Matroids with Coefficients

Andreas W. M. Dress and Walter Wenzel, Bielefeld

There are matroids which are not representable over any ring. However, A. Dress introduced the concept of a fuzzy ring by weakening the ring axioms such that every matroid becomes representable over some fuzzy ring.

Definition 1:

A fuzzy ring $K = (K;+;\cdot;\epsilon;K_o)$ consists of a set K together with two compositions " + : K \times K \rightarrow K " and " \cdot : K \times K \rightarrow K " , a specified element $\epsilon \in$ K and a specified subset $K_{O} \subseteq K$ such that

- (K,+) and (K,\cdot) are abelian semigroups with neutral elements 0 and (FRO) 1, respectively;
- (FR1) $0 \cdot \kappa = 0$ for every $\kappa \in K$;
- $\alpha \cdot (\kappa_1 + \kappa_2) = \alpha \cdot \kappa_1 + \alpha \cdot \kappa_2 \quad \text{for all} \quad \kappa_1, \ \kappa_2 \in K \quad \text{and} \ \alpha \in K^{\times} := \{ \alpha \in K \mid 1 \in \alpha \cdot K \};$ (FR2) $\epsilon^2 = 1$ (FR3)
- (FR4)
- $\begin{array}{c} K_{o} \ +K_{o} \subseteq K_{o} \ , \ K \cdot K_{o} \subseteq K_{o} \ , \ 0 \in K_{o} \ , \ 1 \notin K_{o} \ ; \\ \text{for } \alpha \in K^{\times} \ \text{one has } 1 + \alpha \in K_{o} \ \text{iff } \alpha = \varepsilon \ ; \end{array}$ (FR5)
- $\kappa_1, \kappa_2, \lambda_1, \lambda_2 \in K$ and $\kappa_1 + \lambda_1, \kappa_2 + \lambda_2 \in K_0$ implies $\kappa_1 \cdot \kappa_2 + \varepsilon \cdot \lambda_1 \cdot \lambda_2 \in K_0$; (FR6) κ , λ , κ_1 , $\kappa_2 \in K$ and $\kappa + \lambda \cdot (\kappa_1 + \kappa_2) \in K_0$ implies $\kappa + \lambda \cdot \kappa_1 + \lambda \cdot \kappa_2 \in K_0$. (FR7)

Examples:

i) If R is a commutative ring with $1 \in R$, then $(R;+;\cdot;-1;\{0\})$ is a fuzzy ring. Vice versa, if $(K;+;\cdot;\varepsilon;K_0)$ is a fuzzy ring and if $K_0 = \{0\}$, then K is a commutative ring with $\varepsilon = -1$.

ii) If R is a commutative ring with $1 \in R$ and if $U \leq R^{x}$, then we can define a "quotient structure" $R/U := (P(R)^{U};+;\cdot;-U;P(R)^{U}_{o})$ with $P(R)^{U} := \{T \subseteq R \mid U \cdot T = T\}$ and $P(R)_{O}^{U} := \{T \in P(R)^{U} \mid O \in T\}$ where $T_1 + T_2 := \{\kappa_1 + \kappa_2 \mid \kappa_i \in T_i\}$ for $T_1, T_2 \in P(R)^U$.

iii) As a particular case of ii) we put $R = \mathbb{R}$, $U = \mathbb{R}^{x}$. Then $\mathbb{R}/\mathbb{R}^{\times} = \{\{0\}, \mathbb{R}^{\times}, \mathbb{R}\}$. We obtain the following tables where $0 = \{0\}$, $1 = \varepsilon = \mathbb{R}^{\times}$, $u = \mathbb{R}$, $K_{o} = \{0, u\}$:

+	0	1	u	•	0	1	u
0 1 u	0	1	u	0	0	0	0
1	1	u	u	1	0	0 1	u
u	u	u	u	u	0	u	u

In the sequel let E denote a finite set and $(K;+;\cdot;\epsilon;K_0)$ some fuzzy ring. For $R \subseteq K^E$ we put $R_0 := \{r \in R \mid \phi \neq E \smallsetminus r^{-1}(0) = r^{-1}(K^x)\}$ and $(\mathfrak{R}_{o})_{\min} := \{ r \in \mathfrak{R}_{o} \mid s^{-1}(K^{\mathsf{X}}) \subseteq r^{-1}(K^{\mathsf{X}}) \text{ for } s \in \mathfrak{R}_{o} \text{ implies } s^{-1}(K^{\mathsf{X}}) = r^{-1}(K^{\mathsf{X}}) \} .$ Definition 2: A matroid M defined on E is representable over K, if there exists some $R \subseteq K^E$ satisfying i) for $f \in E$ and $r_1, r_2 \in R$ we have $r_1 \land r_2 \in R$ where $(r_1 \land r_2)(e) := \begin{cases} r_2(f) \cdot r_1(e) + \epsilon \cdot r_1(f) \cdot r_2(e) & \text{for } e \in E \setminus \{f\} \\ 0 & \text{for } e = f ; \end{cases}$ ii) for every $r \in R$ and $e \in E$ with $r(e) \notin K_0$ there exists some $s \in R_0$ such that $e \in E \setminus s^{-1}(0) = s^{-1}(K^X) \subseteq E \setminus r^{-1}(0) ;$ iii) a subset $C \subseteq E$ is a circuit in M iff there exists some $r \in (R_0)_{\min}$ satisfying $C = E \setminus r^{-1}(0) = r^{-1}(K^X) .$

Every matroid M defined on E is representable over $K := \mathbb{R}/\mathbb{R}^{x}$. If <...> denotes the closure operator of M, then $\mathbb{R} := \{ \mathbf{r} \in K^{\mathbb{E}} \mid \mathbf{r}(\mathbf{e}) = 1 \text{ implies} e \in \langle \mathbf{E} \setminus (\mathbf{r}^{-1}(\mathbf{0}) \cup \mathbf{e}) \rangle \}$ satisfies the conditions in Definition 2.

Theorem (Grassmann-Plücker-Relations for Fuzzy Rings):

A matroid M of rank m, defined on E, is representable over the fuzzy ring K iff there exists a map $\chi : E^m \to K^X \cup \{0\}$ such that i) $\chi(e_1, \dots, e_m) \neq 0$ iff $\{e_1, \dots, e_m\}$ is some base of M;

- ii) $\chi(e_{\pi(1)}, \dots, e_{\pi(m)}) = \varepsilon \cdot \chi(e_1, \dots, e_m)$ for all $e_1, \dots, e_m \in E$ and every odd permutation $\pi \in \Sigma_m$;
- iii) for all $e_0, e_1, \dots, e_m, f_2, \dots, f_m \in E$ we have $\begin{array}{c} \underset{\Sigma}{\overset{m}{\Sigma}} & \epsilon^i \cdot \chi(e_0, \dots, e_i, \dots, e_m) \cdot \chi(e_i, f_2, \dots, f_m) \in K_0 \\ i=0 \end{array}$

A map χ which satisfies the conditions of the theorem will be called a Grassmann-Plücker-map.

Example:

If M is representable over some ring R, then there exists a representation $f : E \rightarrow R^n$, i.e. we have

det(f(e₁),...,f(e_m)) \in {0} if {e₁,...,e_m} is not a base R^x else. Then a Grassmann-Plücker-map $\chi : E^m \rightarrow R^x \cup \{0\}$ is given by $\chi(e_1,...,e_m) := det(f(e_1),...,f(e_m))$ for $e_1,...,e_m \in E$.

References

- A. W. M. Dress: Duality Theory for Finite and Infinite Matroids with Coefficients, Advances in Mathematics 59 (1986), 97-123.
- [2] A. W. M. Dress; W. Wenzel: Endliche Matroide mit Koeffizienten, to appear.
- [3] D. J. A. Welsh: Matroid Theory, Academic Press London, New York, San Francisco 1976.