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SEMIMNGS, AUTOMATA AND COMBINATORIAL

APPLICATIONS

VON

WERNER KUICH

ABSTRACT. This paper introduces into the basics of linear algebra

in semirings and automata theory. These are then applied to combi-

natorial-problems.

The topics from semirings and automata considered in this paper

should interest mathematicians who are specialized in combinatorics.

They include the basic definitions of semirings and formal power

series, convergence and linear equations, matrices, automata, rational

power series, algebraic systems, algebraic power series and pushdown

automata. The presentation of these topics is along the lines of

Sections 1, 2, 3, 4, 7, 8 and 10 of Kuich, Salomaa [15]. There the results

are fully referenced. The Hadamard product of matrices and Construc-

tion 5 seem to be new. The Hurwitz product of matrices and Construc-

tion 6 are due to Kuster [16].
An interested reader is referred to the books on the classical theory

of automata and languages-.Bucher/Maurer [2] , Ginsburg [7], Harrison [10],
Hopcroft, Ullman [11], Hotz, Estenfeld [12], Salomaa [19], [20]; and on
books on the theory of automata and languages based on formal power

series:Berstel, Reutenauer [l], Conway [4], Eilenberg [5], Kuich, Salomaa

[15], Salomaa, Soittola [21] and Wechler [23].

There are some books and papers that apply the theory of automata and

languages to combinatorics:Chomsky, Schutzenberger [3], Eilenberg [5] ,
Goldman [8], Goulden, Jackson [9], Kuich [14] and Straubing [22].
Our applications include the following topics:Rational sequences and

rational sequences with finitely many distinct coefficients are charac-

terized; normal form automata for the generation of rational sequences

are defined; a new proof for the Cayley-Hamilton Theorem in commutative

rings is given; Constructions on automata are defined that lead directly

to operations on generating functions; these constructions are applied

in a number of examples to rational and algebraic sequences.
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W. KUICH

1. SEMIRINGS AND POWER SERIES.

In this section we define the basic notions: semirings and formal

power series.

By a semiring we mean a set A together with two binary operations

+ and . and two constant elements 0 and 1 such that

(i) <A, +, 0> is a commutative monoid,

(ii) <A, *, 1> is a monoid,

(iii) the distribution laws a- (b+c) = a'b + a'c and

(a+b)-c = a'c + b'c hold for every a, b, c,

(iv) 0-a = a«0 = 0 for every a.

A semiring is called commutative iff a'b = b'a for every a and b.

If the operations and the constant elements of A are understood

then we denote the semiring simply by A. Otherwise, we use the

notation <A, +, ', 0, 1>.

The two most important semirings are the Boolean semiring B and

the semiring IN. Here B consists of two different elements 0, 1 and

is defined by 1+1 = 1. The semiring IN consists of the nonnegative

integers with the usual operations.

The following notational conventions will hold throughout the paper:

A denotes a semiring, £ denotes an alphabet and £" denotes the words

over I, including the empty word e. All items may be indexed.

Mappings r of E* into A are called formal power series. The values
of r are denoted by (r, w), where w   E", and r itself is written as

a formal sum

r = ]. . (r, w)w.
W6Z*

The values (r, w) are also referred to as the coefficients of the

series. We say also that r is a series with (noncommuting) variables

in E. The collection of all power series r as defined above is

denoted by A«£*».

Given r   A«£*», where A is a semiring, the subset of Z defined

by
{w|(r, w) * 0]

is termed the support of r and denoted by supp(r). The subset of

A«S"» consisting of all series with a finite support is denoted



6.. _, = 1 ifw = w' and 6.. .., =0 ifw ^ w
w, w" w,w
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by A<Z >. Series of A<Z > are referred to as polynomials. It will
be convenient to use the notations A<ZUe>, A<E> and A<e> for the

collections of polynomials having their supports in SUE, E and E,

respectively.

Observe that we have written e instead of {e}. We do not usually

make any notational distinction between an element and the single-

ton consisting of that element.

Examples of polynomials belonging to A<Z > are the power series 0
and w, w £ £*, defined by (0, w') = 0 and (w, w') = 6^ ", for all

w'£ £", respectively. Here 6, ^ ^, denotes the Kronecker symbol:

(We will use in the

sequel the Kronecker symbol for arbitrary sets.)

For ri , r^   A«Z"» we define the sum r, +r-, and the product

r^-r^ by (r^+r^, w)=(r^, w)+(r^, w) and (r^*r^, w)= ^ (r^, w^)(r^, w^),
W-, W^=W

for all w E X*. Clearly, <A«Z»,+, . , 0, e> and <A<E*> ,+, ' , 0, e> are
semirings again.

Subsets of £' are called formal lanquaqes over Z. We now connect the

theories of formal languages and formal power series. For L c E , we
define the characteristic series of L, char (L)   A«£» by

(char(L), w) = 1 ifw  L and (char(L), w) = 0 ifw ^L.

When we consider formal power series in B«Z*», then r £ B«E*»

corresponds to L £ Z iff r = char(L) (or, equivalently, L=supp(r)).
Hence, the semirings <B«£» , +, . , 0, e> and <(P(Z*) , u, . , 0, {s }> are

isomorphic. Here U' denotes the power set, 0 denotes the empty set

and . is the usual product of formal languages.

The Hadamard product of two power series r^ and r^ belonging to
A«Z^» and A«Z^» is defined by

r^ © r^ = [ . (r, , w) (r^, w)w.
we(Z^nz )*

In language theory, the operation corresponding to the Hadamard

product is the intersection of languages. If r, and r-> correspond

to the languages L, and L^ in the isomorphism referred to above

then r-, ® r^ corresponds to L^ n L-,.

Another operation for languages is the Hurwitz (shuffle) product Lu.

In language theory, it is customarily defined for languages L and L',
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LLUL'={W, W^ . . . w__w^ |nSl , w, . . . w_ L, w^'. . . wl L'} . (Here w; and w.'
n n'"" -I i~~~ n ---' l-- ~ n ' - ' i i

are words, for i=l,..., n. ) We prefer an inductive definition. For

w, , w^££ and Xi, x->eZ, we define

and

W, LU£=W,, ELUW^=W^,

W, X, U_IW^X-, =(w-, Xil-LJW-, )x^+(WiLUW^X-, )x,.

Hence, LU maps two words over £ into a power series in A«£"». We

now define the Hurwitz product Of the power series r^ and r^ in

A«Z"» by

rl^r2 L* . - L*(rrwi)(r2'w2)w: LUW^.

w^ Z" w^ E

If ri, r-, £B«Z», then this definition is "isomorphic" to that

given above for languages.

Observe that <A«Z*» , +, ®,0, char (£ ) > and <A«Z», +, U_I, O, £> are

semirxngs.

The partial derivative r^ A«£*» of a formal power series

r A«£» with respect to a symbol z E is defined by

(r^, w)= [ (r, w^zw^) .
w=w, w,
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2. CONVERGENCE AND EQUATIONS.

We now give an axiomatic definition for the notion of convergence

of a special type. The notion is particularly suitable for hand-

Ling equations arising in automata theory. It also gives rise to

some important identities needed later on.

A mapping a:(N-l-A is called a sequence in A. By A" we denote the set

of all such sequences. If a A" then we use the notation a=(a(n)).

We denote by o and n the sequences defined by o(n)=0 and n(n)=l,

for all nSO, respectively. For a£A"", c6A, we define ca and ac in

A" by (ca) (n) =ca (n) and (ac) (n) =a (n) c, for all nSO, respectively.

For a^, ci^eA", we define a, +a^ and a, 'a-, in A" by

(a^+a^)(n)=a^(n)+a^(n) and (a^»u^)(n)=a^(n)a^(n), for all nSO,
respectively.

.
IN

Observe that <A", +, ', o, n> is a semiring. We need one further opera-

tion before giving the basic definitions of convergence.

Consider a£A" and a6A. Then a^CR:" denotes the sequence defined by

a. (0)=a, u_(n+l)=a(n), for all nSO.

Each set Dc A" satisfying the following conditions (D1)-(D3) is

called a set of convergent sequences in A.

(Dl) neD.

(D2) (i) If a^, a^6D then a^+a^ED.

(ii) If a£D and c6A then ca, aceD.

(D3) If u£D and a£A then a_GD.
3i

Let D be a set of convergent sequences in A. A mapping lim:D-<-A

satisfying the following conditions dim l)-(lim 3) is called a

limit function (on D).

dim 1) lim n=l.

dim 2) (i)If a,, a^ED then lim(a, +a-, ) =lim a, +lim a^.

(ii)If a6D and c A then lim ca=c lim a and lim ac=(lim a)c.

dim 3) If a D and aeA then lim a_=lim a.
a.

Observe that, for all c6A, the sequence cn=nc is convergent inde-

pendently of D and converges to c.
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In what follows we often use the terms "convergence in A" and

"limit in A" without explicitly specifying D and lim. Sets of

convergent sequences will be considered only in the case that
a limit function is defined. We also use the notation lim a(n)

n-<-a

for lim a.

A notion of convergence definable for every A, referred to as

discrete convergence, will now be discussed. This notion of

convergence is the classical one considered in connection with

semirings and will also be the most important one needed in the

sequel.

The set of convergent sequences D^, is the set of ultimately con-

stant sequences. Here, a sequence a is ultimately constant iff

there exists an n.. 20 such that for all kSO

a(n +k)=a(n ) .

The value of the limit function lim^, on D^, for such an ultimately

constant sequence is a(n^).

Each set of convergent sequences D has to contain D^,, i. e., D^, is

the smallest set of sequences for which (D1)-(D3) holds. Further-

more, if lim is a limit function on D, then lim a=lim^ a for all

a6Dd-
Hence, the discrete convergence is the only notion of convergence

if the set of convergent sequences is given by D^| . It is a notion

of convergence in all semirings.

The following two examples show that our notion of limit is compa-

tible with the customary ones.

Example 2. 1. A sequence a£[R'" is called a- Cauchy sequence iff for

all e>0, there exists an n^SO such that |a(n^)-a(n^)|<e holds for

all n^, n^Sn .

One possible choice for the set D of convergent sequences in (R is

the set of Cauchy sequences with the usual convergence in R. This

notion of convergence in IR is called the Cauchy convergence. D

Example 2. 2. A sequence aeR'" is called an Euler sequence iff the

is a Cauchy sequence.sequence ( f fn ^ a(j)/2"
j=0 VJ /

10
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One possible choice for the set D of convergent sequences in R is

the set of Euler sequences with the following notion of conver-

gence:

lim^, a=lim ^ (^)ot(j)/2n, where the limit on the right side denotes
n-roo j=Q ^

the Cauchy convergence.

This notion of convergence in (R is called the Euler convergence. It
n -

can be shown that, for all a R, with -3<a<l lim^, ^ a-l=l/(l-a) and
n->-°°- j=o

lim^ an=0.
n-.°°r
Let a=-l. Then 1, -1, 1, -1,... converges to 0 and 1, 0, 1, 0,... con-

verges to -^-. D

In the next example a somewhat unusual notion of convergence will be

considered. The notion is connected with the important concept of a

quasi-inverse discussed below.

Example 2. 3. Consider the set D of sequences in IR, generated by (D2)

and (D3) from the sequences (an), where a is in IR.

Then it is easily seen that D forms a set of convergent sequences
and, furthermore

all kSO

and, furthermore, a6D iff there exist n.. SO and ii, Sl such that, for

a(n^+k)= I CjB^+b, c^, a^, bGR,
a^a.; for i:ej and a^':l, where l^i, j^ll.

It is easy to see, either directly or using the Vandermonde deter-

minant, that
i

c, a'^+b=0 for all kSO implies c, =0, l^j^S., and b=0.
jSi 3 3 - --- - - - --- -3

^

Hence, if we define lim:D-»<R by lim a=b for a(n^+k)= ^ c^a. +b, then

lim is a welldefined mapping and it is easily seen that lim is a

limit function in R.

a

We note that lim f aj=lim(l-an+l)/(1-a) =
n-+oo j=o n-f-oo

l/(l-a)-a lim an/(1-a)=1/(1-a) for a^l.
n^-oo

The powers a"^, iSO, of an element a in a semiring A are defined in

11



W. KUICH

the natural way, whereby a"=l.

n -

If ( ^ aJ)6D then we write

lim ? aj=a+
n-i-m j=i

and call it the quasi-inverse of a (with respect to the given
" -

notion of convergence). If ( ^ aJ)eD then we write
j=0

n -
lim ^ a3=a*
n-^oo j=o

and call it the star of a (with respect to the given notion of con-
vergence).

(For n=0 the range of j is empty in the sum defining a+. In this
case we consider the sum to be equal to 0.)

The next theorem shows the close interconnection between a+ and a*.

Theorem 2. 1. Let a A. Then a* exists iff a+ exists, and l+a+=a*,
aa*=a*a=a+.

n _ n ^
Proof. Let a+ exist. Then l+a+=lim n+lim( ^ a-))=lim(n+( ^ a3)}=

j=l j=l
n _

lim ^ a-l=a*. Hence a* exists.
n-+°° j=0

* . . - * 9 -1 .. ntl -1 _ . 5 -i
Let a exist. Then aa =a lim ^ a-)=lim ^ a-)=lim [ a:)=a . Hence a

n-»-°° j=o n-<-oo j=i n-<-u> j=l
exists. Obviously aa =a a.

Corollary 2. 2. If a exists then

a*= I a3+an+la*, and
j=0

n

a

a*= [ a:l+a
j=0

^. *. n+l , for all nSO. D

We now consider equations of the form

y=ay+b, a, b£A, (1)

where y is a variable. An element sgA is called a solution of (1)
iff s=as+b.

Theorem 2. 3. If a exists then s=a*b is a solution of (1) .

Proof. By Corollary 2. 2, we have a =aa*+l. Multiplying by b gives
a b=aa b+b, which shows that this a*b is a solution of (1). U

12
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The next theorem gives a sufficient condition for the uniqueness
of the solution.

Theorem 2. 4. If a exists and lim an=0 then s=a*b is the unique
n->-°°

solution of (1).

proof- By Theorem 2. 3, s is a solution of (1). Assume t A is a
solution of (1). Then

t=at+b=a2t+ab+b=... =an+l+t { ajb
j=0

holds for all nSO.

Since lim a =0, we have
n->.co

a lim an=lim an+l=0.
n-+°° n->-°°

Furthermore, an+lt+ f_ajb=t implies (an+l)t+( f aj)b=nt. Hence, by
j=o j=o

dim l)-(lim 3) ,

dim an+l)t+(lim f aj)b=a*b=t. D
n"m . . n"°° J=o

\^\^^i^i^i \ \j2cy^:^^^
Example 2J4. Let y=ay+l, -3<a<l. i/We work with the Euler convergence.
Then lim a"=0 and a*=l/(l-a). Hence, the unique solution of v=c

n^-oo

is l/(l-a).

We now continue Example 2. 3. Recall that, for a<l, lim a"=0, a*
n--°°

exists and a"=l/(l-a). This implies that the equation y=ay+l, a^l,
has the unique solution s=l/(l-a).

We now turn to the discussion of some important identities. The
letter a, with or without subscripts, stands for an element of A.

Theorem 2. 5. (a^a^)* exists iff (a^a^)* exists. Whenever (a^a^)*
exists then (a^a^)*a^=a^(a^a )*.

proof- To prove the first sentence, it suffices to show that the

existence of (a^a^)" implies the existence of (a^a^)*. Assume that
(a^a^)* exists. Then

nZ1 ^ n-1 _. n
(. L(ala2) )6D and l+ta?. ! (aia^)ja^)=( ]: (a^aJj)gD
j=o - - "j=o -^ ^ J- j=o

The second sentence of the theorem follows because

13
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D(a^a^)*a^=lim I (a^a^i^a^lim a^ J; (a^, a^ ) 3=a^ (a, a^ ) * .
n-»-oo J=Q - - - n+co " j=0

Theorem 2. 6. Assume the existence of (a^+a^) , a^ and (a^a*)* and,
furthermore, that

lim(a, +a-, )"=0.
n-i.03

Then
*_-* »- _*> *

(a^+a^)"=a^(a^a^)*=(a^a^)*a^.

Proof. We first show that a^(a^a^)* is a solution of the equation
y=(a +a^)y+l:

{al+a2)a*l (a2a^)*+l=aT <a2a^ *+a2a^ {a2a*l) *+l=af (a2a^ *+ (a2ap *=a^ (a2a^)
By our assumption and Theorem 2. 4, the solution obtained is unique.
Our theorem now follows by Theorem 2. 5.

We again continue Example 2. 3. Assume that a^l, a^l, a^+a^l. Then
a^=l/(l-a ),

(a^a2)*a^=(1/(1-^2, (1-a^)) )/(l-a^)=l/(1-(a^+a^))=(a +a^)*. D

Theorem 2. 7. Assume the existence of (a^+a^)*, a^ and (a^+a^a^a^)*
and, furthermore, that

lim an=lim(a, +a^a*a^)n=0.
n-"m ~ n-»-°°

Then

(a^+a^)*=(a^+a^a^a^)*(l+a^a^).
Proof. By Corollary 2. 2, we have

(a^+a^)*=a^(a^+a^)*+a^(a^+a^) *+1.
Hence, by our assumption and Theorem 2. 4, the unique solution of the
equation

y=a^y+a^(a^+a^)*+l
equals (a^+a^)*. By Theorem 2. 3 and our assumption, another repre-
sentation of the unique solution is a^a^(a^+a^)*+a^. Substituting
ala2(al+a2)"+al for the third occurrence of (a^+a^)* in the first
equality of the proof yields

(a^+a^)*=(a^+a^a^a^)(a^+a^)*+a^a^+l.

This shows that (a^+a^) is a solution of the equation

14
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y=(a^+a,a^a^)y+a^a*+l.2dl-

By Theorem 2. 4 and our assumption lim (a^+a^a^"a-, ) n=0, the solution
1->-COn-»-co

is unique. By Theorem 2. 3 and the existence of (a +a a*a )
another representation for the unique solution is'

(a^+a^a^a^)*(l+a^ap. a

We now show how a notion of convergence in A can be transferred to
A«Z"». The main idea is that a sequence of power series deter-
mines, for each w in £*, a sequence of coefficients of w. The limits
of the latter sequences determine the coefficients in the limit of
our sequence of power series.

Observe first that AfN«Z*» and (A«Z*»)rN are isomorphic. Assume
now that a convergence in A is given by D and lim. Then a conver-
gence in A«Z"» is given by D«Z*» and lim', where

lim' a = ^ , lim(a, w)w, a£D«Z*».
w£Z

The concept of a quasiregular power series will be very important
in the sequel. A power series r of A«£*» is termed quasiregular
iff (r, e)=0. Our next theorem shows that the star of a quasiregular
power series always exists. Moreover, the star does not depend on
the used notion of convergence.

Theorem 2. 8. If r£A«£*» is quasiregular then lim rn=0 and r*
n-i-oo

exists.

proof- we consider first lim r" and r* with respect to the discrete
n-»-°°

convergence in A. Since (r, e)=0, by induction on |w| we infer the
(rn, w)=0 for all n>|w|, w£Z*.

This implies

lim rn=0.
n-»-°°

Furthermore, we have

lwl+k. -, . lwl. n
(rj, w)= ^ (rj, w) for all kSO, w Z*.

j=0 j=0

Hence,

(r*, w)=(lim ^ r3, v)=(''i' rj, w)
n-i-03 j=o j=0

for all w E", and r* exists with respect to the discrete convergence.
By the observations made above, these equalities remain valid for an

15
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arbitrary convergence. a

Corollary 2. 9. If r6A«Z*» is quasiregular then
|W|

r*= l^('l[ r^, w)w.
w£E" j=0

We now introduce the notion of a strong convergence. This notion is

particularly suitable for handling power series. In view of Theorem

2. 4, the existence of the star of r and the convergence of r to 0
are of great importance for a power series r. Strong convergence in
A and the convergence of (r, e)n to 0 guarantee these two important
properties for a power series r.

A convergence in A is called strong iff the condition

" -
( S, aJa(n-j))eD is satisfied for each a£D and each a6A such that
j=0

(an)6D and lim an=0.
n-<-oo

Theorem 2. 10. Assume that a strong convergence has been defined in
A. Furthermore, assume that (a )£D and lim an=0. Then

n-roo

a" exists and, whenever a D, then

lim ^ aDa(n-j)=a* lim a.
n-^co j=o

Proof. Since ri is a convergent sequence, the sequence
n - n ^

( [ a-]n(n-j))=( ^ a3) is again convergent by the definition of a
j=o j=o

strong convergence in A. This shows the existence of a*.

Assume now that a is a convergent sequence and denote

" -
lim ^ a-]a(n-j)=b.
n->-°° j=o

By (D2), dim 2) and (D3) , dim 3) the equality
n - n-1 .;

aja(n-j)=a(n)+a ^ aja(n-l-j)
j=o j=o

implies that

b=lim a+ab.

Hence, by Theorem 2. 4, b is the unique solution a* lim a of the
equation y=ay+lim a. D

16
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Theorem 2. 10 shows that a convergence in A being strong means that

lim an=0
n-»-oo

implies
n -

lim ^ aja(n-j)'=a lim a(n),
n-f-co j=:o n->-a>

provided lim a(n) exists.
n-*-°°

Our next example shows that a notion of strong convergence is defi-

nable for every semiring A. It is, of course, the discrete conver-

gence.

Example 2. 5. Consider the discrete convergence in A.

For notational convenience we denote D^ and lim^, by D and lim,

respectively. Consider an a in A such that (an)eD and lim an=0. By
n-roo

the definition of D and lim this means the existence of an n^21

such that, for all kSO,

.

no+k_
a " =0. (2)

Hence, we have that

no-1
k=. I^

j=0
a-'. (3)

Furthermore, consider a sequence a in D. This means the existence

of an n^. 20 such that, for all kSO,

and

ci(n^)=ci(n^+k)

lim a(n)=a (n ) .
n-<-°°

We have to show that the sequence

n ^
B(n)= I aja(n-j)

j=0
is a convergent sequence. Define nQ=n^+n^-l.

Then, for all kSO, we have that

n0+na+k-1 ,
B(ng+k)= ^ a-la(nQ+n^+k-j-l)=

no-1 no-1
= J; a:]a(nQ+n^+k-j-l)= [ a3a (n^) =a*a (n^) .

j=o ~ " j=o

17
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Indeed, the first equality follows by the definition of 8 and n^,

the second equality by (2) , the third equality by the observation

that n^+n^+k-j-12n^+k for O^j^n^-1, and the last equality by (3).

Hence, B is a convergent sequence.

By the definition of lim, we infer that

lim B(n)=a a(n.. )=a lim a(n).
n-t-oo - n-t-oo

D

For the next theorem we assume strong convergence in A. It is stated

without proof.

Theorem 2. 11. Assume that r is a power series in A«Z» such that
lim(r, e) =0. Then lim r =0, r* exists and, further-
n-». oo

more,

n->-o°

(r*, w)= I (r*, e)(r, u)(r*, v)
uv=w
U^ 

holds for all w6E' . D

The following two examples show that the Cauchy convergence and the

Euler convergence are strong.

Example 2. 6. We consider the Cauchy convergence introduced in

Example 2. 1.

00

The Theorem of Mertens states that, if [ a^ is absolutely conver-
n=0

n CO 00

gent and ]' b is convergent then ^ ^ a^b», _^= I an I b .

n^O n ^ nr0 j^O 3 n-:) n=0 nmr0 m

Consider an ae (R with |a|<l. Then (an) converges to 0 and, further-
co

more, ( ^ a~s) converges absolutely to a =l/(l-a). Let a be a con-
j=0

vergent sequence and define

g(0)=a(0), 6(j)=a(j)-a(j-l) for j21.
n n

Then ^ £(j)=a(n) and ( ^ B(j)) is a convergent sequence with
j=0 j=0

n

lim ^ 8(j)=lim a(n).
n-*-" j=0 n-»°°

18
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Hence, by the Theorem of Mertens, the sequence
n k

(I la3 8(k-j))
k=0 j=0

is a convergent sequence with limit

a" lim a (n) .
n-1-00

Furthermore,

n k
I I a3 £(k-j) =

k=0 j=0

n k-1 _ n
I I aj(a(k-j)-a(k-j-l)) + ]; aKa(0) =

k=l j=0 k=0

n k^1 -, n^l k , n
aj a(k-j) - ^ ^ a3 a(k-j) + ^ aK a(0) + a (0) =

k=l j=0 k=0 j=0 - k=l

n k -i nZ1 k . n .
aj a(k-j) - ^ ^ a-1 a(k-j) + a(0) = ]; a3 a(n-j).

k=l j=0 k=0 j=0 ' j=0

Here the first equality follows by the definition of B, the second
equality by changing in the second term of the right side the
index k to k+1, the third equality by adding the first and third

term of its left side and the last equality simply by addition.

Hence, we have that

n _ n k
lim ^ aj a(n-j) = lim ^ ^
n-*°° j=o n-<-°° k=0 j=0

l(k-j) = a* lim a(n) .
n-

If a 6 K with |a|>1 or a = -1, then (an) is not a convergent
sequence. If a=l, then (a ) converges, but lim an=1^0. This implies

n-r°°

athat the Cauchy convergence is strong.

Example 2. 7. We consider the Euler convergence introduced in Example
2. 2. Using a theorem similar to the Theorem of Mertens, we may con-
elude as above that the Euler convergence is strong. D

Example 2. 8. We consider the convergence introduced in Example 2.3
Let a e3R with a^l and define the sequence a(n)=a , nSO. Then a is
a convergent sequence. Since
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I a3 u(n-j)=(n+l)an
j=0

and ((n+l)a ) is not a convergent sequence, we conclude that the
considered convergence is not a strong convergence. D

Theorem 2. 11 shows that, in case of a strong convergence, the

coefficient of e has a great influence on the convergence

behavior of a power series. The definition of a cycle-free power

series is now clear: a power series r is called cycle-free (with

respect to the given notion of strong convergence) iff
lim(r, £)"=0.
n+oo

Theorem 2. 12. For each cycle-free power series r, lim r"=0 and
n-»°°

r* exists.

Proof. By Theorem 2. 11. a

Example 2. 9. Consider ]R«E"». Then we know three strong conver-

gences in 1R and, hence, three types of cycle-freeness of power

series.

A power series r is cycle-free with respect to the discrete conver-

gence iff (r, e)=0, i. e., if r is quasiregular. A power series r is

cycle-free with respect to the Cauchy convergence iff |(r, c)|<l.
And a power series r is cycle-free with respect to the Euler con-

vergence iff -3<(r,e)<l. D

By Example 2. 9, the question arises whether a power series cycle-

free with respect to different notions of strong convergence may

have different stars. The next theorem shows that this is not the

case.

Theorem 2. 13. Assume that a power series r is cycle-free, possibly

with respect to different notions of strong conver-

gence. Then r is independent of the notion of strong
convergence.
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Proof. By Theorem 2. 12, lim r =0 and lim ^ r-^=r* exist with
n-kc° n->-°° j=0

respect to any of the notions of strong convergence considered.

Since the equation y=ry+£, e and r in A«Z"», has, by Theorem 2. 4,

the unique solution r", the star of r is independent of the conver-

gence used. Q

This means that it depends on the notion of the strong convergence

considered, whether a power series r is cycle-free or not. But if

r is cycle-free then r" is uniquely determined.

We transfer the term. eye Ie-free to equations. An equation

y=ry+s, r, s6A«£*»,
is termed cycle-free iff r is cycle-free.

(4)

Theorem 2. 14. Every cycle-free equation (4) has the unique solution
r*s.

Proof. Since r is cycle-free. Theorem 2. 12 implies that lim r"=0
n-f-oo

and, furthermore, the existence of r*.

By Theorem 2. 4, (4) has the unique solution r*s.

Consider a power series r in A«Z». The power series r^=(r, e)£

is called the e-part and r\, = ^ (r, w)w is called the guasiregular
W S+

>art of r.

and

Theorem 2. 15. For each cycle-free power series r,

r*=r;(rlr^*=(r;rl^rs-

Proof. Since r=r^+r^ is cycle-free, (r^+ri ) exists

limtr^+r ) =0. Since we use a strong convergence, lim rQ=0 implies
n->-°° ~ ~ n^°°

the existence of r^. Since r, r/., is quasiregular, ri r^ is cycle-

free and (ri r^, )" exists.

Hence, Theorem 2. 6 implies our theorem. D
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Theorem 2. 15 is extremely useful for the computation of the star

of a power series.

Example 2. 9. Consider the power series r=ae+bx in R<x"> with -3<a<l

We work with the Euler convergence. Then r is cycle-free and
r*=(a*bx)*a*.

Hence,

x -L.i
^+1a-a ] 1-a j=0 (1-a)

Furthermore, r is the unique solution of the equation
y=(ae+bx)y+e. a
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3. MATRICES AND AUTOMATA.

We now introduce matrices and vectors with entries in a semiring
and indexed by countable index sets. Automata are then defined in
terms of matrices.

Consider two nonempty countable index sets I and I". Mappings M of
1x1- into A are called matrices. The values of M are denoted by
Mi, i- where i61 and i'er. The values M^^, are also referred to
as the entries of the matrix. In particular, M, ;, is called the

1 r 1

(i, i')-entry of M. The collection of all matrices M as defined
above is denoted by A .

If I or I- is a singleton, M is called a ^ow or column vector,
respectively. If I is finite and equals {!,..., n} or I. is finite
and_equals {l'---'m^ then AIXI is also denoted by Anxlt or
A--, respectively. If both, I and I- are finite, then M is called
a finite matrix.

For each i I, consider the set of indices R(i)={i'|M, ,, "0}. Then
1/1

M is called a row finite matrix iff R(i) is finite for all iei.
Similarly, consider the set C (i-)={i |M, ,, ^0} for i'er. Then M is

»

called a column finite matrix iff C(i') is finite for all i'6I*

The collection of all matrices that are both row and column finite
as defined above is denoted by A^XI'.

Unless stated otherwise, the letter I (resp. Q), possibly provided
with indices, will denote in the sequel a countable (resp. finite)
nonempty index set.

We introduce some operations and special matrices inducing a monoid
or semiring structure to matrices. For M,, M^ AIXI' we define the

I

sum M^+M., A"'V'" by

(Ml+M2)i, i'=(Ml)i, i. +(M2)i, i. for all i6l, i-el..

Furthermore, we introduce the zero matrix 06A XI . All the entries

°fl^lare °" By !the d^finition of the sum and the zero matrix,

<A /+»0> and <A^ , +, 0> are commutative monoids.

,
I1XI2 _. I2XI:

For M^£A - - and M^6A ^ J, where M^ is row finite or M^ is column
finite, we define the product M, M^ A

I, xl.

by
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(MlM2)i,, i3=^^, (Ml)il'i2(M2)i2'i3 £ora11 il I1' i3 I3'
If M^ is row (resp. M^ is column) finite then the range of the
variable i^ in the sum is, in fact, R(i^) (resp. Cd^)). Hence,
in both cases, the range of the variable i^ is finite and M^M^ is

welldefined. Furthermore, we introduce the matrix of unity

E, , =6, , for all i^i^l. Clearly, <Aj-, +, -, 0,
'il'12 X1'X2

is a semiring.

In the sequel we will need some isomorphisms between semirings of
,
QxQ, IxI ^(IxQ)x(IxQ)_ ^(QxI)x(QxI) ^^

matrices. The semirings (A""'')j'". Aj--. ".-., Aj-

(AIXI)QXQ are isomorphic by the correspondence
tj

«Ml)i,, i2)q^q2=(M2) (ii. qi) . (i2^2)=(M3) (<^l'il) ' (q2'i2)=
«M4)q,, q, )i,, i2' il'i2el' ̂ '^^'
Moreover, there are certain isomorphisms between the semirings

E>

AIXI«E*» (that are formal power series whose coefficients are
J

,
1x1,

matrices) and (A«E*»)IXI (that are matrices whose entries are
IXl - ^T. *^ ^

formal power series): There exists a subsemiring of Aj'v'«E"»^iso-
morphic to (A«I;*»)^X and there exists a subset of (A«EX»)

that is a semiring isomorphic to A^XI«£*». Both isomorphisms are
due to the correspondence (Mrw> i. , i-((M2) i, , i^'w) ' ii'i2e1' wez: .

Hence, for MeA^XI«£*» we may use the notation (M^ ^ »w) and for
M (A«£*»)^X we may use the notation <M'w)i,, i^'

,
1x1

All limits (especially the star) are taken in AjA "«!:"» and all

definitions valid for (ordinary) formal power series are valid also

for matrices in (A«£*»)^XI. E. g., M2 (A«Z*»)^XI is cycle-free
1x1. ^r*^ ^

iff lim(M^, e)n=0 for the corresponding matrix M^ A^-'«Z», i. e.
n-»-o

>k_/
iff there exists a k2l such that (M^, e)'*=0.

We now introduce blocks of matrices.

Assume the existence of nonempty countable index sets J, J' and Ij

Ij. for j6J, J' J- such that I=\^Ij' I'=^j. IJ. and IJinIJ2s=0'
I^nl^. !=0 for Ji"J2' 31'i:)2' consider a ">atrix M in A-

24
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Then the restricted mapping

M:I.xI^, ->-A

1^1\,
is a matrix in A -. J and is called the (1^, 1^, )-block of M. Con-

sider now the matrices M^, M^£A'"V^ with blocks M (I^, IJ;, ), t=l, 2.
Then the blocks of the sum of the matrices M, and M^ can be ex-

pressed by the blocks of M, and M-, in the usual way:

(M^+M^)(Ij, Ij, )=M^(Ij, I^, )+M^(Ij, I^, ).
Moreover, if M^ is a matrix in the semiring A^"" and M^ is a matrix

in A^x then
(M^M^)(I, , 1^, )= I M, (I, , I, )M, (I,, I^, ).

:)1' 3' JSJ 1 ' :11' :I- ^' 3' 3
*.., 1x1

In general, limits of sequences in (A«£"»)^"" are taken (isomor-

,

1x1
phically) in A^"«E"» and the convergence in A^^ is the discrete

one.

In the next four theorems, we assume that I is partitioned into I

and 1^ and that M is a matrix in A't«Z». For notational con-

venience, we will denote M(I^ 1^ ) by M, , for l^j,, j^$2.
^r ^2' ' ^r^2

Theorem 3. 1. Assume that M is cycle-free and, furthermore, that

M1, 1'M2, 2'M1. 1+M1, 2^, 2M2, 1 and M2, 2+M2, lMLlMl, 2 are
cycle-free.

Then

M*(I1'I1)=(M1, 1+M1. 2M^2M2, 1»*'
M*(I1'I2)=(M1, 1+M1, 2M^2M2, 1)*M1, 2^, 2'
M"(I^, I, )=(M^ ^+M^ , M^ ,M )*M. .

M:2, 2'"2, r'li, r"i, 2' "2, r"'i,r

M*(I2'z2)=(M2, 2+M2, lMLlMl,2

Proof. Consider the matrices

M
1,1

0

Ml= and M^=

M
2,2 2,1

M
1,2

0
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The matrix Mi is cycle-free. Hence, M^ exists and equals

MI, 1 °
0 M 2,2

This implies that

M1, 1+M1, 2M'2, 2M2,1
M^+M^M^M^ =

M2, 2+M2, 1MI, 1M1,2
Hence, by our assumptions we infer that M^+M^M^M^ is cycle-free. We
are now in the position to apply Theorem 2. 7 with a, =M, and a->=M-,.

The computation of

(M^+M M^M^)*(E+M M^)
proves the theorem. D

Theorem 3. 2. Assume that M, , and M^ -, are cycle-free, and M, ., or
, J. t. , t. 1. I

M^ ^ is quasiregular.

Then M is cycle-free and

M*(I1'I1)=(M1, 1+M1, 2ML2M2, 1^'

M*(I1'I2)=(M1, 1+M1, 2ML2M2, 1)*M1, 2M^2'
M*(I2'Il.)=(M2, 2+M2, lMLlMl, 2)*M2, lMLl'
M*(I2'I2)=(M2, 2+M2, lMLlMl, 2)*-

Proof. We only prove the case that M^ i is quasiregular. The proof

of the other case is similar.

We claim that, for kSl,

k'(M, ,, £)k I (M^ ,, C) 1(M, ,, e)(M, ,, e)
. '.'- k, +k^=k-l ±f±

(M, e)^ =
kl+k2

<M2, 2'£)

The proof is by induction on k.

Since (M^ ,, e)=0, the claim holds true for k=l,
I

If k>l,

(M, e)k=(M, e)(M, c)k-l=
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'<"1. 1^> <M1, 2'£)

<M2, 2'e)/

,, E)k-1 I . , (Mi. i^)"l("l, 2. e'<M2, 2'EI
k, +k-, =k-l "L1T"2

(M2. 2'E)
k-1

k, +l

(M, ,, )'
"l>l'~" k^+k^k-2

[ JM, ^, E>"l'(M^;. c)(M^3. E) ^(«i. 2-E"M2, 2-c)
k-1

<M2, 2'e>'

Clearly, the last matrix obtained equals the right side of our claim.

Denote

Ml=
(M^ ^, £) 0

0

, M.
0 (Mi. 2'£)

0 0

M3 =
0 (M, ^, c)

.

1x1Since the discrete convergence in A^A^ is strong, we obtain
k. k.

lim ^ M, 1 M., M, = M^ M^ lim Mn-l = 0.
n-^°° k +k^=n-l ^ ' -' . L " n^-°°

This implies that M is cycle-free. Furthermore,

(M1, 1+M1, 2ML2M2, 1'£)=(M1, 1'£) and

(M^ ^+M^ M^ ^M^ ^, e)=(M^ ^, e). Hence, the conditions of Theorem 3.1
are satisfied and our theorero is proved. D

Theorem 3. 3. Assume that M^ , and M^ ^ are cycle-free. Furthermore,

assume that M^ ^=0. Then M is cycle-free and

M*=

Proof. By Theorem 3. 2.

MLl MLlMl, 2M^,2

M
2.2

D
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Theorem 3. 4. Assume that M^ ^ and M^ ^ are cycle-free.
Furthermore, assume that M, ^=0. Then M is cycle-free

I

and

M"

Proof. By Theorem 3. 2.

M
1'1

l2, 2M2. 1n1. 1 "2, 2,-

a

We now consider linear systems of the form

,
1x1'

Y=MY+P, M6A^XJ-«E*», P A^XJ-'«£*»,
1x1'

(5)

where Y is a variable. A matrix SgA""" «£'» is called a solution

of (5) iff S=MS+P. The linear system (5) is called cycle-free iff

M is cycle-free.

Theorem 3. 5^ Every cycle-free linear system (5) has the unique
solution M*P. a

As we will see below there is a close connection between linear

systems and automata.

We need four operations on matrices which are used later on for
automatatheoretic constructions: Kronecker product, Kronecker sum,

Hadamard product and Hurwitz product.

.
Iixli

,
I2XI2

(i) The Kronecker product of M^gA A ". and M^  A " *", denoted by
(I^xl^lxd^xl^)

M, ®M^, is the matrix in A defined by

(M 1<S>M2) (i-. i-l . (i'. ill=(Ml)i.. i.'(M2)i.. ir
, l^», tl^, l^» ~ J. 1^, 1^ ^ 1^, J.^

(ii) The Kronecker^um of M^GA
I1XI1

,
I2XI2

and M^ A " ", denoted by
M, ®M^, is the matrix defined by

M^®M^=M^®E^+E^8lM3 .

.
Itxlt

Here E^. is the matrix of unity in A , t=l, 2.

The Kronecker product and the Kronecker sum are easily extended
to more structured semirings by isomorphism.
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IlXl^ , 1^X1^
(iii) The Hadamajrd_product of M, £A «E^» and M^6A «E^»,

denoted by M^®M-), is the matrix defined by

M^®M.,= ^ ^ (M, , w)®(M^,w)w.
wg(Z nz^)*

1^x1^ 1^x1^

(iv) The Hurwitz product of M^eA x J-«£*» and M^6A " ':«£*»,
denoted by Mii-i-iM^, is the matrix defined by

M, LLJM,= ^ ^ ^ ^ (M^ , w^ )S>(M^, w, )w, i-LJWT
w^ez* w^ez'

The next three theorems state the usual properties of the Kronecker

product.

I. xl.'

Theorem 3. 6. Assume that, for t=l, 2, M , M^ A . Then
(M^+M^)®M^=M^®M^+M^®M^, M^®(M^+M^) =M^®M^+M^®M^,

M^®0=0 and 0®M^=0. a

I

Theorem 3. 7. Assume that M 6A ~ ^, t=l, 2, 3. Then

M-^StM^M^) = (M^®M^)®M3, D

Theorem 3. 8. Let A be a commutative semiring. Assume that

,

I1XI2 .. _. I2XI3 .. ^I4XI;
M^6AjA ^, M2 A/ ''' M3eAj'i 3«^*» and

IRXl,
M £A :> °«£*».
Then

(M^M^)®(M M4)=(M^®M )(M^®M ). D

The next two theorems give properties of the Hadamard product.

Theorem 3. 9. Let A be a commutative semiring. Assume that

IiXl>> I^Xl-, . I, Xl,

M^6Aj-L ':<£>, M^eAj'' -*«£*», M^eAj'* :><Z> and
1^x1,

M^6Aj3 D«£*».
Then

(M M^)®(M3M4)=(M^OM3)(M^OM^).
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Proof. (M^M^)®(M^M^)=
I I ^((M^ , X) (M.,, w)®(M,,x) (M^, w))xw=

x E w Z* 1- ''-

I I , ((M,, x)®(M,,x))((M,, w)®(M^,w))xw=(M^®M, )(M^®M,)
x £ w £* .L -> ^- i- . I .;.

Here the second equality follows by Theorem 3. 8. a

Theorem 3. 10. Let A be a commutative semiring. Assume that

Irxl+
M^CAj*- "<£>, t=l, 2.
Then

(M^®M^)*=M^®M^.

Proof. We show that M*®M<; is the solution of

Y=(M^QM^)Y+E^®E^
by
(M^QM^)(M^®M^)+E^®E^= (M^M^)®(M^M^) +E^®E^=M^®M^+E^®E^=M^®M^.
Here the first equality follows by Theorem 3. 9. Theorem 2. 15 now

proves Theorem 3.10. Q

The next theorem, dealing with Kronecker sum and Hurwitz product,

is proven in a similar manner.

Theorem 3. 11. Let A be a commutative semiring. Assume that

.

Itxlt.
M6A ". '-<£>, 1=1, 2.
Then

(M^®M^)*=M^UJM^. a

We now introduce automata.

An A«E*»-automaton

0L= (I, M, S, P)
is given by

(i) a countable set I of states,

(ii) a matrix MS[A«E*»)^XI called the transition matrix,
(iii) S (A<e>)j"^ called the initial state vector,

(iv) P6(A<e>)j"' called the final state vector.
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If M,. ^=r^0, i, j I, then we say that the edge (i, j) with the label
3-'3

r is in 6C. A path c from i to j in ft is a finite sequence of edges

(JO'^i) ' (J^. J^l ' . ' . ' (3k-i'3k) ' i=30' :3=:)k' k>°" it is written c:i-4-J-

The integer k is called the length of the path and is denoted by |c|.

If r^ is the label of (J^-i'Jt1' l^tsk' then the label llcll of the
path c is defined be \\c\'f=r^i^. . . r^.

For each state i I we introduce the null path X; from i to i with

|X^|=0 and l|X^||=e .

Assume that c:i, ->-i-, and d:i^-*i, are paths. Then the composition

cd:i, -<-i^ is defined by concatenation. We have |cd|=|c|+[d| and

l|cd|!=||c||||d||.
When it exists, the behavior ||(9C||6A«£» of an A«Z»-automaton
ft=(I, M, S, P) is defined by

lie(. ii= SM*P,
i. e., by the sum of the labels of all paths multiplied by the appro-

priate components of S and P:

116lll=. ^. . - si. ( ^. . llcll»pi.-
i^i^Cl ll'c^i^i^ " "" 12

An A«Z*»-automaton fi=(I, M, S, P) is called cycle-free iff M is cycle-
free.

Theorem 3. 12. Let Q=(I, M, S, P) be a cycle-free A«Z*»-automaton.
Then

II &|| = SM*P
is welldefined. D

Theorem 3. 13. Let Q=(I, M, S, P) be a cycle-free A«Z*»-automaton and
consider the cycle-free linear system Y=MY+P.

Let T be its unique solution. Then

IIQII=ST. a

If the entries of the transition matrix of an A«£*»-automaton 9t
are in A<£> or A<ZUe> then 61 is called A<E>- or A<EUe>-automaton,

respectively. If the set of states of an A«Z»-automaton Gi is
finite then 01 is called A«E*»-finite-automaton.

Given A<£>-automata ^=(1^, M^, S^, P^), j=l, 2, 1, 01^=0, we construct
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A<£>-automata k9^, k A, ^+^, Q^^' ^' Q1QQ2' 0iLlJ^2 and (^l)z'
z£E. Their behavior will be as expected:

kllQjL l|0i!M102ll' ll^ill .11^11' ll^ill+' ll^ilt°ll^ll' 11^11^11^ II and
tjl . These automata-theoretic constructions will have combina-

torial applications in the field of generating functions.

Construction 1. k0^=(I^, M^, kS^, P^). Clearly, we have
11^11= l^l&i ||. D

Construction 2. Q^+&^=(I^UI^, M, S, P), where

ful.°V-fp1'
0 M2 / v P2

We have ||6(^^11 = SM*P = S1M;P1+S2MSP2= ll^i II +11 ̂ 11 .

Construction 3. Q^6^=(I^UI^, M, S. P), where

S=(S^ 83), M

S=(S^ 0) , M
'Ml P1S2M2

, p =
P1S2P2

M.

Theorem 3. 3 yields

M: M;P, S,M

M* =
'1

0

l"l'J2"2

M:

Hence, \\Q^\\ = S^M^S^+S^P^S^P^ ||^||||^11.

Construction 4. Assume ||0^|| to be quasiregular, i. e.,

(II 9lll»e)=(S^P^, e)=0. That means S^P^=0 and ||Q'^||=S^M^P^.
®1 = (II, M^+P^S^M^, S^, P^).
Theorem 2. 6-yields

0

D

(M^+P^S^M^)* = M^(P^S Mp*.
Hence,

11^^11 = S^(M^+P^S^M^)*P^=S^(P^S^)*P^=S^P^(S^P )*=||^||+. D

Construction 5. Let A be commutative. Then

QI® B2=(IiXl^, M^®M , S^QS^, P^®P ). We obtain, by Theorems 3. 9 and
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3. 10,

IIQ^Q^Jl = (S^OS^) (M^®M^)*(P^®P3)=(S^QS^) (M^OM? (P^OP^tHI^IIOlle^ll. 0

Construction 6. Let A be conunutative. Then

^uj^=(IixI2'MleM2/sl'&s2'pl®p2) .
We obtain, by Theorems 3. 8 and 3. 11,

\\Q^Qj\=(S^QS^] (M^©M }*(P^®P^)=(S SiS^) (M^LUM^) (P.^P^)=

w^t" w^ez
L*(<sl'£)®<s2'e)) «M^wi)®(M^,W3)) ((P^, e)®(P^, e))w^ujw^=

I L*(((sl'£) (MI'wi) (pi'E)) ((S^'e) (M^, w ) (P , e))w^w^=
w  E' w  £

L* l^(\\9i\\^(\\Q2\\'w2)wl^w2 =li0ill^tl&2lt-
w^L' w^ E

0

Construction 7. (^)^=(I^ui^, M, S, P), where 1^ is a copy of .1^,
'IM^, Z)P,

S=(S^ 0) , M = , p =

\ 0 M^

Hence,

ll(ol)zll = S^M^(M^, z)P^+S^M^(M^, z)M^P^=S^M^(M^, z)M^P^
and

(||(0l)^||, w)= ^ (S^, £) (M^, w^) (M^, z) (M^, w ) (P^, e)=
w, w-,=w

I (||Q^||, w^w^=(||^]|^w).
w, w^=w

D

A power series r A«£» is termed A-rational (over £) iff r can be

obtained from elements of A<£*> by finitely many applications of the
operation of sum, product and quasi-inverse (applied to quasiregular

power series). The family of A-rational power series over £ is

denoted by Arat«£*».

A subsemiring of A«E"» is rationally closed iff it contains the

quasi-inverse of every quasiregular element.

The next theorem is the famous Kleene-Schutzenberger Theorem.

Theorem 3. 14. A«Z*» coincides with the family of behaviors of
A<Z>-finite-automata.
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Proof. Constructions 2, 3 and 4 prove that the family of behaviors of

A<£>-finite-automata is a rationally closed semiring containing
A<E">. (Clearly, ac, a A, and xe£ are behaviors of A<£>-finite-
automata. ) The converse is proven by induction on the number of
states of A<Z>-finite-automata by help of Theorem 3.2. D

We now introduce A«!:"»-pushdown-automata. r denotes an alphabet
(of pushdown symbols).

A matrix M  ( (A«Z*») QXQ) ̂  xr is termed a pushdown transition
matrix iff for all 7r,, ir^6T*,

M

1rr7r2

Mp^ if there exist p F, Tr^eF with iT.^=pT r,

0

and .TQ=IT->TT, ;

otherwise.

An A«£"»-pushdown-automaton

(?=(Q, r, M, s, p , P)
is given by

(i) a finite set Q of states,

(ii) an alphabet F of pushdown symbols,

(iii) a pushdown transition matrix M,

(iv) S6(A<e>) XQ called the initial state vector,

(v) PQ^F called the initial pushdown symbol,
(vi) P£(A<£>)QX1 called the final state vector.

The behavior ||(P]|6A«Z*» of an A«£*»-pushdown-automaton
(P=(Q, r, M, S, p , P) is defined by

= S(M*)
Pn'£"

provided M* exists. An A«Z*»-pushdown-automaton
(P=(Q, r, M, S, p , P) is called cycle-free iff M is cycle-free. In this
case, the behavior of P is welldefined.

Theorem 3. 15. For every cycle-free A«£*»-pushdown-automaton <P
there exists a cycle-free A«£»-automaton 6f such
that ||ft|[=||(P||.

Proof. Consider a cycle-free A«£*»-pushdown-automaton

(P= (Q, F, M, S, p , P)
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with the behavior ||(P[|= S(M*)_ _p.
PO'£

Let M-6(A«Z*»)^"XQ)x(r"^) be the isomorphic copy of M, i. e.,

M(^, qi), (^'q2)=(M1Tl'7r2)<Il'q2'

Define, furthermore, S'e(A<e>)lx(I' XQ) and P' (A<e>)(r XQ)xl by
s'(Po'q)=s<3/ s(^q)=o( Tr:'PO' p'(£, q)=pq' p'(., q)=0' ^'
Consider now the A«E*»-automaton

61= <r*xQ, M', S', P').

Then ||Q. ||= S'M'*P'=

(^l»qi), (TT2'c[2)6r*XQ lrql) (1rl'qi)'<1r2'q2) (Tf2'q2)

qjq 26QS>(PO'ql) (M<*) 
{PO^I) ' ^'^2}p'(£'^2r

,J^^"M*). 0. -I^.^VS I»*IPo-p-"p"-

Hence, all definitions introduced for A«£*»-automata hold also
for A«Z»-pushdown-automata.
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4. ALGEBRAIC SYSTEMS.

In this section we show the connection between pushdown automata

and algebraic systems.

To simplify our presentation, we assume for the rest of this

paper that A is a commytat_ive semiring.

An A«£ "»-algebraic system (briefly algebraic system) with variab-

les in Y = {y^^..., y^^ Yn^ = 0, is a system of equations

yi = pi' lsisn'

where each p^ is a polynomial in A<(EUY)*>. Intuitively, a solution

of such an algebraic system is given by n power series o,,..., o_ in

A«Z"» satisfying the algebraic system in the sense that if each

variable y, is replaced by the series o^ then valid equations result.

More formally, consider

^

0=1. 1   (A«(ZUY)*»)nxl.

^

Then we can define a morphism

0 : (£UY)* .+ A« (ZUY)*»

by o(y^) = o^, l^i^n, and o (x) = x, x  E.

Extend o to a mapping

o : A<(ZUY)*> -<- A«(ZUY)*»

by the definition

o(p) = [
Ye<2:UY)

(p, -r)o(Y),

where p is in A<(EUY) >. Then this extended mapping o is a semiring
morphism.

A solution to the algebraic system y, = p,. , l^i^n, is given by a

column vector o   (A«Z*»)nx such that o^ = o(p^), l^i$n.
The approximation sequence

o°, ol,..., o3,..., o3 e (A<Z*>)nxl
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associated to an algebraic system y^ = p^, ISi^n, is defined

as follows:

o° = 0, a]+l = oj(p^), jSO, ISiSn.
If the approximation sequence converges, i. e., lim o-* = o, then o

->'.»

is referred to as the strong solution.

The next theorems are wellknown.

Theorem 4. 1. The strong solution (when it exists) is a solution. D

Theorem 4. 2. Every B«E ~ »-algebraic system has a strong solution.Q

Every context-free grammar with the terminal alphabet Z and every

semiring A give rise to an A«Z»-algebraic system. Conversely,
every A«E"»-algebraic system gives rise to a context-free grammar.

More explicitly, this interrelation is defined as follows.

Consider the context-free grammar G = (Y, Z, R, yi ). Then define the

A«£"»-algebraic system y^ = p^ , ISi^n, by

and

(p^, Y) = 1 ify^ -Y CR,

(P. 'Y) = 0 otherwise,

where y is in (EUY)". Conversely, given an A«E*»-algebraic system

y, = p,, ISi^n, define the context-free grammar G = (Y, E, R, y, ) by

y^ ->Y £ R iff (P^, Y) ^ 0,
where y is in (£UY) *.

Whenever we speak of a context-free grammar corresponding to an

algebraic system, or vice versa, then we mean the correspondence

in the sense of the above definition. The next theorem shows the

connection between 3B«Z "»-algebraic systems and context-free

grammars.
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Theorem 4. 3. Assume that G = (Y, E, R, y ) is a context-free grammar

and y^ = p^, l^i^n, is the corresponding B«£*»-

algebraic system with the strong solution o. Then

L(G) = supp(o^)
or, equivalently,

o^ = char(L(G)).

An A«E"»-algebraic system y^ = p^, l^i^n, is termed strict iff

supp(p^) £ e U £(£UY)".

Theorem 4. 4. Strong solutions exist for all strict algebraic

systems. Moreover, the strong solution is the unique

solution of a strict algebraic system. Q

The collection of all power series in A«Z*» that are the first

component of the unique solution of a strict algebraic system

is denoted by A"^y«£"». The next theorem is an easy consequence
of Theorem 4. 3.

Theorem 4. 5. A formal language L £ £* is context-free iff char(L)

is in Balg«z"».

We now show the connection of the power series in A 9«Z*» and

the power series that are behaviors of cycle-free A<ZUe>-pushdown-
automata.

Theorem 4. 6. Assume that y^ = p^, where supp(p^) £. E(EUY)*, ISi^n,
is an A«£~»-algebraic system with the strong solu-
tion o. Then there exists an A<E>-pushdown-automaton

Q> such that ||(P|[ =o^. D
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It is easy to show that, whenever a formal power series r is

accepted by a cycle-free A<£Uc>-pushdown-automaton then so is

ae+r, a6A. Hence, each series in A""^«Z"» is accepted by a cycle-

free A<EUe>-pushdown-automaton. The reverse transition will now be

established.

Theorem 4. 7. Assume that (P is a cycle-free A<ZUe>-pushdown-automaton.
Then there exists an A«£»-algebraic system with the
unique solution o such that o^= ||(P|| .

Proof. Assume that (P =(Q, F, M, S, p , P) is a cycle-free A<£Ue>-pushdown-
automaton with the behavior |](Pj| =S(M*)^ ^P.

PQ>£

We now construct an A«£'*»-algebraic system with the alphabet of
variables

Y={^, qJP6I'^1^2£Q}-'^1^2
QxQ

By definition, the matrices Y £(A<Y>)w"", per, have the (q , q )-

entry yP ^ , q,, q^ Q. Using these matrices we
1 '^.2

define

Y. =E' v=v.-

Our algebraic system is now given in the following matrix notation

xp-,L.Mp,. Y. - ^r-
Its unique solution is given by (M ) , p£F. Here it is understood
that (M ) is substituted for Y , per.

We now add an equation y?, =S ^ . M^ ^Y^P. Then ||(P|| equals the compo-
irer *--P^, 7T-TT-

nent in the unique solution of the augmented A«E»-algebraic
system corresponding to y^,. D

Theorem 4. 8. A formal power series is in A 9«E» iff it is
accepted by a cycle-free A<ZUe>-pushdown-automaton. 0
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5. COMBINATORIAL APPLICATIONS.

Our combinatorial applications concern mainly rational and algebraic

sequences and their generating functions. Here a sequence a AU
' 

is

GO

termed A-rational (A-alqebraic, respectively) iff ^ a(n)zn is a
n=0

power series in A"""«z"» (Au""~:)«z''», respectively).

Goulden, Jackson [9] and Flajolet [6] have presented the theory to

solve combinatorial enumeration problems via the symbolic operator

method by the use of generating functions. That means that they

translate combinatorial constructions into operators on counting

generating functions. These operations on generating functions will

be defined in this section by the help of automata.

Recall that A is assumed to be a commutative semiring. We first

consider A-rational sequences.

k. ^ , _. k-1
Lemma 5. 1. Let q=a, z+...+a^z" and p=b^,£+. . . +b^_, z" ~ be polynomials

and consider the A-rational power series r=q*p. Then
-n-1, 1+b.(i) for all 0$n$k-l, (r, z")=a^(r, z" ")+... +a^(r, e)+b^;

(ii) for all nSk, (r, zn)=a (r, zn-l)+... +a^(r, zn-k).
Proof. Observe that, by Corollary 2. 2,
* . . k

r=qq p+p=qr+p=a^ zr+... +a^z"r+p.

^
Theorem 5. 2. Let q=a^z+... +a^z", r, and r^ be polynomials and con-

sider the A-rational power series r=q"r, +r^.

Then, for some n/^Sk and all n2n^,

(r, zn)=a^(r, zn-l)+... +a (r, zn~k).

Proof. Lemma 5. 1 implies that, for all sufficiently large n,

(r, zn)=(q*r^, zn) =a^(q*r^, zn-l)+.. . +a^(q*r^, zn~k)=
a^(r, zn~l)+... +a^(r, zn-k).

The following theorem is a slight generalization of Klarner [13]»
.
IN

Theorem 3 and Eilenberg [5], Theorem VIII.4. 2. A sequence a A" is

termed ultimately periodic iff there exist integers tSO and s21

such that a(n+s)=a(n) for all nSt.

a
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Theorem 5. 3 ._ The following statements concerning a sequence aGA'

are equivalent:

(i) a is ultimately periodic;

(ii) there exist sSl and r,, r^£A<z > such that
00

[ a(n)zn=(zs)*r^+r^;
n=0

(iii) for some n^Sk and all nSn^,

a(n)=a^ oi (n-1)+... +a^a(n-k) and {a(n)|nSO} is
finite.

Proof.

(i)s»(ii): Since a is ultimately periodic there exist tSO and s^l

such that a(n+s)=a(n) for all nSt. Consider the two polynomials

r^=a(t)zt+... +a(t+s-l)zt+s-l, r^=a(0)e+. .. +a(t-l)zt~1
and let

r=(zs)*r^+r .
We claim that, for all n20,

(r, zn)=a(n) .

Let O^nSt-1. Then (r, zn)=(r^, z")=a(n).
Let nSt. There are unique m^ , m^SO such that n-t=s'm, +m^, OSm^s-1.

Hence, n=s*mi +m^+t.

This^implies^ ^ , , , m, m, +t m, +t
(r, zn)=((zB)*r^, z")=((z5)*, (zs) A)(r^, z^ )=(r, z^ )=
a (t+m^)=ci (sm, +m^+t) =a(n) .

(ii) =»(iii) : Theorem 5. 2 implies that, for some n^Ss and all nSn,

a(n)=a(n-s).

Now we obtain

{a(n)]n20}={a(n)]o$n^nQ-l}.

(iii)«»(i) : Assume that {a(n)|n^0} contains exactly ii-21 elements of
A. Consider the k-tuples

B^=(a(nQ+(i-l)k),..., u(nQ+ik-l)), iSO.
.^

Since there exist at most i" distinct such k-tuples, there exist

j, SO, j, >0, j, +j., SJlk, such that g, =B, ^, .
1 J 1 ' J2

Hence,

a(nQ+(j^-l)k)=a(nQ+(j^+j^-l)k),..., a(n^+j k-l)=a(n +(j^+j^)k-l).
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The recurrence equation of (iii) and these equalities yield

a (n+j^k)=a(n)
for all n^n +(j^-l)k. D

The next theorem shows that all A-rational power series are of the

form of Lemma 1, i. e., r=q p, in case A is a commutative ring (with
unity). (See Eilenberg [5], Theorem VIII.3. 1 and Kuich, Salomaa [15],
Theorem 8. 16).

Theorem 5. 4. Let A be a commutative ring. Then r is a power series
in A"""«z"» iff there exist polynomials p, q A<z*>,
where q is quasiregular, such that

r=q*p.

proof_ we have to show that q^p^+q^p^, q*^p^p^, (q*p)+, q q q,p
quasiregular, are of the form indicated by our theorem. We prove
only the last case (by Theorem 2. 6):

(q+p)*p=(q*p)*q*p=(q*p)+.

Theorem 5. 5. Let A be a commutative ring. The following statements
concerning a sequence a£A"' are equivalent:

(i) a is A-rational;

(ii) there exist polynomials p, q A<z >, where q is
quasiregular, such that, for all n^O,

a(n)=(q*p, zn);

(iii) for some n^2k and all nSn^,

a(n)=a^a(n-l)+... +a^a(n-k).

Proof. We have only to prove that (iii) implies (ii) . The remaining
implications are proved by Theorems 5. 2 and 5. 4.

Assume now (iii) and define the polynomial q=a^z+... +a^z . An easy
00

computation shows that (e-q) ^ a(n)z =p is a polynomial.
n=0

Since A is a ring, we obtain the equality q (e-q)=E. Hence,
00

I a(n)zn=q*p.
n=0

D
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Theorem 5. 6. Let A be a commutative ring. The following statements

concerning a sequence aeA" are equivalent:

(i) a is A-rational and {a(n)|nSO} is finite;

(ii) there exist s^l and p A<z*> such that
00

[ a(n)zn=(zs)*p;
n=0

(iii) for some n^Sk and all nSn^,,

a(n)=a, a(n-1)+... +a,_a(n-k) and {a(n)|n^0} is

finite;

(iv) a is ultimately periodic.

Proof. Theorem 5. 6 is implied by Theorems 5. 3 and 5. 5 and -the follo-

wing identity.

Let r^, r^ and q be polynomials in A<z > and q be quasiregular. Since

A is a ring, we obtain the identity

q*r^+r^=q*r^+q*(e-q)r^=q*(r^+r^-qr^). D

By definition, the A<z>-finite-automaton

ff(a^,..., a^;b ,..., b^_^)=(Q, M, S, P) is given by Q=(qQ,..., q^_^};
S=(e, 0,..., 0); M_ _ =a;, ^z, M_ _ =z, OSiSk-1; M_ _ =0 otherwise;

^i'^0 1+1 ' ^i'^i+l ' ' (3i'<3j
P^ =b, , OSiSk-1. The next figure shows Q(ai , a^ , a-> , a^ ;b^, bi , b^, b->) .

Theorem 5. 7. ||l^l(a^,. . ., a^;bQ,... »b^_^) ||=
(a^z+... +a^zk)*(b e+. .. +b^_^zk-l).

^ropf_^ By Theorem 3. 2 we obtain for the q^-row of M'

(a z+... +a^zk)* (e, z,..., zk-l) .
Hence, SM'P equals the expression described in the theorem.

In case A is a commutative ring, the A<z>-finite-automaton

Q(a, ,. . . , a,. ;b^, .. . , b^ , ) constitutes a "normal form automaton" for
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the generation of the A-rational sequence a, where
00

J a(n)zn=(a^z+. .. ^}*{b^+. . .+b^_^zk-1) =[| fiKa^, . . . ,a^;bQ, ..., b^_^)|| .
.
IN

A sequence a£A'" is generated by an A<z>-automaton Q iff, for all

nSO, a(n)=(||0||, z ) . If A is a commutative ring, each A-rational
sequence is generated by some normal form automaton

. al/'"" 'ak 0' " " " 'l:)k-l^ "

A power series q*r£Arat«z*», q, r6A<z>, q quasiregular, is the
generating function of an A-rational sequence a iff, for all nSO,
a(n)=(q*r, zn).

Our next goal is to show the Cayley-Hamilton Theorem in commutative

rings. Clearly, this yields an easy method for the computation of
the generating function from a generating A<z>-finite-automaton.

An analysis of the results and proofs in Nrs. 33-35 of van Mangoldt,
Knopp [17] shows that these are valid also in commutative rings. We
assume the reader to be familiar with the definitions of a deter-

minant det(M) of a matrix M.

Let now M be a kxk-matrix, kS2, and consider the (k-1)x(k-1)-matrix

M^J that originates from M by cancelling the i-th row and the j-th
column of M. By definition, the (i, j)-minor 4, ^ is given by

4, , =(-l):l-+:)det(Mi3).
'

By Nr. 35(6) of van Mangoldt, Knopp [17] we have the identities

n n

.

LMi. s y-i, s= ^Ms. i ps. -i=<si. n 
det <M) ' l^i, J^k.

s=i J"'s:> -l'5 s^^ S'-L s'3 1'^

Let now M6(A<z>)kxk. Define P^e(A<e>)kxl and S (Arat«z*») kxl by

(pj)s=6j, s and
S=MS+P^.

By Theorem 3. 5 we obtain that

S^. =(M*)^ ^, l^iSk.
'

Since A is a (commutative) ring, we have

i. e. ,

(E-M)S=P,,

I (5, _^-M^ ̂ . )S^=5^ ,, ISsSk.
^=^ s ir- s/t v. s,3

Multiply the s-th equality by the (s, i)-minor \i^ ; of E-M,
S , 1
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J, <6S, t-MS, t)US, i st=6S, j ^S, i' l£ssk'
and add these k equalities

J, J, <6S, t-MS, t>^S, ist=J, 6S, j PS, i-^,i
This yields

k k
I I (E-M), ^ p^ ^ S^= I 6^ ^ det(E-M)S^=det(E-M)S, =y, ,.

.t-=l s=l °'l- ° ? .>- >- ^-=^ >-7-^ I- -'. J »

Since e-det(E-M) is quasiregular, we obtain

(M*), , =(e-det(E-M))*p, ,, lSi, j^k.
' J J '

Clearly, the degrees of e-defc(E-M) and p^ ., respectively, are at
D '1

most k and k-1, respectively. Hence, Lemma 5. 1 proves the following

Cayley-Hamilton Theorem in commutative rings.

Theorem 5. 8. Let A be a commutative ring. Consider a matrix

M£(A<z>)""'v and compute e-det (E-M) =a-, z+.. . +a,, 2JV. Then,

for all nSk, l^i, j^k,

((M, z)n), , =a^ ((M, z)n-l), , +... +a^((M, z)n-k), ,.
fj->- .I-?J r>- -^y

00

Proof. (M*)^ ^= ^ ((M, z)n)^ ^zn=(a^z+... +a^zk)*u, ,. Now apply
' -^ n=0 -^ 3 '1

Lemma 5. 1 (ii). D

Flajolet [6], Part I, Figure 2, has given a table of the translation

of operations on sequences into operators on generating functions.

We do the same for operators on A<z>-automata. If in the following
table the A<z>-automata (% and ^generate the sequences(a^) and (b_),
then the A<z>-automaton in the second column generates the sequence
(s_) in the first column.

Seauence

kan
an+bn

Joa^"-^
an+ J aksn-k

anbn

I ^^n-
k=0 k'°k"n-k

A<z>-automaton

kff.

Q+^

6.^

e;+

0lQ'£

ftmi&

(n+l)a n+1 45 8.
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If 6t and ^ are A<z>-finite-automata then the automata in the second
column are again A<z>-finite-automata and the (s_) are A-rational

sequences. If 01 and a^i are A<z>-pushdown-automata (in cases © and
I-LJ, <^ has to be an A<z>-finite-automaton), then the automata in

the second column are again A<z>-pushdown-automata and the (s_) are

A-algebraic sequences. (The constructions 1-7 have to be performed

carefully on the blocks to yield again A<z>-pushdown-automata.)

Examples will show the usefulness of the constructions. The basic

cormnutative ring is Z.

Example 5. 1. The Fibonacci numbers F^, n^O, are defined by F^=0,

F^=l and Fn=Fn_i+Fn_2' ns2. They are generated by
00

[ F^zn=(z+z^)*z.
n=0

This shows that the sequence of the Fibonacci numbers is FN-rational

The normal form automaton for the sequence (F^) is ^(1, 1;0, 1)=

({qQ, q^}, M, S, P), which is drawn in the next figure.

(i) Let (C^) be the sequence (Fr>) ' (Fn) ' i. e., the Cauchy product
of the sequence of Fibonacci numbers with itself. Then

Q(l, l;0, l). ^(l, l;0, l)=({qQ, q^, q^, q^}, M^, S^, P^) generates (C^):
2 Z 0 0

M. =l z ° z z
tl~\ 0 0 z z

.
0 0 z 0

' pl=
0

^ ) , S^=(E, 0, 0, 0)
E

We obtain det(E-M^)=e-2z-z +2z3+z4 and p^ ^=z2. Hence, (C ) is
generated by (2z+z -2z -z )*z :

CQ=C^=O, C^=l, 0^=2, 0^=5, Cg=10, Cg=20, C^=38,... .

(ii) Let (H^) be the sequence (Fn)®(Fn)» i. e., the Hadamard product
of the sequence of Fibonacci numbers with itself. Then

., l;0, l)®$(l, l;0, l)=({qQ, q^, q^, q^}, M^, S^, P^) generates (H ):

M2= S^=(e, 0, 0, 0).
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We obtain det(E-M^)=c-z-4z2-z3+z4 and p =z-z3. Hence, (H} is
generated by (z+4z2+z3-z4)*(z-z3):

HQ=O, H^=l, H^=l, H3=4, H^=9, H^=25, Hg=64, H^=169,... .

(iii) Let (T^) be the sequence (F^)L^(F^), i. e., the Hurwitz product
of the sequence of Fibonacci numbers with itself. Then

0i(l, l;0, l)LU^(l, l;0, l)=({qQ, q^q^q^}, M^, S3, P3) generates (T ) :
2z z z 0

M. = f z ^ ° z
'3 ^ z 0 z z

0 z z 0
S =(£, 0, 0, 0).

Since M^ is blockstochastic (see Kuich, Salomaa [15], Exercise 4. 5),

the A<z>-finite-automaton ({qo, q^ ,q^ } , M^ , 83 , P^) generates (T):

M.l=

'2z 2z 0

\ 0 2z 0
S3=(£, 0, 0)

We obtain det(E-M^)=e-3z-2z2+4z3 and y =2z2. Hence, (T ) is
generated by (3z+2z-4z3) *2z2:

T^T^=0, T^=2, T^=6, T^=22, T^PO, Tg=230, T =742,... . a

Example 5. 2. We want to prove the identity

^FO+(?)Fl+... +^^2n-
(i) The value on the left side of the identity is the n-th element
of the sequence (F^)L^J(I). This sequence is generated by the A<z>-
finite-automaton

«qo-^>. (2,2:). l^. °l, ^).
(ii) The sequence (F^)®( (ln+(-1) n)/2) , FQ^^^O^^O,. . . , F 0, . . . ,
is generated by

({qo'c3l'q2'q3}'M's'p) '
where

, p=l

0

0

£

0

, S=(c, 0, 0, 0).

Consider the automaton

(^o'ql'q2'q3}'M2's'p) .
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This automaton is equivalent to

({qQ, q^}, (2Z^ z^ ̂  , (c, 0), (^)).
z z

Substituting z for z" yields an A<z>-finite-automaton generating

(F^ ) . Inspection shows that this automaton and the automaton of (i)
are isomorphic. D

Example 5. 3. Consider the IN<z>-automata ff>^ = (IN, M, S , P) and
(P^=(IN, M ®(z) , S, P) , where S=(e, 0, 0, . . . ) ,

p =, and M =

'0 z 0 0
z 0 z 0
0 z 0 z

The automata tP^ and (P^ are "almost" pushdown automata. (Add an extra
state and an edge labeled by z from state 0 to this extra state.)

By the construction in the proof of Theorem 4. 7, we obtain

-+E, ll^ll=^||^||'+2||(P, ||+e,l|(Plll=z211^11:

(llpl ll'z2n) =nl!^l)!l and (ll^ll'zn» = <nn3)-(^)' where <nk3» is a

triomial coeffizient (see Kuich [14], Prodinger [18]).

Observe that <P^=(?^ u_i Q, where 6!=({q}, (z) , (e) , (e) ).

Hence,
n

I (C)
k=0

. kt = /n»3i_/n/3.
'lll'z") = ("n~)~{n'-2) '

i. e. ,

[n^2]
_n

k=0

(2k) !

fn'31-(n'31
n '~ln-2''

where C^ = ^;(^DI is a Catalan number. a

Example 5. 4. Given a language L£Z*, define the language

D(L)={w£Z [there exist V^CL and v^££* such that wev^u_iv., }.

The words of Z -D(L) are called totally clean by Zeilberger [24].
Zeilberger [24] computes the weight enumerator of Z -D(L) in case L

is finite. We will extend this to the case of a regular language L:
D (L) is then again a regular language and enumerating functions are
easily computed. (Of course this is valid for £*-D(L), too.)
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Let 0"=(Q*,M', q^, P') be an B<Z>-finite-automaton whose behavior is

char(L). Let M" e(tB<E>)QXQ be the diagonal matrix defined by
M^ " = <S^ " -char(£) and let ^"=(Q-,M'+M",q^, P-). Then
ql'q2 ql'q2

D(L)=supri|Q. "|j.

Finally, let^=(Q, M, q^, P) be a deterministic B<Z>~finite-automaton

with ||Q'|^=char (D (L) ) (easily constructed from Q"} .

Consider now Q. to be an |N<£>-finite-automaton. Again we obtain
j|^|t=char(D(L)) , but now || Q||e IN«S*» . Since ||^|i=(M*P)" , the weight

qo

enumerator of D(L) and the structure generating function of D(L) are

easily computed (see Kuich [14]).

We take the example from Zeilberger [24]. Let £={x,, x^, x-, } and

L={x, x^x-, }. Then

M =

X2+X3
0

0

0

X1+X3
0

0

0

x

X1+X2
0

0

0

X3
x, +x-, +x

and P =

where q^ corresponds to the first row and column. We obtain

||Q||=(x^+x^) x^ (x^+x^) x^ (x^+x^) *x^(x^+x^+x^)*.

Hence, the weight enumerator of D(L) is given by

x^x^x^ (1-x^-x^) "'(1-x^-x^) "'(1-x^-x^) ^ (1-x^-x^-x^) "t.

The structure generating function of D(L) is given by
z3(l-3z) (l-2z)~3.

Similar computations can be done with clean words (see Zeilberger

[24], "second standard"): construct a deterministic finite automaton

^ for char(£*LZ*). D
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