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ON WORDS CHAINS

BY

SRECKO BRLEK

Abstract. - Word chains are an extension of addition chains to words. Over a q-letter alphabet, any
long enough word admits a word cham of length at most (l+ e) n/log^(n), for a fixed and arbitrary
e>0; moreover, there exist words with no chain shorter than n/log ^(n). ^Ve study word chains for the
Thue-Morse M word with a representation by bmary trees. A conjecture on the enumeradon of shortest
word chams computmg M is proposed.

Resume. - Le concept de chaine de mots est une extension naturelle du concept de chaine d'addition.
Sur un alphabet ^ q lettres, tout mot assez long poss&de une chame de mots de longueur inferieure ou
6gale ̂  (l+e)n/Iog^(n) ; de plus, il existe des mots dont les chalnes sont de longueur plus grande que

^(n). Nous ehidions les chames de mots qui calculent Ie mot de Thue-Morse M ^ 1'aide d'une
repr6sentation par arbres binaires et nous proposons une conjecture sur Ie d6nombrement des chames les
plus courtes qui calculent M.

1. Introduction

Fast computation of powers of monomials is a very old problem, and addition

chains have been introduced as a general frame for its study (cf Knuth [4]). In order to

get a convenient complexity measure for languages, A.A. Diwan [3] defined the notion

of word chain on the free monoid A* over a finite alphabet A. This nodon appears as

a natural generalization of addition chains, and is defined as follows. A sequence of

words

wr---wr
is a word chain if for each w^ , there are indices j, k < i with w^= WjW^. (By
convention, w; is a letter of the underlying alphabet if j ̂  0). The word chain is said to

compute a word w if w belongs to the chain. The chain length of w is the smallest
length of a word chain computing w.

It is well known that the length of a shortest addidon chain for some integer n is

basically log^(n). This is no longer true for word chains. A word of length n over a
q-letter alphabet can be computed in n/log (n) steps, and words achieving this bound,
up to a constant factor, exist CBerstel and Brlek [1]). Regularities in words play a major
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role, since they can be used to improve the chain length. In Berstel and Brlek [I], it is
shown that there is a clear improvement in some cases .

In section 5, binary trees are used as a representation of word chains, and we
analyze, in secdon 6, the chain length of the weU known Thue-Morse word.

2. Definitions and notation

Let A be a q-letter alphabet. A word chain over A is a sequence
c=(w^,....., wo, w,,...... w, ) (1)

of words such that A = { w,.q,....., Wg }, and for each i (1 <i^r ), there exist
j,k with 1-q ̂  j,k < i such that

wi = wj wk (2)
Clearly, addidon chains are exacdy word chains over a one-letter alphabet. The length
of the word chain c is the integer r and is denoted by Id. The word chain c is said
to compute a word w if w =w^ for some ie {1-q ,..., r}. The chain length of a
word w is the integer

£(w) = min { Id : c computes w }.

Straightforward extensions are given for sets of words as follows. For every non
empty set ScA*, c compute S, if and only if

Vse S , se c,

and the chain lengA ^(S) of S, is defmed similarly.
Observe that in chain (1), IwJ ̂ 2l for 0^i< r. Therefore, for any non empty

word w, ̂ (w) > log(lwl) . On the other hand, it is clear that every non empty word w
is computed from the alphabet in lwl-1 steps, by concatenation of one letter at each

step. We shaU see later that more precise bounds can be given. In particular, when a
word has regularides, a better result is in general achieved as is shown in the foUowing
example.

Example 1. Let w=viviane. This word has a square prefbc, and this property
can be used to compute it as follows:

step 1. v i

step 2. (vi)(vi)

step 3. (v iv i) a

step 4. (v iv ia) n

step 5. (vivi a n) e

which yields the foUowing word chain

c =(a, e, i, n, v, vi, vivi, v ivia , v iv ian , v iv lane ).
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3. Main results

We recall without proof the following results.

Proposition 3. 1. ( Berstel and Brlek [1])

Let \ be a q-letter alphabet. For an arbitrary e > 0, there is a constant rig such that,
for any word we A* of length n ^ OQ , there exists a word chain c computing w

of length Id ̂  (l+£) n/logq(n).

Proposition 3.2. ( Berstel and Brlek [1])

Let A be a q-letter alphabet, with q>.3 . There exist words we A* such that

^(w)>n/log ^(n), where n = Iwl.

Putting both results together, we obtain, for e > 0 and infinitely many integers n,
the bounds

loga. l(n)
<: ^(w) < (!+£)

logq(n)
(lwl=n)

Observe also that if a word chain is represented by the sequence of pairs of indices (the

i-th step, namely w^= WjW^, is represented by 0,k)), then there is no data
compression by word chains, because the binary notation of a word chain of length r

requires roughly r. log(r) space.

In the following examples, we give an estimation of the chain length of some
families of words which are "easy" to compute in the sense of word chains. We refer
the reader to [I ] for detailed proofs.

Example 2. (DoL systems). Consider an alphabet A, and a morphism h : A* -^A*.
Given a word ue A* , and an integer n, the n-th iterate h" (u) can be computed by a

word chain of length bounded by

^(h"(u))^ n. ( ^ lh(a)l ) + Id -1
a A

Since the length of h"(u) usually grows exponentially with n , we have a

logarithmic bound.

Example 3. Each word w^ of the form
w^ =baba2ba3b........ ba"b

has chain length 6(n). It is easily seen that there is a word chain of length 2n-l. Thus

^(w, ) - ec^/iwj )
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Example 4. (Overiap-free words). Consider the alphabet A={0,1}. A word is

overlap-free if it has no factor of the form xuxux, with x,u words, and x

nonempty. For any overlap-frce word w , its chain length ^(w) is 6(log(Iwl).

4. Words with few factors

As already mentioned, word chains take into account the structure of the factors of

the word they compute. It will be shown that words with few factors have short chains.

Given a word w , we denote by 3'w^1) t^le set °^ factors of length h of w, and
we denote by V^(h) the size of 3'^(h):

^(h)=CaTd3-^h) (h>l)
We omit the subscript if no confusion is possible.

Proposition 4. 1. ( Berstel and Briek [1])

Let w be a word of length n , and assume that there are constants C ̂ 1 , pe M, p^l
such that

V^(h) ^ C hP , ( 1^ h ̂  rnl/(P+l)1 )
Then

^(w) < 6 C nP/(P+l) .

For p=l we get the following special case,

Corollary. Let w be a word of length n , and assume that V^(h) = 9(h), /o/-
h=l,.... , n, i. e., there is a linear number of factors of each length. Then

/6(w) = 0(/n) .

There is stiU a gap between the upper bound given by this proposition and the

lower bounds derived in particular cases as we shaU see in the next example.

Example 5. Let A=(a,b} and (p be the morphism <p:A*-^A* given by (p(a)= ab

and (p(b)=ba. The Thue-Morse word M is defmed by iteration of (p as follows:

(p2 (a) = abba

(p3 (a) = abbabaab

<p4(a) = abbabaabbaababba

M =abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaabab.....
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The number of factors in M is given in the next two proposidons.

Propositon 4. 2 (Briek [2])

For m S 3, the function 5'(m) u given by

6.2r-l + 4 p
ar<m)=<l _r.l

8. 2r" + 2 p

r-1
0< p ^ 21'

2r-l<p<2r

where r and p are uniquely determined by the equation

m=2r+p+l 0<p<2r

Proposition 4.3 (Briek [2]) The function 3:'(m) satisfies

y(m)
m->«> m-1

3
3-(m)

fim
m-1m-)~

10
3

and the bounds are respectively attained for sequences of values of m given by
m=2T+l and m=3.2r-l+l

Therefore the numbers of factors of M is a linearly growing function, and we can

apply the corollary following Proposition 4. 1. We have thus

y^^(m) <. ̂ (m-1) ^ -l^m
<p"(a)

and the chain length is
1

^((p"(a)) < 6-^-(2n)2
It gives a rough bound as we shall see in section 6.

5. Word chains and binary trees

Every word chain corresponds to a binary tree constructed recursively by the
following rule: given an alphabet A , for every pair of words w? w^ e A*,

^\wl W2
w, w-

Exemo1e6. A chain computing w =012120221012 is

c = (0, 1, 2, 12, 012, 1012, 01212, 21012, 221012, 0221012, 012120221012)
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and the corresponding binary tree is constructed as follows

1212 12 12 12 12 12

Exemple 7. One of the shortest chain computing w = abbabaab is

c = (a, b, ab,aab, abaab,babaab, abbabaab)

and the corresponding tree is obtained by the sequence

a b

a b a b a b

Remarks.

1. The word is read on the leaves from left to right, following fhe natural order.

2. It is always possible to rearrange Ae order of some elements in the chain, in such a

way Aat concatenation operations correspond to the postfix order on the tree. In

example 6 it suffices to commute operadons 3 and 4.

3. In general, this correspondance is not a bijection. Indeed, every binary tree with Iwl

leaves correspond to a parenthesing of the word w. However, distmct Crees can yield

the same chain as is shown in the following example
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(a(bc))(u((ab)c)) ((ab)c))(u(a(bc)))

b c

a b

c = (a,b,c,u,bc,abc,ab,uabc,abcuabc)

b c

c = (a, b, c, u, ab, abc, bc,uabc, abcuabc)

This is due to the fact that the word abcuabc contains two occurences of a factor

of length 3, which can be computed, accordmg to the associative rule, in two different
manners. Therefore, the factors ab et be can commute in the chain. So we must take

in account the order of elements in the chain and consequently the tree corresponding to

the ordered chain c(w) will be denoted by T^^.

This last example indicates also that the chain length is not equal to the number of

distinct sub-trees in general, because the factor abc is counted once, but it is represented
by two distinct sub-trees. This is no longer true if the chain is minimal and we have the

following caracterisation.

Proposition 5. 1 Let A be a finite alphabet, and we A*, then

^(w) = min (# distinct sub-trees of T^^)
c(w)

C(w), C/w), C^w) , will denote the number of chains respectively, distinct,
of length r, and minimal, computing w. The number of addition chains for an integer n
wUl be denoted by C(n).

Proposition 5. 2 Ler A &ea q-lettrer alphabet, and we A* a word of length lwl=n.

Then

(2n-2)!
C(n) ̂  C(w) ^

n! (n-1)!

Proof. If the letters of w are distinct, then Iwl =n < q and there is a bijection

between word chains and binary trees with n leaves. Therefore the Catalan numbers

provide the upper bound. On the other hand, if w = a", then C(w) = C(n).
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Among all chains computing a word, some are minimal, and their length and

number is closely related to the strucure of the word. Indeed, if the letters of w are

distinct, then all trees represent minimal chains and their length is n-7. In the case of

the one-letter word -w = a", its length £(n} is given by (cf. Knuth [4])

Flog^ nt < ^(n) < |_log2 nj +v(n)- 1
where v(n) is the number of 1's in the binary representation of n.

6. A case study: the Thue-Morse word

In general chains are not stable under morphism iteration. However if the

morphism is defined by one (and only one) monoid operation, then, new chains are

constructed by iteradon. In the case of the Thue-Morse word M ,we have

Proposition 6. 1 Let A = {a,b} and ̂  : A*-^A* defined by (p(a)=ab, (p(b)=ba. If c
is a chain computing (p"(a), then Au(p(c) computes (p"+I(a), a/?^ IAu(p(c)l=lcl+2.
Moreover, if c is a minimal chain, then

^( (p"+l(a)) < IAu(p(c)l

Proof. Let c=(a, b, w,,..., <p"(a)). Then Au(p(c)=(a, b, ab, ba, (p(w^), ..., (p"+l(a)),
where (p(w;)=(p(WjW^)=(p(Wj )(p(w^). Moreover ^( (pn+l(a) )^^( (p"(a) )+2=IAu<p(c)l.

Qearly, £( (p"(a)) < 2n -1 , because 2n-l is the length of the particular chain

c = (a, b, ab, ba,... , u,, v,,... , u^) (3)
which computes u = (p"(a). And A.A. Diwan [3] proposed the fotlowing concecture.

Conjecture 6.2 . The length of a shortest chain computing (p"(a) is

^(<pn(a)) = 2n-l.

The next result is immediate.

Proposition 6. 3 Under the same assumption, let S= { (pl (a) : 1 < i<n } then

(i) -fi(S) = 2n-l,

(u) ^( { (p"(a), <p"(b) } ) = 2n.

Proof, (i) In the chain c = (a, b, (p(a), ... , (p2(a), ... , (pi(a), ... , (pi+l(a), ... , <p"(a)) , for

every i, (pi+l(a) is not square. PIence, there is at least one word between <pi(a) and
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(pi+l(a), and consequendy, ^(S) ^ 2n-l. On the other hand. chain given by (3)
computes S and its length i5 2n-l. Point (u) is easy to get by rccurrence.

The following table lists the number of chain of each length for (p"(a). They have
been computed on a SUN 3/50 workstation.

KP "(a)l

longueur

4567 9 10 11 12 13 14

1

2

3

4

5

6

2

4

8

16

32

64

19 116 294

19 342 ?

19

?? ? ? ?

?? ? ? ?

19 ? ? ?

Table 2. C (<p"(a)) = number of chains of length r for (p"(a).

It contains the particular results:

1. C((p"(a)) = Catalan(2") , n < 3.

2. C^((p"(a)) =19 , n = 3,4, 5, 6 .
The first is not surprising, since (p"(a) has no factor of length 3, occuring more than
once. The second is remarkable, since, according to proposition 6. 1, it would mean

that (p is stable for minimal chains. Therefore, we propose the conjecture:

Conjecture 6.4 C^((p"(a)) = 19 , n >: 3.

Definition. A leaf in a binary tree will be called special if its brother is not a leaf.

The absence of special leaves is related to morphism iteration. Indeed, if c is a
chain computing (p"(a), applying (p to the corresponding tree, consists in replacing
each leaf by its image under (p (the leaves grow). Therefore, the tree corresponding to
the chain Au(p(c) computing (p"+l(a), has no special leaf. Conversly we have:

Proposition 6. 5 Let c be a chain computing (p"(a), such that the corresponding tree has
no special leaf. Then, there exist c', a chain computing (p"-l(a), such that

c = (p(c')uA
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Proof. Since the tree has no special leaf, elements in the chain have even length. By

proposition 3. 1 (iv) in [2], there is no factor of the type aa nor bb in the chain. The

only factors of length 2 are ab et ba and it suffices to cut the leaves.

Proposition 6. 6 Let c. be a chain computing (p"(a), then

(i) 'C computes (p"(a), ;'/ n is odd

(ii) c oo mput es (p"(a), (/ n u ev en

where the operations inversion ( ~ ) and "mirror image" ( ) are defined by relations

a=b ; b=a ; w^w^ = w^

a=a ; b=b ; w =w ^

w.

w^ <=^ w = w w

Proof. The chain property is stable under the operations "inversion" ( ~ ) and "mtrror

image" (~)

w. = w. w,. <=> w. = w. w,
i "j'-k. " "i "j"k

<=> w^ = w^w

Finally we have eiher (ii) when n is even because (p"(a) is a palindrome, or (i) since

(p"(a) is the mirror image of its inverse, when n is odd (cf. Lothaire[5]).

Remark that operation "rrurror image" on a chain amounts to take the symmetric

tree of the corresponding tree.

To prove Diwan's conjecture it suffices to establish the next result.

Conjecture 6. 7 Let c^ be a minimal chain computing <^(^) having a factor of odd
length. Then there exist a minimal chain c^ having no factor of odd length.

Under these assumptions, the corresponding tree has at least two special leaves,

and it suffices to show that it can be reduced, using operations preserving chain length

(i. e. the number of distinct sub-trees) to a tree with no special leaf.

If conjecture 6. 7 is true, then it is easy to deduce conjecture 6.4 on the chain

length for (p"(a). Indeed, we proceed by contradiction: let m be the smallest integer
such that £( (pm (a)) < 2m-1 and c^ a chain having no factor of odd leng±. By

proposition 6. 5, c-> = (p(c')uA and therefore

£( (pm-l(a)) < (2m -I) - 2 = 2(m -1) -1

Contradiction.

138



WORD CHAINS

Acknowledgements

Many improvements came out from fruitful discussions with Jean Berstel,
Fran^ois Bergeron, and Christine Duboc. I am also indebted to Eduardo Dubuc, who
spent some frustrating nights in front of the SUN workstation from the "Groupe de
Combinatoire de 1'UQAM", in order to produce an efficient program to compute word
chains.

Bibliography

1. Berstel J., Brlek S. On the length of word chains, Information Proc. Letters,
1987 (to appear).

2. Brlek, S.. Enumeration of factors in the Thue-Morse word, Actes du CoUoque de
Combmatou-e et Informatique de 1'Universite de Montreal (April 27th May 2nd
1987), Discrete and Applied Mathematics (submitted).

3. Diwan A.A. A new combinatorial complexity measure for languages, Tata

Institute, Bombay, India (1986).

4. Knuth D.E. The Art of Computer Programming , Vol.2, 2nd ed.
(Addison-Wesley, Reading, MA, 1981).

5. Lothaire M. Combinatorics on Words, (Addison-Wesley, Reading, MA, 1983).

Mailing address:

Departement de Mathemadques et Informadque
Universite du Quebec a Montreal
C.P. 8888 Succ. A, Montreal
H3C 3P8

Courrier Hectronique:

R36274<S UQAM.BITNET

139




