’ M3EAJ <<IL">> and
I .xI
5776 *
M4eAJ <<I7>>,
Then
(M1M2)®(M3M4)=(M1®M3)(M2®M4). 0

The next two theorems give properties of the Hadamard product.

Theorem 3.9. Let A be a commutative semiring. Assume that

I.xI IsxI I, xI
1772 2773 * 4775
MleAJ <I>, MZEAJ <<I">>, M3EAJ <Z> and
I_xI
57.6 *
M4EAJ <KL, 2Dy
Then

(MIMZ)G(M3M4)=(M1@M3)(M2®M4).
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Proof. (Mle)@(M3M4)=

xéz wéz*(ml'X) (My, W) ® (Mg, x) (M, ,W) ) xw=
xéz WEE:Z*((MIIX)G(M:SIX)) ((leW)Q(M4,W) )xw= (M1@M3) (M2®M4) ’

Here the second equality follows by Theorem 3.8. . O

Theorem 3.10. Let A be a commutative semiring. Assume that

I xI
e,

MtGAJ

Then

>, t=1,2.

D R
(M1®M2) —M1®M2.

Proof. We show that MI@M; is the solution of

Y=(M1@M2)Y+E GE

1772

by

* * _ * %* e N IR R
(MIGMZ) (Ml@Mz) +ElOEz— (MlMl )® (MZMZ ) +E1®E2—M1®M2+E1®E2—M1®M2 .

Here the first equality follows by Theorem 3.9. Theorem 2.15 now
proves Theorem 3.10. 0

The next theorem, dealing with Kronecker sum and Hurwitz product,
is proven in a similar manner.

Theorem 3.11. Let A be a commutative semiring. Assume that
I.xI

MtGAJt ters, t=1,2.
Then
*_ % * i
(M1®M2) =M M, . 0

We now introduce automata.

An A<<I*>>-automaton

&= (1,M,s,P)

is given by

(i) a countable set I of states,

(ii) a matrix M.GAK<Z*>>)§XI called the transition matrix,
(iii) SGLA<E>)§XI called the initial state vector,

(iv) Pe(A<e>):IIX1 called the final state vector.
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If M, j=r=O i,J€I, then we say that the edge (i,3j) with the label

r is in @. A path ¢ from i to j in @ is a finite sequence of edges
(Jo,Jl),(Jl,]z),...,(jk_l,Jk), i= jo, j= )k, k>0. it is written c:i+j.

The integer k is called the length of the path and is denoted by |c].
If r, is the label of (Jg_1+3¢)» 15tsk, then the label ||c|| of the

path ¢ is defined be Hcl#rlrz...rk.

For each state i€I we introduce the null path Ai from i to i with
|2;1=0 and [, ||=¢ .

Assume that c:i1+i2 and d:iz-*i3 are paths. Then the composition

cd:i;+i; is defined by concatenation. We have |cd|=|c|+|d]| ana

lledl=ll<cll la]l.
When it exists, the behavior ||@||€ A<<Z*>> of an A<<I*>>-automaton
a=(I,M,S,P) is defined by

1Ll = sm*p,
i.e., by the sum of the labels of all paths multiplied by the appro-
priate components of S and P:

&l = 1 53, (1 llclbe, .

11,1261 G 1l+12 2

An A<< >>-automammma—(I M,S,P) is called cycle-free iff M is cycle-
free.

Theorem 3.12. Let a=(I,M,S,P) be a cycle-free A<<I*>>-automaton.
Then

&l =

is welldefined. O

Theorem 3.13. Let R=(I,M,S,P) be a cycle-free A<<Z*>>-automaton and
consider the cycle-free linear system Y=MY+P,

Let T be its unique solution. Then

141l = st. u]

If the entries of the transition matrix of an A<<I*>>-automaton &
are in A<I> or A<IUe> then Ol is called A<I>- or A<IUe>-automaton,
respectively. If the set of states of an A<<I*>>-automaton Blis
finite then Ol is called A<<Z*>>—finite—automaton.

Given A<I>-automata ﬁj=(Ij,Mj,Sj,Pj), i=1,2, IlﬂIZ=¢, we construct
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A<I>-automata kf,, kea, 8 +4,, Qlaz' *1’, 4,04, 5!1Lu92 and (f),,

2€L. Their behavior will be as expected:

+ f
k16 Il 116, 141G, 1L 161 -El, 1817, 181 © G, Il 116, lealiE, ] ana
IIQIHZ. These automata-theoretic constructions will have combina-

torial applications in the field of generating functions.

~Construction 1. k61=(Il,Ml,ksl,P1). Clearly, we have

”ka1”= k“al'l- 0

Construction 2. al+92=(11UIZ,M,S,P), where

M, O P,
S=(8, S,), M=( i ): P=( 1)‘
o M P. /

2 2

We have ||A,+6, || = su*p = s MIP 45 MR = |G || +[| &, . o

Construction 3. #,4.,=(I,UuI.,,M,S,P), where
1¥2 172

M, P.S.M P,S,P
s=(s, 01, M=< 1 - Fa 22> ,p=<'1 22>‘
o M P

2 2

Theorem 3.3 yields

* * +
¥y . MiFy 5585
M* = :
*
0 M3
Hence, ||8,8, [l = s,M]P s P, +s, M1 s Mip,= |G, | || &, |I. 0

Construction 4. Assume H91H to be quasiregular, i.e.,

+
1 @,ll.e)=(s,P,,€)=0. That means S,P;=0 andllQﬂ|=slmlpl.

+—
91 = (I,,M +P;S M,,S,,P).

Theorem 2.6 yields
* _ Mm¥ 4y *
(M1+P181M1) MI(PISIMI) .
Hence,

= *5 _a M* +)*p =g M+ +p ) ¥ + 0
Halll S, (M)+P,S,M,) "P =5, M] (P,S,M}) *P, =5 MIP (5 M}P,)) 4[9ﬂ| .

Construction 5. Let A be commutative. Then
91C)ez=(11XI2'M1®M2'Sf382'P1®P2)‘ We obtain, by Theorems 3.9 and
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310,
&, 08, = (s;0s,) (M,0M,) * (P, OP,) = (5,05, (MoM3) (ry0p,) |4l @, -

Construction 6. Let A be commutative. Then
By w,=(1, XI,,M@M,,S,05,,P ®P,).

We obtain, by Theorems 3.8 and 3.11,
|88l = (s 1@5,) (m@m,) * (2,80, = (s 185,) (MfLm) (po@P,) =

I ((5,,€)®(S,,e)) ((M*,w,)(M* 'Wo)) (P, e®P.,€))w aw.=
o w er* 1. 2 1’71 2'2 1 2 1

2
* * -
g &ZX* g éz*(((sl,e) (M7, wy) (Py,€)) ((S,,€) (M3, w,) (Pyr€))wyuw,=
1 2
wl&ZZ* wzezz*(“gl”'wl) (llazll,wz)wlww2 = [1Gylle]] a,ll. 0

Construction 7. (,) _=(I.ul 'M,S,P), where I, is a co y of I
IR R 1 P

ll
M, (M,,z)M M, ,z)p
S:(Sl O),M____(l 1 1 , B = 1 1>
\ o M, P,
Hence,
@I = s M5y, 20e, +5M] (M), 2) MYP) =S M7 (M, 2) M2
and
(g, _|l,w = (Sy,€) (M],wy) (M., z) (M*,w.,) (P.,€)=
1)l wzw i ki Lo R |
1v2
) A8y [lw,zw)=(1@.]]. . w) . 0
w1w2=w 1 1772 1z

A power series reA<<I*>> is termed A-rational (over I) iff r can be
obtained from elements of A<I*> by finitely many applications of the
operation of sum, product and quasi-inverse (applied to quasiregular
power series). The family of A-rational power series over I is
denoted by Arat<<2 >>,

A subsemiring of A<<I®*>> jig rationally closed iff it contains the

quasi-inverse of every quasiregular element.

The next theorem is the famous Kleene—Schﬁtzenberger Theorem.

rat

Theorem 3.14. A <<Z >> coincides with the family of behaviors of -

A<I>-finite-automata.
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Proof. Constructions 2,3 and 4 prove that.the family of behaviors of
A<r>-finite-automata is a rationally closed semiring containing

KeT ¥, (Clearly, ae, a€A, and x€I are behaviors of A<I>-finite-
automata.) The converse is proven by induction on the number of
states of A<I>-finite-automata by help of Theorem 3.2. 0

We now introduce A<<Z*>>—pushdown—automata. I' denotes an alphabet
(of pushdown symbols).

* *
A matrix M(ﬂ(A<<Z*>>)QXQ)E xF is termed a pushdown transition
matrix iff for all nl,nzé‘*,

. . * . ol
Mp,_"3 if there exist pe€r, n4€F with T, =pT,
Mﬂl,nz = and n2=w3n4;
0] otherwise.

An A<<Z*>>—pushdown-automaton
@ =(0,T,M,S,py,P)

is given by
(i) a finite set Q of states,

(ii) an alphabet I' of pushdown symbols,

(iii) a pushdown transition matrix M,

(iv) SE(A<€>)1XQ called the initial state vector,

(v) pOEF called the initial pushdown symbol,

(vi) PE(A<€>)QXI called the final state vector.

The behavior ||P||ea<<z*>> of an A<<I*>>-pushdown-automaton
P=(Q,r,M,8,p,,P) is defined by

= s(M* P

el = s,
provided M* exists. An A<<E*>>-pushdown-automaton
@=(Q,F,M,S,p ,P) is called cycle-free iff M is cycle-free. In this
fo} cyc e-Iree

case, the behavior of P is welldefined.

Theorem 3.15. For every cycle-free A<<Z*>>-pushdown—automaton ¢

there exists a cycle-free A<<I*>>-automaton @ such

that [|&[=[IP]] .

Proof. Consider a cycle-free A<<Z*>>—pushdown-automaton
@ = (erlMlslpolP)
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with the behavior [|P||= s (M*) P.
polE

* *
Let M'E(A<<Z*>>)§F XQ) x (I'"xQ) be the isomorphic copy of M, i.e.,

Ml

(myqy) s (g )= Ma )

T1eTy dy.9y°

. * *
Define, furthermore, S'E(A<s>)IX(r xQ) and P'G(A<€>)(F XQ) x1 by

S =0, m=p,, P 0, m=e.

S}PO,Q)= q’ s(Tr,q) ZE,q)=Pq’ Pzn,q)=

Consider now the A<<If*>>-automaton
A= (r*xq,m',s',p").
Then || @ ||= s'M'*p'=

' d

! s (M'*) P!
("qul),(“zrqz)EF*XQ (leql) (nllql),(ﬂzyqz) (Wzlqz)

io.ge (M'*) p _
qquzeQ (pO'ql) (po'ql)'(elqz) (E:qz)

I osgwh, o po=smt) e o= |0,
q;.9,60 41 Por€'9;+9; 9 Py &

Hence, all definitions introduced for A<<I*>>-automata hold also
for A<<Z*>>-pushdown-automata.
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4. ALGEBRAIC SYSTEMS.

In this section we show the connection between pushdown automata

and algebraic systems.

To simplify our presentation, we assume for the rest of this

paper that A is a commutative semiring.

An A<<I*>>-algebraic system (briefly algebraic system) with variab-

les in Y = {yl,...,yn}, YNL = @, is a system of equations

Y; = Py 1<isn,
where each 12N is a polynomial in A< (IUY)*>. Intuitively, a solution
of such an algebraic system is given by n power series OpreeesOy in
A<<I¥*>> satisfying the algebraic system in the sense that if each

variable Yy is replaced by the series o then valid equations result.

More formally, consider

!

o =1 . € (A<< (TUY) *>>)

nxl

(2]
n

Then we can define a morphism
o : (ZUY)* » A<<(Iuy)*>>

by o(yi) = Oi’ 1£isn, and o(x) = x, x € L.

Extend o to a mapping
0 : A<(LUY)*> > A<<(Tuy)*>>
by the definition

o(p) = L (PaY)o(y),
YE(ZuY)

where p is in A<(LUY)*>. Then this extended mapping ¢ is a semiring
morphism.

A solution to the algebraic system Y; = Py 15isn, is given by a

column vector o € (A<<Z*>>)nX1 such that oi = o(pi), 1sisn.

The approximation sequence

o 1

c”,0 ,...,03,...,03 € (A<Z*>)nX1
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associated to an algebraic system ¥y & By 15isn, is defined

as follows:
© = o, 03+1 = oJ(p,), j20, 1sisn.

If the approximation sequence converges, i.e., lim ¢J = g, then o
j+m

is referred to as the strong solution.

The next theorems are wellknown.

Theorem 4.1. The strong solution (when it exists) is a solution. 0O

Theorem 4.2. EveryIB<<Z*>>-algebraic system has a strong solution.[]

Every context-free grammar with the terminal alphabet I and every
semiring A give rise to an A<<Z*>>—algebraic system. Conversely,
every A<<I*>>- -algebraic system gives rise to a context- free grammar.

More explicitly, this interrelation is defined as follows.

Consider the context-free grammar G = (Y,I,R, yl). Then define the
A<<I*>>- -algebraic system ¥y = Pya l1sisn, by

(p;,Y) =1 if Yi * Y €R,
and

]

(pi,Y) O otherwise,

where y is in (Zuy)?*. Conversely, given an A<<Z*>>—algebraic system
Yj = Py lsisn, define the context-free grammar G = (Y,Z,R,yl) by

yi > Y € R iff (pi,Y) = 0,

where Y is in (Iuy)*

Whenever we speak of a context-free grammar corresponding to an

algebraic system, or vice versa, then we mean the correspondence
in the sense of the above definition. The next theorem shows the
connection between.B<<Z*>>-algebraic systems and context-free

grammars.
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Theorem 4.3. Assume that G = (Y,Z,R,yl) is a context-free grammar
and Y; = Py 1sisn, is the corresponding B<<I*>>-

algebraic system with the strong solution o. Then
L(G) = supp(ol)
or, equivalently,

1 char(L(G)). 0

g

An A<<Z*>>—algebraic system Yy

I
o)
[,
~
-
A
"
A

n, is termed strict iff

supp(p;) € U T(Zuy)*.

Theorem 4.4. Strong solutions exist for all strict algebraic

systems. Moreover, the strong solution is the unique

solution of a strict algebraic system. 0

The collection of all power series in A<<I*>> that are the first

component of the unique solution of a strict algebraic system

is denoted by Aalg<<2*>>. The next theorem is an easy consequence
of Theorem 4.3.

Theorem 4.5. A formal language L € L* is context-free iff char (L)

is in B219<<z*>>, 3

We now show the connection of the power series in Aalg<<2*>> and

the power series that are behaviors of cycle-free A<IUe>-pushdown-
automata.

Theorem 4.6. Assume that-yi = Py where supp(pi) g_Z(ZUY)*, 1£isn,

is an A<<Z*>>—algebraic system with the strong solu-
tion 0. Then there exists an A<I>-pushdown-automaton
@ such that ||P|| = ;- 0
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It is easy to show that, whenever a formal power series r is
accepted by a cycle-free A<lUe>-pushdown-automaton then so is

ae+r, a€A. Hence, each series in Aalg<<Z*>> is accepted by a cycle-
free A<ZUs>—pushdown—automaton. The reverse transition will now be
established.

Theorem 4.7. Assume that @ is a cycle-free A<EUE>—pushdown-automaton.

Then there exists an A<<Z*>>—algebraic system with the
unique solution o such that a,= [|0]].

Proof. Assume that =(Q,F,M,S,pO,P) is a cycle-free A<ZUe>-pushdown-
automaton with the behavior H@[l=S(M*)p s
OI

We now construct an A<<Z*>>—algebraic System with the alphabet of
variables

={ P

Y {Yq . q lperlqquzeQ}.

1732

By definition, the matrices YpE(A<Y>)QXQ, PET, have the (ql,qz)—

entry Ygl’qzl ql,qZEQ. Using these matrices we define

Y€=E, Ypﬂ=YpYn'

Our algebraic system is now given in the following matrix notation

Y=V M v €r.
P ngF* p,wows P

Its unique solution is given by (M%) +» PET. Here it is understood
P/

that (M*)p " is substituted for Yp’ DET .,
4

We now add an equation Yo=S I
mET

nent in the unique solution of the augmented A<<Z*>>—algebraic

*Mpo,nYnP' Then ”plfequals the compo-

System corresponding to Yo- 0

Theorem 4.8. A formal power series is in Aalg<<2*>> iff it is

accepted by a cycle-free A<ZUE>—pushdown-automaton. O
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5. COMBINATORIAL APPLICATIONS.

Our combinatorial applications concern mainly rational and algebraic

: g ; N .
sequences and their generating functions. Here a sequence a€A is

termed A-rational (A-algebraic, respectively) iff Z a(n)z® is a
n=0

<<z*>> (Aalg<<z*>>, respectively).

s : rat
power series in A

Goulden, Jackson [9] and Flajolet [6] have presented the theory to
solve combinatorial enumeration problems via the symbolic operator
method by the use of generating functions. That means that they
translate combinatorial constructions into operators on counting
generating functions. These operations on generating functions will

be defined in this section by the help of automata.

Recall that A is assumed to be a commutative semiring. We first

consider A-rational sequences.

Lemma 5.1. Let q=alz+...+akzk and p=bos+...+bk_1zk-1 be polynomials

and consider the A-rational power series r=q*p. Then

n-1

(i) for all Osnsk-1, (r,zn)=a1(r,z )+...+a_(r,e)+b_;

(ii) for all n2k, (r,z“)=al(r,z“’1) n~k

+...+ak(r,z Yo

Proof. Observe that, by Corollary 2.2,

r=qq*p+p=qr+p=a,zr+...+a, z"r+p. "

_ k
Theorem 5.2. Let g=a;z+...+a,z7, ry

sider the A-rational power series r=q*r1+r2.

and r, be polynomials and con-

Then, for some nOZk and all n2n
n-k

OI
n—1)+ ).

(r,zn)=a1(r,z ...+ak(r,z

Proof. Lemma 5.1 implies that, for all sufficiently large n,

(x, Zn)=(q*r1:2n)=al (q*rllzn—l il

-1

)=
). 0

)+...+ak(q*rl,z

n-k

n
al(r,z )+...+ak(r,z

The following theorem is a slight generalization of Klarner [13],
Theorem 3 and Eilenberg (5], Theorem VIII.4.2. A sequence aenl is
termed ultimately periodic iff there exist integers t20 and sz1

such that a(n+s)=oc(n) for all n2t.
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Theorem 5.3. The following statements concerning a sequence aEAN

are equivalent:
(1) o is ultimately periodic;

(ii) there exist s21 and rl,r2EA<z*> such that

©
nzoa(n)z“=(zs)*rl+r2;

(iii) for some nozk and all nZnO,
a(n)=ala(n-l)+...+aka(n—k) and {a(n) |n20} is
finite.

Proof.

(1)=(ii): Since a is ultimately periodic there exist t20 and s21
such that a(n+s)=a(n) for all nzt. Consider the two polynomials
r1=a(t)zt+...+a(t+s-1)zt+s-l, r2=oa(0)&:+...+cx(t—1)zt“1

and let
r=(z%)*r

1+r2.

We claim that, for all n20,

(r,zn)=a(n) .
Let Osnst-1. Then (r,zn)=(r2,zn)=a(n).

Let n2t. There are unique ml,mzzo such that n—t=s-ml+m2, Osm,<s-1.

l+m2+t.

2
Hence, n=s+'m

This implies

m m,+t m,+t
(22N =% "0 2N = (5%, (2%) Y (2,2 2 )=(ry,z 2 )=
a(t+m2)=a(sml+m2+t)=a(n).

(ii)=(iii): Theorem 5.2 implies that, for some non and all nzno

o (n)=o(n-s).
Now we obtain
{a(n)[n20}={a(n)|0$n§no-l}.

(iii)=(i): Assume that {a(n) |n20} contains exactly 221 elements of
A. Consider the k-tuples
3i=(a(no+(i-1)k),...,a(no+ik—l)), iz20.

Since there exist at most 1k distinct such k-tuples, there exist

. i L k :
3120, i,>0, Jl+3252 + such that Bj1=8j1+j2'

Hence,

a(no+(j1—l)k)=a(no+(j1+j2—1)k),...,a(n0+jlk-1)=a(no+(j1+j2)k—1).
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The recurrence equation of (iii) and these equalities yield
a(n+j2k)=a(n)
for all nznqy+(j;-1) k. 0

The next theorem shows that all A-rational power series are of the
form of Lemma 1, i.e., r=q*p, in case A is a commutative ring (with
unity). (See Eilenberg [5], Theorem VIII.3.1 and Kuich,Salomaa [15],
Theorem 8.16). ’

Theorem 5.4. Let A be a commutative ring. Then r is a power series
rat

in A <<z*>> iff there exist polynomials p,q€A<z*>,
where g is quasiregular, such that
r=q*p.
Proof. We have to show that qul+q;p2, q;plq;pz, (g*p) t, dy+9,,9,P
quasiregular, are of the form indicated by our theorem. We prove
only the last case (by Theorem 2.6):

(q+p) *p=(q*p) *q*p=(q*p) *.

Theorem 5.5. Let A be a commutative ring. The following statements

concerning a sequence aE&N are equivalent:
(i) o« is A-rational;

(ii) there exist polynomials p,q€A<z*>, where q is
quasiregular, such that, for all n20,

a(n)=(q*p,z™;

(iii) for some nozk and all nzno,

a(n)=a1a(n—l)+...+aka(n—k).

Proof. We have only to prove that (iii) implies (ii). The remaining

implications are proved by Theorems 5.2 and 5.4.

Assume now (iii) and define the polynomial q=alz+...+akzk. An easy

@

computation shows that (e-q) Z a(n)zn=p is a polynomial.
n=0

Since A is a ring, we obtain the equality q*(e-q)=e. Hence,

! a(n)z"=q*p. o
n=0
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Theorem 5.6. Let A be a commutative ring. The following statements

concerning a sequence aEAN are equivalent:
(1) a is A-rational and {a(n)|n20} is finite;

(ii) there exist s21 and p€A<z*> such that

I a(n)z"=(z%) *p;
n=0
(iii) for some n02k and all nZnO,
a(n)=a1a(n-1)+...+aka(n—k) and {a(n) |n20} is
finite;
(iv) a is ultimately periodic.

Proof. Theorem 5.6 is implied by Theorems 5.3 and 5.5 and the follo-
wing identity.

Let ry,r, and q be polynomials in A<z*> and q be quasiregular. Since
A is a ring, we obtain the identity

q*r1+r2=q*r1+q*(e—q)r2=q*(r1+r2—qr2). 0

By definition, the A<z>-finite-automaton
a(al,...,ak;bo,...,bk_1)=(Q,M,S,P) is given by Q={qo,.-.,qk_1}:

S=(¢,0,...,0); M M =z, 0Sisgk-1; M q =0 otherwise;

=a,, .z,
9599 i+l qirqi+l q; j

P =b. , 0fisk-1. The next figure shows ﬁ(al,a2,a3,a4;bo,b1,b2,b3).

Theorem 5.7.llﬁ(al,...,a

k,'bol ---rbk_l) “=

(alz+...+a zk)*(boe+...+b z )<

k k-1

Proof. By Theorem 3.2 we obtain for the qg-row of M*
k-1
z

(alz+...+akzk)*(€,z,..., )

Hence, sSM*p equals the expression described in the theorem. 0

In case A is a commutative ring, the A<z>-finite-automaton

a(al,...,ak;bo,...,bk_l) constitutes a "normal form automaton" for
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the generation of the A-rational sequence o, where

p n_ K, k-1, _ .
ngoa(n)z =(ajz+...a;2") " (bye+...+b, .z )—Ha(al,. "ak'bo""’bk—l)”’
A sequence aEﬁN is generated by an A<z>-automaton § iff, for all
nz0, a(n)=(||@],z"). If A is a commutative ring, each A-rational
sequenée is generated by some normal form automaton

OlEy e e orlly iy 5 g by, _g Vs

t<<z*>>, q,r€A<z>, q quasiregular, is the

generating function of an A-rational sequence o iff, for all nz2o0,

A power series q*IEAra

a(n)=(q*r,z").

Our next goal is to show the Cayley-Hamilton Theorem in commutative
rings. Clearly, this yields an easy method for the computation of

the generating function from a generating A<z>-finite-automaton.

An analysis of the results and proofs in Nrs.33-35 of von Mangoldt,
Knopp [17] shows that these are valid also in commutative rings. We
assume the reader to be familiar with the definitions of a deter-
minant det (M) of a matrix M.

Let now M be a kxk-matrix, k22, and consider the (k=1)x (k-1)-matrix

M*J that originates from M by cancelling the i-th row and the j-th

column of M. By definition, the (i,j)-minor My is given by
’

3
= (1) P*Iget (i

ui,j—( 1) det(M™7).
By Nr.35(6) of von Mangoldt,Knopp [17] we have the identities

L

o

n
M. . = M . =6, . det(M 1<i,95k.
g1 LS p],s szl s,1i us,j i) (M), rJ
Let now ME(A<z>)ka. Define PjE(A<E>)kXI and SE(Arat<<z*>>)le by

(Pj)s=6. and

J,8
S=MS+P..
J
By Theorem 3.5 we obtain that
=(M* <ig
Si (M )i,j’ 1<isk.

Since A is a (commutative) ring, we have
(E-M)S=Pj,

- = <g<
1(6s’t Ms,t)st ds,j’ lsssk.

Il %7

t
Multiply the s-th equality by the (s,i)-minor Hs 4 of E-M,
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t=1

and add these k equalities
k k k

YooY (5. . -M S.=J ¢ H_ .=

Ju_ .
s;l f=1 S;t S, TsaivE s

This yields
k k
1T (E-m) .

5

i
U . S, =
t=1 s=1 Eoes

& By oy . 6t,i det(E-M)St=det(E—M)Si=u.

g 3.1

Since e-det(E-M) is quasiregular, we obtain

* . . * <i s«
(M )i,j (e-det (E-M)) “j,i’ Isi,j5k.

Clearly, the degrees of e-det (E-M) and uj jr respectively, are at
14

most k and k-1, respectively. Hence, Lemma 5.1 proves the following
Cayley-Hamilton Theorem in commutative rings.

Theorem 5.8. Let A be a commutative ring. Consider a matrix

ME(A<z>)ka and compute e—det(E—M)=alz+...+akzk. Then,
for all n2k, 1lsi,35k;

n _ n-1 n-k
((Mlz) )i,J—al((M,Z) )i,j+.--+ak((M,Z) )ilj.
* _ ol n n_ k, *
Proof. (M )i’j_ngo((M'Z) )i,jz =(ajz+...+a, z") My ;- Now apply
Lemma 5.1 (ii). 0

Flajolet [6], Part I, Figure 2, has given a table of the translation
of operations on sequences into operators on generating functions.
We do the same for operators on A<z>-automata. If in the following
table the A<z>-automata U and %’generate the sequences(an) and (bn),
then the A<z>-automaton in the second column generates the sequence
(sn) in the first column.

Seguence A<z>-automaton
ka kQ
a +b_ a+$
n
) akbn-k aé
k=0 "
n
+
a+)as _ a
nO k" n-k
anbn ) do b
n
) (ﬁ)akb " au_:£
k=0 o

(n+lya_ 45 a,
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If & and % are A<z>-finite-automata then the automata in the second
column are again A<z>-finite-automata and the (sﬁ) are A-rational
sequences. If Ol and $ are A<z>-pushdown-automata (in cases ® and
Lu,éé has to be an A<z>-finite-automaton), then the automata in

the second column are again A<z>-pushdown-automata and the (sn) are
A-algebraic sequences. (The constructions 1-7 have to be performed

carefully on the blocks to yield again A<z>-pushdown-automata.)
Examples will show the usefulness of the constructions. The basic

commutative ring is Z.

Example 5.1. The Fibonacci numbers Fn' nz20, are defined by F_.=0,

0
— = >
F1 1 and Fn F _1+Fn_2, n22. They are generated by

) Fnzn=(z+zz)*z.
n=0
This shows that the sequence of the Fibonacci numbers is IN-rational.
The normal form automaton for the sequence (Fn) is 4(1,1;0,1)=

({qo,ql},M,S,P), which is drawn in the next figure.

z

G e
) z
(i) Let (Cn) be the sequence (Fn)'(Fn), i.e., the Cauchy product

of the sequence of Fibonacci numbers with itself. Then

@1,1;0,1) - G(x,1;0,1)=({qy,q;,9,,95},M;, 5, ,P]) generates (C_):

z z 0 O 0
-2 0 z z N 0 a
Ml— O 0 2z =z ' Pl_ 0 ’ Sl—(E,O,O,O).
(0] (6] z (0] €
2

We obtain det(E—Ml)=€—22—z +223+z4 and My 1=zz. Hence, (Cn) is
14

generated by (Zz+zz—223—z4)*22:

c.=C.=0, C2=1, c,=2, C,=5, C.=10, C

0~ 3 4 5 =20y C

=38,...

6 7

(ii) Let (Hn) be the sequence (Fn)G(Fn), i.e., the Hadamard product
of the sequence of Fibonacci numbers with itself. Then

a(lllfoll)ea(lll;oll)=({qorqquzrq3}lM2,52,P2) generates (Hn):

4 SZ=(€'O'O’O)'

NN NN

oN ON

oonNnN

ooon
[

m OO0
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We obtain det(E—M )=e—z-422-23+z4 and g l=z—z3. Hence, (Hn) is

generated by (z+422+z -Z ) (2-23):
HO—O, Hl=1, H2=l, H3=4, H4=9, H5=25, H6=64, H7=169,
(iii) Let (Tn) be the sequence (Fn)Lu(Fn), i.e., the Hurwitz product

of the sequence of Fibonacci numbers with itself. Then
@i(l,l;oll)wa(lll;ol1)=({qolqqu21q3},M3183,P3) generates (Tn):

2z
’ 53=(€lololo)'

NNON

0
0]
0
€

N ON N
oNNO

z
3 Z
(6]

Since M3 is blockstochastic (see Kuich,Salomaa [15],Exercise 4.5),

the A<z>-finite-automaton ({qo,ql,q3} M3,S3,P3) generates (T ):

2z 2z O 0
Mé= z z z . Pé= 0 7 S§=(€,0,0).
o] 2z O £

We obtain det(E-M:';)=€-3z—222+4z3 and My 1=222. Hence, (Tn) is
’

2_453y%2,2,

T4=22, T

generated by (3z+2z

T.=T,=0, T,=2, T.,=6,

=T y 5 =70, T =230, T,=742,... . o

5 "7 76

Example 5.2. We want to prove the identity

n n n i
(O)FO+(1)F1+...+(n)Fn—F2n

(i) The value on the left side of the identity is the n-th element
of the sequence (Fn)Lu(l). This sequence is generated by the A<z>-

finite-automaton

({agrq;l, (22 z) (e, O),( )).

(ii) The sequence (Fn)O((ln+(—l)n)/2), F +0,F,,0,F,,0,;

2' 4' ---len,O,.--,

is generated by
(tagray,95,951,M,8,P),

where

2 =z o =z
M= O] =

z O z O
Consider the automaton

2
({qolqllq21q3},M 7 S,P) .
47
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This automaton is equivalent to

2 2
2z Z (¢]
({qo,qz}, (Zz 2),(5,0),(5)).

z

Substituting z for 22 yields an A<z>-finite-automaton generating
(an). Inspection shows that this automaton and the automaton of (i)

are isomorphic. O

Example 5.3. Consider the N<z>-automata @l=(N,M,S,P) and
@2=(N,M ®(z),S,P), where S=(¢,0,0,...),

£ O z O O .
[ O _{z O =z O .
P = 0 and M = g # @ = ) .

- . . ° . -

The automata @1 and @2 are "almost" pushdown automata. (Add an extra
state and an edge labeled by z from state O to this extra state.)
By the construction in the proof of Theorem 4.7, we obtain

1P 1=z 1 %+e,  [1@,)1=z%@,)*+2l|@,]| +¢,

(H@lﬂ,zzn) = FT%%g%%T and (H@z”,zn) = (n£3)—(2ig), where (n£3) is a

triomial coeffizient (see Kuich [14],Prodinger [18]).

Observe that (Pz=@lu_1 8, where A=({q}, (2), (), (g)).

Hence,
kzo(ﬁ) Il 2% = ("1 -3y,
i.e.,
[:i:)] (e, = (P -0r3,
where C, = ET%%%%%T is a Catalan number. 0

Example 5.4. Given a language Lcti*, define the language

D(L)={wEL*|there exist v, €L and VZEZ* such that WEVluJVZ}.

The words of I*-D(L) are called totally clean by Zeilberger [24].
Zeilberger [24] computes the weight enumerator of L*-D(L) in case L

is finite. We will extend this to the case of a regular language L:

D(L) is then again a regular language and enumerating functions are
easily computed. (Of course this is valid for I*-D(L), too.)
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Let H'=(Q',M',q6,P') be an B<I>-finite-automaton whose behavior is

char (L). Let M" &B<I>)%*? pe the diagonal matrix defined by

M" = § *char(Z) and let &"=(Q',M'+M",q',P'). Then
4.9,  ‘aj.q, : . o

D (L) =supp|| " ||.

Finally, let;9=(Q,M,qo,P) be a deterministic B<Z>-finite-automaton
with ||&|kchar (D (L)) (easily constructed from /") .

Consider now € to be an N<I>-finite-automaton. Again we obtain

[|&|Echar (D(L)), but now ||8||€ N<<2*>>. Since HQIF(M*P)q , the weight
0

enumerator of D(L) and the structure generating function of D(L) are
easily computed (see Kuich [14]).

We take the example from Zeilberger [24]. Let Z={x1,x2,x3} and
L={x1x2x }. Then

3
x2+x3 x1 (0] (0] (ORN
0 X, +x X (o] (¢}
_ 173 2 _
i 0 0 X, +x, X and P = 0 d
0 (e} (0} x1+x2+x3

where 9y corresponds to the first row and column. We obtain

* * ' * *
H@[F(x2+x3) X (Xg+x3) "x, (% +x,) X3 (X +x +x ) *.
Hence, the weight enumerator of D(L) is given by
-1 -1 -1 -1
x1x2x3(;—x2-x3) (l-xl—x3) (l—xl—xz) (l—xl—xz—x3) 5
The structure generating function of D(L) is given by
23 (1-32) (1-22) 73,

Similar computations can be done with clean words (see Zeilberger
[24],"second standard"): construct a deterministic finite automaton
a for char (Z*L5%) , 0
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