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Abstract:

We show how tree-like data structures (B-trees, AVL trees, binary trees, etc. ... ) can be
characterized by functional equations in the context of the theory of species of structures
which has been introduced as a conceptual framework for enumerative combinatorics. The
generating functions associated to these abstract data structures are direcUy derived from the
corresponding functional equations.

1. Introduction

Often the cost study of insertion, deletion and interrogation on tree-like data structures,
involves the determination of the mean value of some parameters on these structures (height, number
of branches or nodes, etc. ... ), or an estimate of the number of structures that have fixed values for
those parameters. Clearly, the two problems are closely related, and the object of this work is to
show how modem combinatorial techniques can be appUed to solve them.

The use of generating functions in enumeradve problems has a long history, and many
authors, such as Knuth, FIajolet, Fran^on, or Vuillemin (see [5], [6], [8], [10], [12], and [18]), have
stressed the interest of these techniques in the cost study of algorithms. Let us briefly outline the
steps involved in this approach. Recall that a generating funcdon, A(x) or A(t, x), is associated to a
given data structure in the following way:

/(X)
_n

<an^
n=0

or A<t.x)=S£\, t^-
n=0k=0

where the a^'s , and the a^^'s respecdvely count the number of structures on a set of n data, and
the number of such structures for which k is the value of some parameter. By a combinatorial
argument we often obtain a functional equation for this generating function. Thus the study of the
generating funcdon, soludon of this equadon, becomes an algebraic or analytical problem.
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We shall show that in the framework of species of structures (see [9]), functional equations
correspond exactly to the specifications of data structures, and the functional equations for the
corresponding generating functions are built in these specifications. More precisely, there are
combinatorial operations on species (of structures) corresponding to sum, product, derivative,
integral and substitution of their generating functions. Moreover, we know (see [11] and [12]) that
there is a unique solution to a functional equadon (with the usual type of conditions) in the algebra of
species. This is how a functional equation specifies a species. Further, we will show how this
solution can be readily described for the so called "Bajraktarevic's equations" (see [1], [4], and [15]),
ofthefomi:

i) A(X) = F(X, A(G(X))), or
ii) A(X,Y) = F(X,Y,A(G(X, Y), H(X,Y)))

We will also give examples of many popular data structures which are defined by such
equations. These include binary trees, 2-3-trees (or more generally, a-b-trees), AVL and other
balanced trees.

2. Elementary functional equations

In this section we would like to show how tree-like structures appear as solutions of functional
equations as illustrated by the following example.

Example 1.

Let B denote the species of binary trees, where B[S] is the set of all binary trees for
which the set of nodes is S. Thus a B-structure is a binary tree. Then the well known generating
function

B(x)=
2x

for binary trees, is deduced from the functional equation

B(x)=(l+xB2(x))

which corresponds (as we shall see) to the combinatorial specification of the species B of binary
trees by the equation

B = 1 + XB2. A
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More generally, Joyal and Labelle have formulated and proven combinatorial versions of the

implicit funcdon theorem:

Theorem

Let F(X,Y) be a species of two sorts, such that

¥[0,0] =0 and OF/^y)[0,0]=0,
then there exist a unique (up to isomorphism) species A = A(X) such that:

A = F(X,A).

Proof (see [9] and [12]). A

Let us illustrate the corresponding combinatorial construcdon for the special case

A = X-R(A), (*)

with R a given species, such that R[0] ̂  0. Equation (*) states that an A-structure on a set S is

charactenzed by the selection of a point to which is attached an R-assembly of A-structures, such

as represented in figure 5.

Figure 5

Unfolding this implicit recursion, we conclude that an A-structure is a tree-like structure, such

that on each set of sons of the nodes of this tree, there is an R-structure, symbolically represented

by an arc as in figure 6.
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Figure 6

Another interesting special case of the implicit function theorem, is the equadon

A = X + G(A), (**)

with G a given species such that G[0] = 0, and G'[0] = 0. Figure 7 represent a typical
structure of the species A obtained as the unique soludon of (**) by an approach similar to the one
for equation (*).

Figure 7

Example 2.

Let G(Y) = /Y2+gY3, where f and g are fonnal parameters representing respectively a
binary operadon, and a temary operation. Then the solution of (**) corresponds to the species
whose structures on the underlying set [^^x^^x^^-j, ^'^} are wel1 formed expressions
of the kind:

^gx^fx9XiX4^X7gX6X5^XgX2.
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3. Functional equations

Main lemma

For given species , G(X) and F(X,Y) o/i one and two sorts respectively, the
general solution (if it exists) of the functional Bajraktarevic's equation:

(*) A(X) = F(X, AoG(X))

is the species of tree-like structures such as represented in figure 8, where the arc on the
sons of an internal node means that there is a structure of the species indicated on the
sonsofthat^ node. Moreover, on the unique path going from the root to any leaf, the
sequence of structures that are encountered is alw^s of the form Fn+lGn7 '" "~''

Figure 8

Example 3.

The case F(X,Y) = X+Y and G(X) = X2+X3 gives rise to the 2-3 trees, and more
generally, the a-b trees evidendy correspond to the equadon:

A(X) = X+X2+ ... +Xa-z + A(Xa+Xa+l+ ... +Xb). A

These arc instances of an interesdng specializadon of equation (*), caUed the linear case:

(**) A(X)=Q(X)+P(X)-A(G(X)),

where Q, P and G are given species. It is easy to deduce that:
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Corollary

The general solution of A(X) = Q(X) + P(X)-A(G(X)) is of the form:

<k>,A(X) = ^ P,CX) Q(G-(X))
k=0

where G<k>(X) and P^(X) are defined recursively by:

. <k>/^ jG (G<k-l>(X)) , ifk>0,

x , if k==0.

P. (X) =
P^^(X). P(G<k-l:>(X)) , if k>0

1 , ifk=0.

There is a simple algoriAm giving a fast approximadon of this solution:

Algorithm L (L for linear)

Let AI := Q(X)
BI:=P(X)
GI:=G(X)

then repeat

Gk+l := Gk°Gk
Bk+l:=Bk(B^Gk)
Ak+l:=Ak+Bk<AkoGk)

until satisfied.

In the context of generating functions, algorithm L gives an approximation A^ of the
funcdon A(x) for which the number of correct terms in the series doubles at each iteration. The

cosdy operation in this case is subsdtudon but it can be done in 0(nlog(n))3/2 (see [2]).

The introduction of a formal parameter "t" in equation (**) permits the measure of the
iterative depth of structures:

ACX) = P(X) + t-Q(X)-A(G(X)).

This corresponds to the enumeradon of structures with a weight We will illustrate this with a simple
case. Figure 9 gives a representation of G<k>-structures.
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Figure 9

here k=3, let us say that this structure has weight t3. The generating function associated with the
soludon of the equadon:

At(X)=X+fAt(G(X))
is the species A( of all trees with G-structures on the sons of internal nodes, and with all leaves at

the same depth . Each of those trees is given a weight td where d is the depth of the tree. The
corresponding generating funcdon is:

A(t, x) =
n=0k=0

ak.n-
A."
t x

n!

where a^ is the number of such trees with n leafs and depth k.
Example 4.

It is well known that binary trees permit the coding of arithmetic expressions. The following
equation (see [7]) characterizes binary trees with a parameter that measures the number of registers
needed for the evaluation of such expressions:

tx
B.<X)°1+^B.I l-2x,

We will now adapt Newton-Raphson's method for computing numerical approximations of
the solution of an equation of the fonn y = f(x,y) (see [21 and [3]), to the species approximating

83



F. BERGERON, G. LABELLE AND P. LEROUX

the solution of Bajraktarevic's equation. Let us say that two species A and B have a contact of
order k, if and only if, for all sets S of cardinahty less than or equal to k, A[S]sB[S].

Proposition R (R for reduction)

Let the species B have a contact of order k with the solution A(X) o/rAe
equation:

A(X)=F(X, AoG(X)),

and let AB be an approximation having a contact of order 2k+l with the solution
of the linear equation:

where

and

Z(X)=Q(X)+P(X)-Z(G(X));

Q(X)=F(X, BoG(X))-B,

PC?C)=|^-(X, B(G(X)))
then B+AB has a contact of order 2k+l with A(X).

The proof is a simple combinatorial argument. A

Thus the problem is reduced to the approximation of the solution of a linear equation, which
can be done by algorithm L.

4. Extensions

The extension to the many variables case is easily obtained by the introduction of different

kinds of points in figure 8. An interesting examples comes from the study of AVL-trees, or 1-2
brother trees (see [15]); the corresponding species is A(X) = U(X,X), where U(X,Y) is the

species characterized by the functional equadon:

U(X, Y) = X + U(X2+2XY, X).

Other type of extensions involve systems of differential equations, which are more easily

studied in the context of species on linear orders (see [13]) for which integradon can be defined. It is

then possible to characterize rooted trees with labels that are in increasing order when one goes from

the roots to the leaves. Thus complete increasing binary trees are characterized by the differential

equadon Y' = 1+Y2.
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