SOME RESULTS ON THE COMBINATORICS OF THE THUE-MORSE SEQUENCES

BY
Aldo DE LUCA and Stefano VARRICCHIO

1. Introduction

An infinite word w over an alphabet A is a map $w: N \rightarrow A$ (cf. [6]). For any infinite word $w, F(w)$ will denote the set of all its finite factors. The structure function of w is defined for any $n>0$ as

$$
\mathrm{F}_{\mathrm{w}}(\mathrm{n})=\operatorname{Card}\left(\mathrm{F}(\mathrm{w}) \cap \mathrm{A}^{\mathrm{n}}\right) .
$$

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ be a two-symbol alphabet and w an infinite word on A. A finite factor f of w is called special if $f a$ and $f b$ are still factors of w. We denote by $S(w)$ the set of all special factors of w and by $\phi_{\mathbf{w}}: N \rightarrow N$ the function which gives for any $\mathrm{n} \geq 0$ the number of special factors of w of length n. The importance of the notion of special factor is due to the fact that for any $\mathrm{n}>0$

$$
F_{w}(n+1)=F_{w}(n)+\phi_{w}(n),
$$

so that if one knows the function ϕ_{W} then by iteration one can compute the structure-function F_{w}.
Special factors of the Fibonacci word f have been studied in [1]. In this case $\phi_{f}(n)=1$ for any $n>0$. In [4] we have studied special factors of the Thue-Morse word t which can be introduced as the limit word obtained by iterating on the letter "a" the morphism μ : $\mathrm{A}^{*} \rightarrow \mathrm{~A}^{*}$ defined as $\mu(\mathrm{a})=\mathrm{ab}, \quad \mu(\mathrm{b})=\mathrm{ba}$. Thus

$$
\mathfrak{t}=\text { abbabaabbaababba. }
$$

The word t has remarkable combinatorial properties (cf. [6]). We recall, in particular, that t is overlap-free, i. e. it does not have two overlapping occurrences of the same finite factor.

Let now $\mathrm{B}=\mathrm{A} \cup\{\mathrm{c}\}$ and $\mathrm{i}: \mathrm{B}^{*} \rightarrow \mathrm{~B}^{*}$ the morphism defined as:

$$
\mathrm{i}(\mathrm{a})=\mathrm{abc}, \mathrm{i}(\mathrm{~b})=\mathrm{ac}, \quad \mathrm{i}(\mathrm{c})=\mathrm{b} .
$$

The Thue-Morse word m on three symbols can be defined as the limit sequence obtained by iterating the morphism i on the letter " a "; thus

$$
\mathrm{m}=\mathrm{abcacbabcbacabcacbaca......}
$$

The word m is square-free, i. e. it does not have two consecutive equal blocks of letters (cf. [6]).

The relation between t and m is the following: if $\delta: B^{*} \rightarrow A^{*}$ is the morphism defined as $\delta(a)=a b b, \delta(b)=a b, \delta(c)=a$ then $\delta(m)=t(c f$. [6]).

The concept of special factor can be extended to m as follows: a factor f of m is special if there exist two distinct letters x, y of B such that $f x$ and fy are still factors of m.

If w is an infinite word on an alphabet A one can introduce the monoid $M(w)=F(w) \cup\{0\}$ where the product is defined as follows. For any $m_{1}, m_{2} \in M(w), m_{1} \circ m_{2}=m_{1} m_{2}$ if $m_{1} m_{2} \in F(w)$ and $\mathrm{m}_{1} \circ \mathrm{~m}_{2}=0$, otherwise.
In [4] and [5] we have analyzed some combinatorial properties of the special factors of the words t and m by means of which we found some results concerning the enumeration of special factors and of the factors of \mathfrak{t} and m . Moreover an algoritm which allows us to construct the special factors of \mathfrak{t} and m has been given.
The completions of factors of t (and of m) having a common prefix has also been considered and an application of these results to a problem in semigroup has been given.

2. Results

a) Enumeration results

In the following we denote ϕ_{t} (resp. ϕ_{m}) and F_{t} (resp. F_{m}) simply by ϕ (resp. ψ) and F (resp. G). For any $\mathrm{x} \geq 0,[\mathrm{x}]$ is the integer part of x .

Proposition. 1 One has $\phi(0)=1, \phi(1)=2, \phi(3)=4$. Moreover $\phi(n)= \begin{cases}\phi(n / 2) & \text { if } n \text { is even } \\ \phi(n+1) & \text { if } n \text { is odd } .\end{cases}$

From this proposition it follows that for any length n there exist only 2 or 4 special factors of t. More precisely one has:

Proposition 2. For any $\mathrm{n} \geq 2$:
$\phi(n)= \begin{cases}4, & \text { if } n \leq 3 \cdot 2\left[\log _{2}(n-1)\right]-1 \\ 2, & \text { if } n>3 \cdot 2\left[\log _{2}(n-1)\right]-1 .\end{cases}$
By the iteration formula $F(n+1)=F(n)+\phi(n)$ one obtains:
Proposition 3. For any $n \geq 2$:
$F(n+1)= \begin{cases}4 n-2\left[\log _{2}(n)\right], & \text { if } n \leq 3 \cdot 2\left[\log _{2}(n)\right]-1 \\ 2 n+2\left[\log _{2}(n)\right]+1, & \text { if } n>3 \cdot 2\left[\log _{2}(n)\right]-1\end{cases}$

A similar formula for the function F has also obtained independently by Brlek [3].

In [4] we have shown the existence for any $n>0$ of a bijection f_{n} of the set $M_{n}=S(t) \cap A^{n}$ and $\left(T_{2 n+1} \cap T_{2 n+2}\right) \cap a A^{*}$. The map f_{n} is defined by setting for any $s \in S(m), f_{n}(s)=\delta(s) a$ if $s \in B^{*} a \cup B^{*} b$, and $f_{n}(s)=\delta(s) a b$ if $s \in B^{*} c$. From this result it follows that:

Proposition 4. For any $n>1, \psi(n)=\phi(n+1)$.
Proposition 5. $G(1)=3$ and for any $n>1, G(n)=F(n+1)$.
b) Construction of special factors.

In [4] we gave an algorithm in order to construct for any $n \geq 1$ the special factors of t of length n. The algoritm is based on same lemmas. For any word $w \in A^{*}$ we denote by w^{\sim} the reversed word of
w and by w the word obtained from w by interchancing the letter a with b.

Lemma 6. If $s \in S(t)$ then $s^{\prime} \in S(t)$.
Lemma 7. If s is a prefix of t then $s^{\sim} \in S(t)$.
Lemma 8. Let $\mathrm{k} \geq 0$ and uv a prefix of \mathfrak{t} such that $|u|=|v|=3 \cdot 2 \mathrm{k}$ then $u^{\sim},\left(u^{\sim}\right)^{\prime}, v$ and v^{\prime} are distinct special factors.

Hence the algorithm for costructing for any n the special factors of t of length n is the following. If $n>3 \cdot 2\left[\log _{2}(n-1)\right]-1$ then by proposition 2 there are only two special factors. If u is the prefix of t of length n then the two special factors are $\mathrm{u} \sim$ and ($\mathrm{u} \sim)^{\prime}$.

If $n \leq 3 \cdot 2\left[\log _{2}(n-1)\right]-1$ then one considers the prefix $u v$ of t of length $3 \cdot 2\left[\log _{2}(n-1)\right]$, with $|u|=|v|=3 \cdot 2\left[\log _{2}(n-1)\right]-1$. In this case one can prove that the special factors of length n are the suffixes of length n of the four special factors $u \sim,(u \sim)$ ', v and v^{\prime} of length $3 \cdot 2\left[\log _{2}(\mathrm{n}-1)\right]-1$.

An algorithm to construct for each n the special factors of m can be obtained by taking into account the bijection f_{n} of M_{n} and $\left(T_{2 n+1} \cap T_{2 n+2}\right) \cap a A^{*}$. The map f_{n} can be effectively constructed by using the morphism $\delta: \mathrm{B}^{*} \rightarrow \mathrm{~A}^{*}$.

c) Completions.

The problem we have considered is to count for any $k>1$ the number of special factors having the prefix u whose lengths lye in the interval (lul(k-1), lulk). The next proposition shows that in any such interval the number of special factors is at most 4.

Proposition 9. Let $u \in F(t)$, $|u|=n \geq 1$. For any $k>1$ set $S(k)=$ $\left\{w \in A^{+} /\right.$uw $\in S(t)$ and $\left.n(k-1)<l u w l \leq n k\right\}$. Then $\operatorname{Card}(S(k)) \leq 4$.
A similar proposition holds true also in the case of the factors of m . From the preceding proposition one derives an upper bound to the number of possible completions of a factor of t in factors of t having the same length.

Corollary 10. Let $u \in F(t)$, $u \mathrm{ul}=\mathrm{n}, \mathrm{k}$ be a fixed positive integer and $m \leq k n$. If $T=\left\{w \in A^{+} / u w \in F(\mathbb{t})\right.$ and $\left.|w|=m\right\}$ then $\operatorname{Card}(T) \leq$ $4 \mathrm{k}+2$.

The following proposition shows that two different special factors of \mathfrak{t} having a common prefix have to be quite "distant".

Proposition $\mathbb{1 1}$. Let $u v_{1}, u_{2} \in S(t), u \in A^{*},\left|v_{1}\right| \neq\left|v_{2}\right|$. One has $\left|\left|u v_{1}\right|-\left|\operatorname{luv}_{2}\right|\right|>|u| / 6$.
d) Thue-Morse monoids.

A semigroup is called weakly-permutable if there exists $n>1$ such that for any sequence $s_{1}, s_{2}, \ldots s_{n}$ of elements of S there exist two distinct permutations σ and τ of the set $\{1, \ldots, n\}$ such that

$$
s_{\sigma(1)} s_{\sigma(2)} \ldots s_{\sigma(n)}=s_{\tau(1)} s_{\tau(2)} \ldots s_{\tau(n)}
$$

S is called permutable if S is weakly-permutable and moreover one of the two permutations can be always taken equal to identity.

It has been shown by Restivo and Reutenauer [7] that a finitely generated and permutable semigroup is finite if and only if it is permutable.
In the case of groups the permutation and the weakly-permutation properties coincide as it has been shown by Blyth [2]. However this is not the case for semigroups even if one makes the hypothesis that S is periodic and finitely generated.
This latter result has been shown by Restivo for the Fibonacci monoid [8] and by us for the monoids $M(t)$ and $M(m)$ (cf.[4]). The monoids $M(t)$ and $M(m)$ are finitely generated periodic and infinite. Moreover by using the previous propositions one derives also that $\mathrm{M}(\mathrm{t})$ and $\mathrm{M}(\mathrm{m})$ are weakly-permutable (and not permutable).

References

[1].J.Berstel, Mots de Fibonacci, Seminaire d'Informatique Théorique , L.I.T.P.,Universitè Paris VI et VII, Année 1980/81,pp.57-78.
[2].R.D.Blyth,Rewriting products of groups elements, P.H.D.Thesis, 1987, University of Illinois at Urbana-Champain.
[3].S.Brlek, Enumeration of factors in the Thue-Morse word, Proc.s Colloque Montrealais sur la Combinatoire et l'Informatique,to appear.
[4]. A.de Luca and S.Varricchio, Some combinatorial properties of the ThueMorse sequence and a problem in semigroups ,Dipartimento di Matematica Università di Roma "La Sapienza",June 1987, preprint.
[5].A.de Luca and S.Varricchio, On the factors of the Thue-Morse word on three symbols, Dipartimento di Matematica dell'Università di Roma "La Sapienza" ,September 1987,preprint.
[6].M.Lothaire,Combinatorics on words ,Addison Wesley, Reading, MA, 1983.
[7].A.Restivo and C.Reutenauer, On the Burnside problem for semigroups, J.of Algebra, 89(1984)102-104.
[8].A.Restivo, Permutation properties and the Fibonacci semigroup, 1987,preprint

Aldo De Luca and Stefano Varricchio, Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale A. Moro 5, I-00185 Roma 1.

