The Farey Graph

Gareth Jones, Southampton, UK

This talk describes joint work with David Singerman and Keith Wicks. We have studied a set of graphs, closely related to the Farey graph, each having the modular group $\Gamma = PSL_2(\mathbb{Z})$ as a group of automorphisms. The eventual aim is to understand these graphs and to find number-theoretic, group-theoretic and combinatorial interpretations of their properties.

Let $\widehat{\mathbb{Q}}$ be the rational projective line $\mathbb{Q} \cup \{\infty\}$. The Farey graph \mathcal{F} has vertex-set $\hat{\varrho}$, with vertices v = r/s and w = x/yadjacent if and only if $ry - sx = \pm 1$ (for $v, w \neq \infty$, this is equivalent to the condition that v and w should be adjacent terms in some Farey series — hence the name). 7 has several interesting properties :

 Γ acts, by Möbius transformations, as a group of automorphisms of \mathcal{F} , transitively on vertices and edges; geodesics from ∞ to v in ${\mathcal F}$ correspond to continued fraction expansions of v;

 ${\mathcal F}$ can be imbedded in the upper half-plane to give a Γ -invariant triangular map which has every triangular map as a quotient .

More generally, if a group G acts on a set Ω , then each orbit of G on $\Omega \times \Omega$ is the edge-set of a directed graph ${\mathcal G}$, with $V(\mathcal{G}) = \Omega$ and $G \leq Aut \mathcal{G}$ (these are Sims' suborbital graphs). If $G = \Gamma$ and $\Omega = \widehat{Q}$, we obtain graphs $\mathcal{G} = \mathcal{G}_{u,n}$ on \widehat{Q} ($n \ge 1$, $l \leq u \leq n$, (u,n) = 1) which generalise \mathcal{F} . Each $\mathcal{G}_{u,n}$ is a disjoint union of $\psi(n) = n \prod_{p \mid n} (1 + \frac{1}{p})$ copies of a graph $\mathcal{F}_{u,n}$ which can be imbedded in \mathcal{F} . For example, $\mathcal{G}_{1,1} = \mathcal{F}_{1,1} = \mathcal{F}$, while $\mathcal{G}_{1,2} \cong 3.\mathcal{F}_{1,2}$ where $\mathcal{F}_{1,2}$ (vertices v = r/s, r odd and s even, with r/s and x/y adjacent \iff ry - sx = ±2) plays the same role for all maps as ${\mathcal F}$ does for triangular maps .

I shall describe some of the properties of these graphs, such as automorphisms, connectivity and circuits .

